
23

MultiZ: A Library for Computation of High-order

Derivatives Using Multicomplex or Multidual Numbers

ANDRES M. AGUIRRE-MESA, Universidad EAFIT, Colombia.

MANUEL J. GARCIA, Angelo State University, USA.

HARRY MILLWATER, University of Texas at San Antonio, USA

Multicomplex and multidual numbers are two generalizations of complex numbers with multiple imaginary
axes, useful for numerical computation of derivatives with machine precision. The similarities between mul-
ticomplex and multidual algebras allowed us to create a unified library to use either one for sensitivity analy-
sis. This library can be used to compute arbitrary order derivates of functions of a single variable or multiple
variables. The storage of matrix representations of multicomplex and multidual numbers is avoided using a
combination of one-dimensional resizable arrays and an indexation method based on binary bitwise opera-
tions. To provide high computational efficiency and low memory usage, the multiplication of hypercomplex
numbers up to sixth order is carried out using a hard-coded algorithm. For higher hypercomplex orders, the
library uses by default a multiplication method based on binary bitwise operations. The computation of al-
gebraic and transcendental functions is achieved using a Taylor series approximation. Fortran and Python
versions were developed, and extensions to other languages are self-evident.

CCS Concepts: • Mathematics of computing → Numerical differentiation; Automatic differentiation;

Additional Key Words and Phrases: Commutative hypercomplex, multicomplex, multidual, hyperdual, high
order derivatives

ACM Reference format:

Andres M. Aguirre-Mesa, Manuel J. Garcia, and Harry Millwater. 2020. MultiZ: A Library for Computation
of High-order Derivatives Using Multicomplex or Multidual Numbers. ACM Trans. Math. Softw. 46, 3, Article
23 (July 2020), 30 pages.
https://doi.org/10.1145/3378538

1 INTRODUCTION

The advent of the use of hypercomplex algebras, multicomplex and multidual (also called hyperd-
ual), to compute high-accuracy derivatives of arbitrary order has initiated the need for easy-to-use

Andres M. Aguirre-Mesa: Also with University of Texas at San Antonio

Manuel J. Garcia: Also with Universidad EAFIT

This work was funded in part by the United States Department of Defense (DoD grant W911NF-15-1-0456), Universidad

EAFIT and the COLCIENCIAS’ Scholarship Program No. 6172. This work received computational support from UTSA’s

HPC cluster SHAMU, operated by the Office of Information Technology.

Authors’ addresses: A. M. Aguirre-Mesa, Universidad EAFIT, Medellin, Colombia; emails: aaguirr2@eafit.edu.co, Andres.

AguirreMesa@my.utsa.edu; M. J. Garcia, Angelo State University, Texas; email: Manuel.Garcia@angelo.edu; H. Millwater

(corresponding author), University of Texas at San Antonio, Texas; email: Harry.Millwater@utsa.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0098-3500/2020/07-ART23 $15.00

https://doi.org/10.1145/3378538

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

https://doi.org/10.1145/3378538
mailto:permissions@acm.org
https://doi.org/10.1145/3378538
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3378538&domain=pdf&date_stamp=2020-07-13

23:2 A. M. Aguirre-Mesa et al.

tools to convert existing or new numerical codes to use hypercomplex variables and hypercom-
plex algebras. Since current computer languages do not support hypercomplex algebras, complex
variables being the exception, there is a large effort required by the developer to implement the
needed mathematical operations and functions.

To address this need, we have developed a hypercomplex library, MultiZ, that provides the nec-
essary support. The support provided includes: mathematical operations using operator overload-
ing (addition, subtraction, multiplication, division, conjugate) and mathematical functions (sine,
cosine, exponential, log, integer, and fractional power), and vector and matrix storage functions.

MultiZ offers two alternatives to perform hypercomplex multiplication. For hypercomplex num-
bers up to sixth order a hard-coded algorithm is used, which provides high computational ef-
ficiency and low memory usage. For higher orders of hypercomplex numbers, MultiZ uses al-
gorithms based on binary bitwise operations. Nevertheless, the user can expand the hard-coded
capabilities of MultiZ using code generators provided with the source code. Fortran and Python
languages are supported. Extensions to other languages are self-evident.

The use of complex arithmetics for the numerical calculation of derivatives of analytical func-
tions was first introduced by Lyness and Moler [15]. The formulation was later simplified by Squire
and Trapp to create the complex Taylor series expansion method (CTSE), also known as complex
step method [20]. This method has been applied for computation of first-order derivatives in dif-
ferent areas, such as Computational Fluid Dynamics (CFD) for the computation of derivatives of
lift and drag coefficients from airfoil simulations [3]; in structural optimization for the eigenvalue
and eigenvector sensitivity analysis [25]; for shape sensitivity of finite element models [24], and
for fracture mechanics [18], among others.

Lantoine et al. proposed an extension of the CTSE method for high-order derivatives using mul-
ticomplex numbers and applied the method to aerospace trajectory sensitivity analysis [14]. The
Multicomplex Taylor Series Expansion method has been applied in other areas such as structural
dynamics for the computation of second-order time-dependent derivatives of dynamic systems
[9], and for high-order probabilistic sensitivity calculations [10].

Multidual numbers have been applied in multiple fields such as CFD for the computation of first-
and second-order derivatives of the lift and drag coefficients of subsonic, transonic and supersonic
airfoil simulations [7]; in multibody kinematics to obtain derivatives of the kinematic variables of
a body using multidual transformation matrices [4]; and in elasto-plasticity, where fourth-order
multidual numbers were used for the automatic computation of stresses, tangent moduli and other
internal variables [21].

1.1 Multicomplex and multidual numbers

There are several number systems that expand the concept of complex numbers, adding not one,
but multiple imaginary units to the real numbers. These number systems belong to the set of hy-
percomplex numbers, and some examples are: complex numbers, dual numbers, double numbers,
quaternions, octonions, sedenions, and tessarines [13].

The scope of this research is limited to multicomplex and multidual numbers, since their alge-
bras are similar and commutative, in contrast to quaternions and other high-order generalizations,
such as Cayley-Dickson algebras. Furthermore, multicomplex and multidual numbers have been
extensively applied for the computation of high-order derivatives.

The definition of multicomplex numbers and multidual numbers builds upon the concepts of
complex numbers and dual numbers, respectively. Similar to complex numbers, dual numbers are
also defined by an expression of the form z∗ = a + b ϵ , with a,b ∈ R, and ϵ , the Greek letter epsilon,
is the imaginary unit of dual numbers. However, contrary to complex numbers, where i2 = −1,
ϵ2 = 0 for dual numbers [13].

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:3

Multicomplex numbers of arbitrary order n can be defined using the following recursive defini-
tion [19]:

Cn = {z∗ : z∗ = a∗ + b∗ in , a
∗,b∗ ∈ Cn−1}, (1)

where C0 = R, and C1 is the set of regular complex numbers. Multicomplex multiplication is com-
mutative, which implies

imip =

{
−1 ∀m = p,
ipim ∀m � p, p,q ∈ N . (2)

A bicomplex number, for example, can be expressed as the sum of two complex numbers x∗1 and
x∗2 , one of them multiplied by an imaginary unit i2, resulting in a number that is composed by four
real coefficients.

x∗1 = a + b i1, x∗2 = c + d i1, x∗1 ,x
∗
2 ∈ C1, a,b, c,d ∈ R. (3)

z∗ ∈ C2, z∗ = x∗1 + x
∗
2 i2 = (a + b i1) + (c + d i1)i2,

= a + b i1 + c i2 + d i1i2. (4)

Similarly to multicomplex, multidual numbers of arbitrary order are defined using a recursive
rule based on dual numbers.

Dn = {z∗ : z∗ = a∗ + b∗ in , a
∗,b∗ ∈ Dn−1}, (5)

ϵmϵp =

{
0 ∀m = p,
ϵpϵm ∀m � p, p,q ∈ N, (6)

where D0 is the set of real numbers, and D1 the set of dual numbers.

1.2 Matrix representation of hypercomplex numbers

A convenient way to evaluate multicomplex expressions is by the use of matrix functions and
operations. This is possible due to a property called algebra isomorphism, which allows one to
represent a multicomplex number in a matrix form called the Cauchy-Riemann matrix [19] and to
compute multicomplex arithmetic operations using equivalent matrix operations [14].

The matrix form of a multicomplex number is not unique. To comply with the algebra isomor-
phism property is sufficient to ensure that matrices can reproduce the addition and the multiplica-
tion of multicomplex numbers. The following are two matrix representations of the multicomplex
number z∗ = a∗ + b∗ in , where z∗ ∈ Cn , and a∗,b∗ ∈ Cn−1:

Z 1 =

[
A −B
B A

]
, Z 2 =

[
A B
−B A

]
, (7)

where A and B are the matrix representations of multicomplex numbers a∗ and b∗, respectively.
The first matrix form is convenient to express multiplication of multicomplex numbers as a matrix-
vector multiplication, while the second form allows one to express it as vector-matrix multiplica-
tion. In the current study, only the first form will be used.

For a bicomplex number z∗ = x∗1 + x
∗
2i2, where x∗1 = a + b i1 and x∗2 = c + d i1, the Cauchy-

Riemann matrix is

Z =

[
X 1 −X 2

X 2 X 1

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a −b −c d
b a −d −c
c −d a −b
d c b a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:4 A. M. Aguirre-Mesa et al.

For a bidual number z∗ = x∗1 + x
∗
2 ϵ2 , where x∗1 = a + b ϵ1 and x∗2 = c + d ϵ1, the Cauchy-Riemann

matrix is

Z =

[
X 1 0
X 2 X 1

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a 0 0 0
b a 0 0
c 0 a 0
d c b a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Generalizing for multiduals of arbitrary order n, a multidual number z∗ = a∗ + b∗ ϵn , z∗ ∈ Dn ,
a∗,b∗ ∈ Dn−1, can be represented by the following block matrix:

Z =

[
A 0

B A

]
, (10)

where A and B are the matrix representations of multidual numbers a∗ and b∗, respectively.

1.3 Computation of high-order derivatives

Multicomplex and multidual numbers are particularly useful for the computation of highly accu-
rate derivatives of real-valued functions.

Lantoine et al. [14] provided an expression for the computation of the nth-order derivative of
a single variable real-valued function, f (n) (x), obtained as the imaginary part of the holomorphic
function f (z∗) when evaluated using a multicomplex of the form z∗ = x + h i1 + · · · + h in .

f (n) (x) =
1

hn
Im1...n [f (x + h i1 + · · · + h in)] + O (h2), (11)

where Im1...n is the imaginary part associated with i1i2 · · · in , x is real-valued, and h is a very small
positive real number (Garza and Millwater suggest 10−20 times the smallest input parameter of the
problem [9]). In the case of multidual numbers, proposed by Fike and Alonso under the name
hyperduals, the computation of derivatives is performed in an identical manner to multicomplex,
using non-real parts of the evaluated function [7]. Although not explicitly stated by the authors,
an expression for obtaining nth-order derivatives using multiduals is:

f (n) (x) =
1

hn
Im1...n [f (x + h ϵ1 + · · · + h ϵn)] . (12)

Notice that, unlike the expression used for multicomplex numbers, Equation (12) is not a second-
order approximation, but a mathematically exact expression. Therefore, derivatives computed us-
ing multidual numbers are independent of the step size h.

Consider the computation of the second-order derivative of f (x) = x3. Evaluating a bicomplex
version of the function at z∗ = x + h (i1 + i2),

f (z∗) = [x + h (i1 + i2)]3 ,

= x3 + 3x2h (i1 + i2) + 3xh2 (i1 + i2)2 + h3 (i1 + i2)3 ,

= x3 + 3x2h (i1 + i2) + 6xh2 (i1i2 − 1) − 4h3 (i1 + i2). (13)

Reorganizing in terms of real and imaginary parts, f (z∗) can be written as

f (z∗) = (x3 − 6xh2) + (3x2h − 4h3)i1 + (3x2h − 4h3)i2 + 6xh2i1i2. (14)

Using Equation (11), the second derivative of x3 is

f ′′(x) =
1

h2
Im1 2 f (z∗) = 6x . (15)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:5

In the multidual case, the bidual version of the function is evaluated at z∗ = x + h (ϵ1 + ϵ2)

f (z∗) = [x + h (ϵ1 + ϵ2)]3 ,

= x3 + 3x2h (ϵ1 + ϵ2) + 3xh2 (ϵ1 + ϵ2)2 + h3
������0
(ϵ1 + ϵ2)3,

= x3 + 3x2h (ϵ1 + ϵ2) + 6xh2ϵ1ϵ2. (16)

Using Equation (12), the second-order derivative is again 6x .

2 MULTIZ LIBRARY

The objective of the library is to make hypercomplex numbers easy to use for the computation of
high-order derivatives, regardless of the complexity of the function or program. With that objective
in mind, the development of the library was based on the following ideals:

(i) Hypercomplex numbers should look and feel as any other built-in numeric variable type.
In particular, they should have a similar syntax to complex variables for input and output of the
imaginary parts.

(ii) Hypercomplex data structures should adapt dynamically to the number of imaginary parts
required by the user. The library should keep track of the order of the hypercomplex number, not
the user.

(iii) The hypercomplex library should be able to compute any order of derivative required by
the user.

As an introductory example, consider the numerical computation of the third-order derivative
of a real-valued function; for instance, the composite function proposed by Martins et al. [16]:

f (x) =
ex

√
sin3 x + cos3 x

. (17)

To compute the third-order derivative of f (x) at x0 = 0.5, a multicomplex version of the function
is evaluated at x∗ = x0 + h (i1 + i2 + i3), where h is small enough to ensure second-order accuracy
of the required derivative (h < 10−10).

Using overloading of operators and functions in Fortran, the multicomplex input number x∗, as
well as the function f (x∗), can be coded as follows:

where im(j) stands for the imaginary unit i j (see Section 2.4).
Finally, the third-order derivative can be computed from the imaginary part associated with the

imaginary units i1i2i3. This is accomplished using the following syntax:

The result of the previous example is −9.3319100381987052, whose relative error with respect
to the analytical solution is 1.33 × 10−15.

Since the value of the step size h is immaterial for computing derivatives using multidual num-
bers, a value of h = 1 can be assumed. Therefore, a multidual version of the previous example
would be:

The result of the multidual case is −9.3319100381986804, which is equal to the multicomplex
case to 13 decimal places and has an identical relative error of 1.33 × 10−15.

Tables 1 to 6 contain a summary of the functions and operators supported by MultiZ.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:6 A. M. Aguirre-Mesa et al.

Table 1. Data Types of MultiZ

Name Description

mcomplex Multicomplex number
mdual Multidual number
mcxvec Multicomplex vector
mduvec Multidual vector
mcxmat Multicomplex matrix
mdumat Multidual matrix

Table 2. Functions to Handle Hypercomplex Numbers

Name Description

mcomplex Create a multicomplex number by providing the coefficients.
mdual Create a multidual number by providing the coefficients.

im Create a unit value imaginary part for multicomplex numbers.
eps Create a unit value imaginary part for multidual numbers
real Extract the real part of a number or array.

aimag Extract an imaginary part of a number or array.
conj_im Compute the conjugate of a hypercomplex with respect to the

specified imaginary unit.

Table 3. Operators and Elementary Functions Overloaded

Op. Description Func. Description

+ Addition sin Sine
- Subtraction and negation cos Cosine
* Multiplication exp Exponential
/ Division and reciprocal log Natural log.
** Power (integer and fraction) sqrt Square root

Table 4. Linear Algebra Operators

Name Description

transpose Transpose of a hypercomplex matrix
matmul Matrix-matrix and matrix-vector multiplication
dot_nc Dot product without conjugation

2.1 Hypercomplex variable types

MultiZ uses extended derived types in Fortran [17] to define multicomplex and multidual numbers,
called mcomplex and mdual, respectively. Both inherit from a base derived type called mnumber,
whose components are a one-dimensional allocatable array of real numbers, the number of coef-
ficients, and the order of the hypercomplex number. The base derived type mnumber is defined as:

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:7

Table 5. Functions to Handle Hypercomplex Arrays

Name Description

mallocate Allocate space for arrays of hypercomplex numbers
mchange_order Increase or decrease number of imaginary coefficients.

mget Extract a single hypercomplex number from an array element
mset Assign a hypercomplex number to an array element

mget_slice Extract a slice (subarray)
mset_slice Assign values to a slice (subarray)
mget_row Extract a row from a matrix
mget_col Extract a column from a matrix
shape Get the shape of an array. Number of elements per dimension
size Get total number of elements of the array

Table 6. Support for Cauchy-Riemann Matrices

Name Description

mto_cr Convert hypercomplex data structures (numbers, vectors, matrices) to
Cauchy-Riemann compatible arrays.

mcr_to_mcomplex Convert CR matrix to multicomplex number
mcr_to_mdual Convert CR matrix to multidual number
mcr_to_mcxvec Convert CR compatible vector to multicomplex vector
mcr_to_mduvec Convert CR compatible vector to multidual vector
mcr_to_mcxmat Convert CR block matrix to multicomplex matrix
mcr_to_mdumat Convert CR block matrix to multidual matrix

get_cr Compute a CR matrix element at the specified position from a
hypercomplex number

The precision of the floating point numbers used by MultiZ (4, 8, or 16 bytes) is controlled by
the module parameter mrealk, which can be modified by the user from the source code of the
library. Additionally, mrealk can be used to enforce floating point precision consistency in the
user’s own code.

The library also provides its own types for hypercomplex vectors and matrices: the derived types
mcxvec and mduvec, which inherit from the base type mvector, and the derived types mcxmat and
mdumat, which inherit from the base type mmatrix:

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:8 A. M. Aguirre-Mesa et al.

Similarly to the hypercomplex number types, the array types contain an allocatable array called
coeffs, which stores real and imaginary coefficients. The coefficients array is 2D for vector types
and 3D for matrix types. The first index entry of the array is associated with the imaginary parts.

The use of a single array to store all the coefficients of a vector or matrix type is advantageous
to rapidly extract any imaginary part required and to program vectorized procedures to operate
on hypercomplex numbers.

The library supports multicomplex algebra and multidual algebra, but not an algebra that com-
bines multicomplex and multidual numbers. Therefore, operations that combine both types of
numbers are not supported.

2.2 Creation of hypercomplex numbers

To create a multicomplex or a multidual number, the derived type has to be declared at the begin-
ning of the Fortran code, using one of the following statements:

After the type is declared, the coefficients and order of a hypercomplex number can be defined
in four different ways:

(i) Similar to complex numbers, by addition of real and imaginary parts.

(ii) By direct input of the real valued coefficients using constructors.

(iii) By allocation of coefficients based on a specified order. All coefficients are initialized to zero.

(iv) By direct modification of the internal coefficients array coeffs. This option is recommended
for advanced users only, since coeffs is a standard Fortran array and no bounds verification or
memory reallocation is performed.

2.3 Creation of hypercomplex arrays

Hypercomplex valued vectors or matrices are declared using the following statements:

The current version of MultiZ only supports allocatable arrays. The memory allocation is de-
fined using the subroutine interface mallocate, whose required arguments are the array, the order,
and the dimensions. The statement works for all hypercomplex array types:

MultiZ offers multiple ways to assign values to arrays:
(i) Initialize all elements with a real or hypercomplex number using the equal sign. If the hy-

percomplex order of the value is greater than the order declared for the array, its memory will be
reallocated automatically to store the additional imaginary coefficients:

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:9

In the previous example, all elements of arraysv and p are defined as follows:

vk = 1 + i, ∀k, (18)

pr s = 1 + ϵ, ∀r , s . (19)

(ii) Assign each element with a real or hypercomplex value using the subroutine mset. The
required arguments are the array, the position, and the value:

(iii) Assign to a slice (sub-array) of the array using the subroutine mset_slice. The value can
be either real, hypercomplex, a real array, or a hypercomplex array. The array and the value are
required arguments, while the bounds of the array and the strides are optional. The following are
the names of the optional arguments.

Arg. Description Arg. Description

lr Lower bound for rows lc Lower bound for columns
ur Upper bound for rows uc Upper bound for columns
sr Stride for rows sc Stride for columns

If any of the bounds of the slice are not provided, they are assumed equal to the bounds of the
array. Additionally, if the strides are not provided, they are assumed equal to one. The optional
arguments for vectors slices are: lr, ur, and sr.

(iv) Make a hypercomplex array equal to a real-valued array of the same dimensions. This op-
eration only requires the use of the equal sign. The right-hand side array can be either a real array
or a hypercomplex array of the same type. If the hypercomplex orders of the involved arrays are
different, the memory of the left-hand side array will be reallocated if necessary.

(v) By direct modification of the internal coefficients array coeffs. This option is recommended
for advanced users only: Since coeffs is a standard Fortran array, no bounds verification or mem-
ory reallocation is performed:

2.4 Indexation of imaginary parts

Functions to extract real and imaginary parts are similar to those used for built-in complex num-
bers of the Fortran programming language, and they work the same for multicomplex and multi-
dual.

The real part of a hypercomplex number can be extracted using the following function:

Imaginary parts of a hyperdual number can be extracted using the aimag function, but an ad-
ditional argument is required to specify which of the multiple imaginary parts to extract. For
imaginary parts with a single imaginary unit, such as i1 or ϵ1, the additional argument is a single
integer value. However, to extract the imaginary part with multiple imaginary units, such as i1i2
or ϵ1ϵ2, an array of integers needs to be provided:

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:10 A. M. Aguirre-Mesa et al.

Table 7. Relationship between Real Coefficients

Index and Presence of Imaginary Units for a

Tricomplex Number

Terms Index k Presence of imag.
of a C3 of the real units
number coeff. xk i3 i2 i1

x0 0 = (000)2 0 0 0
x1 i1 1 = (001)2 0 0 1
x2 i2 2 = (010)2 0 1 0
x3 i1i2 3 = (011)2 0 1 1
x4 i3 4 = (100)2 1 0 0
x5 i1i3 5 = (101)2 1 0 1
x6 i2i3 6 = (110)2 1 1 0
x7 i1i2i3 7 = (111)2 1 1 1

The mathematical rule that allows multiZ to handle hypercomplex numbers as a one-
dimensional array, mapping each real coefficient with a unique imaginary part, is based on the
binary number system:

(i) A hypercomplex number of order n contains 2n real coefficients, which is the same quantity
of possible binary numbers that can be formed with n digits. (ii) When hypercomplex numbers are
formed using recursive definitions (see Equations (1) and (5)), the presence or absence of imaginary
units correlates with different numbers of the binary system.

The relationship between hypercomplex numbers and the binary number system is illustrated
using an example. Consider the recursive definition of a multicomplex number, shown in Equa-
tion (1), to define a complex z∗, a bicomplex b∗, and a tricomplex t∗, all of them expressed in terms
of their real coeficients. The number of real coefficients in each case will be 2n , where n is the
order of the multicomplex number:

z∗ ∈ C1, z
∗ = x0 + x1 i1, (20)

b∗ ∈ C2, b
∗ = x0 + x1 i1 + x2 i2 + x3 i1i2, (21)

t∗ ∈ C3, t
∗ = x0 + x1 i1 + x2 i2 + x3 i1i2 + x4 i3 + x5 i1i3 + x6 i2i3 + x7 i1i2i3. (22)

Using a zero-based numbering for the indices of the real coefficients, and converting them to
binary, it can be noticed that their binary representation correlates with the presence or absence
of the imaginary units of each term. A detailed comparison for a tricomplex number is shown in
Table 7. This correlation holds also for multiduals of arbitrary order.

2.5 Indexation of Cauchy-Riemann matrices

As shown in Section 1.2, the construction of a matrix representation of a hypercomplex number
requires multiple copies of its imaginary parts. In general, the matrix representation is neces-
sary for certain hypercomplex operations like multiplication, where at least one of the operands
has to be represented by a matrix. However, MultiZ includes hard-coded algorithms, based on a

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:11

Table 8. Memory Cost Comparison of Using 1D and 2D

Data Structures for Hypercomplex Numbers

Multidual Multicomplex Hypercomplex
Order CR matrix CR matrix numbers as
n (3n) (4n) 1D arrays (2n)

1 3 4 2
2 9 16 4
3 27 64 8
4 81 256 16
5 243 1,024 32

matrix-vector multiplication, to efficiently compute the multiplication of hypercomplex numbers
without storing the matrix (see Section 2.7).

MultiZ includes functions to build the complete Cauchy-Riemann matrix and to extract only
the element of the Cauchy-Riemann matrix required by the user. For example, for computing the
Cauchy-Riemann matrix of a hypercomplex number x∗, and to extract the element at the position
(2, 3) of the Cauchy-Riemann of x∗ by indexation, the following commands are used:

The library also includes functions to convert a Cauchy-Riemann matrix into a multicomplex
or a multidual number:

The use of hypercomplex numbers of order n for sensitivity analysis implies a conversion of the
variables into hypercomplex variable types, which increases the memory use of each variable by a
factor of 2n , i.e., the memory consumption grows exponentially with respect to the hypercomplex
order used if a vector-like data structure is used for hypercomplex numbers. If the data struc-
ture is based on the Cauchy-Riemann matrix, the memory used by each hypercomplex variable
would increase by a factor 3n for multidual numbers, assuming the use of sparse matrices, and 4n

for multicomplex numbers. The memory use is therefore drastically reduced when hypercomplex
numbers are stored in a vector-like data structure, as shown in Table 8.

To reduce the memory consumption associated with the construction of Cauchy-Riemann ma-
trices, the binary indexation method was used to create map functions between hypercomplex
numbers of arbitrary order Cn and their matrix representation.

Consider for example the bicomplex number a∗ = a0 + a1 i1 + a2 i2 + a3 i1i2 and its Cauchy-
Riemann matrix,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 −a1 −a2 a3

a1 a0 −a3 −a2

a2 −a3 a0 −a1

a3 a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

Let r represent the index associated with the real-valued coefficients of a∗, and p,q the indices
associated with the rows and columns of matrixA. The elementApq is a multiple of the coefficient
ar , that is

Apq = s (p,q) ar , (24)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:12 A. M. Aguirre-Mesa et al.

where the multiplier s takes the values {−1, 1} for multicomplex numbers and {0, 1} for multidual
numbers. The relation between the coefficient index r and the matrix indices p,q is given by the
XOR operation between p and q,

r = p ⊕ q, (25)

while the definition of the multiplier s depends on the hypercomplex algebra. In the multicomplex
case, the multiplier s is the sign, and it is determined by

s (p,q) =

{
−1, if bit count of ¬p ∧q is an odd number,

1 otherwise.
(26)

where bit count means to count the number of one bits in the binary representation of a num-
ber, ¬ is the NOT operator, and ∧ is the AND operator. In the multidual case, the multiplier s is
determined by

s (p,q) =

{
1, if ¬p ∧q = 0,
0 otherwise.

(27)

Equations (25) to (27) work for hypercomplex numbers of arbitrary order.
Consider the particular case of computing the element in the position (2, 3) of the Cauchy-

Riemann matrix of the bicomplex numbera∗, assuming zero-based numbering. Using Equation (25)
to determine the required coefficient of a∗ in Apq = s ar ,

r = p ⊕ q = 2 ⊕ 3 = (10)2 ⊕ (11)2 = (01)2 = 1. (28)

Hence, A23 = s a1. Now to determine the multiplier s , using Equation (26),

¬p ∧q = ¬ 2∧ 3 = ¬(10)2 ∧(11)2 = (01)2 ∧(11)2 = (01)2 = 1. (29)

The number of set bits in the binary representation of the number 1 is equal to 1, an odd number;
therefore, s = −1 and A23 = −a1. If the multidual case is considered, the result in Equation (29) is
different from zero, then s = 0 according to Equation (27); therefore A23 = 0.

2.6 Addition and subtraction

Addition and subtraction of hypercomplex numbers are accomplished by adding or subtracting
corresponding imaginary parts. If operands are of the same hypercomplex order, i.e., they have
the same number of real coefficients, addition or subtraction works analogously to the addition of
vectors.

If the hypercomplex numbers have different hypercomplex orders, the missing imaginary parts
in the lowest order terms are set to zero, and the result will have an order equal to the maximum
order of the operands.

MultiZ supports the addition or subtraction of hypercomplex numbers of any order, even with
real number variable types, since R ⊂ Cn . Addition and subtraction are accomplished through
operator overloading.

2.7 Multiplication

MultiZ uses a hard-coded algorithm for multiplication of hypercomplex numbers up to sixth order.
As shown in Section 3.2, the hard-coded algorithm is the most efficient method to multiply two
hypercomplex numbers. Additionally, this method does not require the storage of the Cauchy-
Riemann matrix of any of the operands. In case the multiplication of hypercomplex numbers of
order higher than six is required, the multiplication is performed using an algorithm based on
the indexation of the Cauchy-Riemann matrix of one of the operands. This method sacrifices the
performance of the multiplication operation, but keeps an efficient use of the memory resources
by avoiding the storage of Cauchy-Riemann matrices.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:13

p0 = a0*b0
p1 = a1*b0 + a0*b1
p2 = a2*b0 + a0*b2
p3 = a3*b0 + a2*b1 + a1*b2 + a0*b3

Listing 1. Example of hard-code for multiplication of two second-order multidual numbers p∗ =
a∗ × b∗

As discussed in the introduction, the multiplication of two hypercomplex numbers can be per-
formed using matrix-matrix multiplication of their Cauchy-Riemann matrices. However, as shown
in Appendix A, the product of two hypercomplex numbers can also be computed using matrix-
vector multiplication.

Consider the multiplication of two hypercomplex numbers x∗,y∗ ∈ Cn , with a total number of
imaginary parts 2n , and the Cauchy-Riemann matrix of each one has dimensions 2n × 2n . Compu-
tation through matrix-matrix multiplication requires 23n floating point operations, while a matrix-
vector approach requires 22n operations. The formulas to index the Cauchy-Riemann matrix were
designed to perform hypercomplex multiplication as a matrix-vector multiplication without al-
locating memory for the matrix. However, the indexation of all elements of a Cauchy-Riemann
matrix adds an overhead to the computation time as a tradeoff of the reduction in memory usage.

Since formulas for the indexation of Cauchy-Riemann matrices are general for hypercomplex
numbers of arbitrary order, a strategy to perform hypercomplex multiplication efficiently, and with
low memory usage, is to use indexation formulas to generate code that directly operates on the
real-valued coefficients. An example of multiplication of second-order multidual numbers using
hard-code is shown in Listing 1.

2.8 Division

MultiZ computes the division of two hypercomplex numbers using conjugate numbers. Consider
a∗ and b∗ bicomplex numbers and x∗ equal to b∗ divided by a∗:

x∗ =
(b0 + b1 i1) + (b2 + b3 i1) i2
(a0 + a1 i1) + (a2 + a3 i1) i2

. (30)

The i2-conjugate of a∗ is conj2 (a∗) = (a0 + a1 i1) − (a2 + a3 i1) i2. Multiplying the numerator and
the denominator by conj2 (a∗), the following is obtained:

x∗ =
b∗ conj2 (a∗)

a∗ conj2 (a∗)
=

b∗ conj2 (a∗)

(a0 + a1i1)2 − (a2 + a3i1)2 (−1)
,

=
b∗ conj2 (a∗)(

a2
0 − a2

1 + a
2
2 − a2

3

)
+ 2 (a0a1 + a2a3) i1

. (31)

Notice that the denominator of the previous equation is in C1. Multiplying the numerator and
the denominator by the i1-conjugate of the denominator, the following result is obtained:

x∗ =
b∗ conj2 (a∗) conj1 (a∗ conj2 (a∗))(

a2
0 − a2

1 + a
2
2 − a2

3

)2
+ 4 (a0a1 + a2a3)2

. (32)

Notice that the division of the two bicomplex numbers was reduced to the product of three mul-
ticomplex numbers divided by a scalar. An equivalent approach has been implemented for multi-
dual numbers. The iterative procedure for computing the division of two hypercomplex numbers
is summarized in Algorithm 1.

Notice that the hypercomplex multiplications inside the loop of the algorithm areO (22n). There-
fore, the computational complexity of this method is O (22n).

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:14 A. M. Aguirre-Mesa et al.

ALGORITHM 1: Division of Two Hypercomplex Numbers.

Input:
b∗ , a∗ Original numerator and denominator.
rb , ra Hypercomplex order of the inputs.

Output: Multicomplex x∗ = b∗/a∗

n∗ ← allocate(max(ra , rb)); # Memory for numerator

d∗c ← allocate(ra); # Memory for conjugate

n∗ ← b∗ ; d∗ ← a∗; # Initialize num. and den.

for k = ra to 1 step −1 do

d∗c ← conjk (d∗); # Compute ik-conjugate

n∗ ← n∗ d∗c ; # Compute new numerator

d∗ ← d∗ d∗c ; # Compute new denominator

n∗ ← n∗/Re(d∗); # Compute final result

Another method for the computation of division is to solve a system of equations Ax = b by
Gaussian elimination, whose computational complexity is O (23n). However, since the Cauchy-
Riemann matrix form of multidual numbers is a triangular matrix, the complexity for multidual
numbers can be reduced to O (22n) by using an LU decomposition.

2.9 Computation of elementary functions

In spite of their significant similarities, the computation of functions for multicomplex and multid-
ual numbers has been traditionally carried out using different approaches: Multidual functions are
based on a truncated Taylor series, which takes advantage of the nilpotent rule (ϵ2

p = 0, ∀p ∈ N)
to guarantee exact mathematical results [7]. However, multicomplex functions are computed using
functions of matrices, given the isomorphism between the multicomplex algebra and the real ma-
trix algebra [14]. Implementations of matrix functions can be found in different numerical analysis
platforms, such as MATLAB, or the SciPy library for Python. However, some of these implemen-
tations are based on the Schur’s decomposition of a matrix, which is not well suited for diagonally
dominant matrices with repeated eigenvalues, as is the case with the Cauchy-Riemann matrix form
of multicomplex numbers [8].

To overcome these difficulties, and taking into account that the main goal of the library is the
computation of derivatives, the approach provided in MultiZ is to use a truncated Taylor series
for the computation of both multicomplex and multidual functions. The accuracy of the truncated
Taylor series expansion for the computation of elementary hypercomplex functions is verified in
Appendix B, where this method is compared against different matrix functions included in the
open-source Python library Scipy.

Consider the truncated Taylor series expansion of a holomorphic multicomplex function f (x∗)
about x0, where x0 = Re(x∗),

f (x∗) ≈ f (x0) +
n∑

k=1

f (k) (x0)

k!
(x∗ − x0)k . (33)

Since the expansion was made about x0, f (x0) and its derivatives are real numbers, and f (x0) can
be evaluated using the built-in functions of any programming language. Notice that the powers
of (x∗ − x0) are hypercomplex numbers, which can be computed by multiplication, as explained
previously. The derivatives of f (x0) can be easily computed for many common functions, such as
sine, cosine, exponential, logarithm, and square root.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:15

To ensure the computation of machine-precision derivatives of real-valued functions, the vari-
ablen in Equation (33) must be equal to the order of derivative required by the user. Using a value of
n greater than the order of the required derivative results in the generation of zero-valued terms in
the Taylor series. In the multidual case, this is caused by the nilpotent rule of the imaginary units.
In the multicomplex case, the extra terms become approximately zero due to the small step size h.
By default, MultiZ sets n equal to the order of the hypercomplex number. However, the user can
specify a different truncation point by adding an optional argument to the function call.

The truncated Taylor series (Equation (33)) is used for both the multicomplex and the multidual
case. In the multicomplex algebra case, the truncated Taylor Series approach only works for small
values of the step size h. In the multidual algebra case, the approximate sign is replaced by an
equal sign, and the result does not depend on the step size h. An efficient approach for computing
hypercomplex functions is shown in Algorithm 2, in which the powers of (x∗ − x0) are obtained
by accumulation.

ALGORITHM 2: Taylor Series Approach for the Computation of Hypercomplex Functions.

Input:
x∗ Hypercomplex number
n Hypercomplex order, or order of required derivative.

Output: Hypercomplex number y∗ = f (x∗)
x0 ← Re(x∗); r ← 1; p∗ ← 1; y∗ ← f (x0);

for k = 1 to n do

r ← r · k ; # Update factorial

d ← compute f (k) (x0) ; # Compute derivative

p∗ ← p∗ (x∗ − x0); # Update (x∗ − x0)k

y∗ ← y∗ + (d/r) p∗; #
∑ f (k) (x0)

k ! (x∗ − x0)k

2.9.1 Exponential Function. Since all derivatives of ex are equal to ex , the truncated Taylor
series equation is reduced to

ex ∗ ≈ ex0

⎡⎢⎢⎢⎢⎣1 +
n∑

k=1

1

k!
(x∗ − x0)k

⎤⎥⎥⎥⎥⎦ . (34)

2.9.2 Sine and Cosine. An efficient and accurate computation of the sine of a hypercomplex
number, based on the Taylor series expansion, is performed using binary bitwise operations. Let
the derivative of sin(x0) equal to the product of a sign s (k) and a function д(x0,k) defined as

д(x0,k) =

{
cos(x0), if k is an odd number,
sin(x0) otherwise,

(35)

s (k) =

{
−1, if k � 1 is an odd number,

1 otherwise.
(36)

where� is the binary bitwise right shift operator. The Taylor series approximation of the sine is
then defined as

sin(x∗) ≈ sin(x0) +
n∑

k=1

1

k!
s (k) д(x0,k) (x∗ − x0)k . (37)

For the cosine, the sign s (k) and a function д(x0,k) are defined as

д(x0,k) =

{
sin(x0), if k is an odd number,
cos(x0) otherwise,

(38)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:16 A. M. Aguirre-Mesa et al.

s (k) =

{
−1, if k + 1 � 1 is an odd number,

1 otherwise.
(39)

Therefore, the Taylor series approximation of the cosine is defined as

cos(x∗) ≈ cos(x0) +
n∑

k=1

1

k!
s (k) д(x0,k) (x∗ − x0)k . (40)

2.9.3 Power Function. Consider the elementary differentiation rule for the power function
f (x) = xa , a ∈ R, to obtain three derivatives:

f ′(x) = a xa−1, f ′′(x) = a (a − 1) xa−2, f ′′′(x) = a (a − 1) (a − 2) xa−3. (41)

Generalizing this rule for an arbitrary order of derivative, and evaluating at x = x0, the following
equation is obtained:

f (k) (x0) =

⎡⎢⎢⎢⎢⎢⎣
k−1∏
j=0

(a − j)

⎤⎥⎥⎥⎥⎥⎦ x
a−k
0 , f (x0) = xa

0 , a ∈ R. (42)

Therefore, the truncated Taylor series approximation can be expressed as

(x∗)a ≈ xa
0 +

n∑
k=1

1

k!

⎡⎢⎢⎢⎢⎢⎣
k−1∏
j=0

(a − j)

⎤⎥⎥⎥⎥⎥⎦ x
a−k
0 (x∗ − x0)k . (43)

2.9.4 Logarithm. The derivatives of the logarithm function f (x) = log(x), evaluated at x0, are
obtained using the following equation:

f (k) (x0) = (−1)k−1 (k − 1)!

xk
0

. (44)

The truncated Taylor series approximation for the logarithm of a hypercomplex number is

log(x∗) ≈ log(x0) +
n∑

k=1

(−1)k−1

k xk
0

(x∗ − x0)k . (45)

3 NUMERICAL TESTS AND RESULTS

3.1 A simple numerical example

A more complete version of the introductory example shown in Section 2 is presented here. Con-
sider again the composite function used by several authors before [7, 14, 16]:

f (x) =
ex

√
sin3 x + cos3 x

. (46)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:17

Table 9. Computation of Five Derivatives of

Equation (46)

Derivative Result Relative error

1st 2.4540383344548480 9.04813e-016
2nd 2.3559293755346875 1.31949e-015
3rd −9.3319100381987052 1.33247e-015
4th −55.731811928497279 5.09973e-016
5th 70.323499129435177 2.82910e-015

The code for computing all derivatives up to fifth order using multicomplex numbers is shown
below:

For the multidual case, only two lines of the previous code need to be modified:

Since the computation of any derivative using multidual numbers is step-size-independent [7],
the step size h can be equal to 1 or omitted. Nevertheless, for this numerical test the step size
is kept equal in both the multicomplex and the multidual cases to show that when the step size
is sufficiently small for the multicomplex case (h ≤ 10−9), the results obtained in both cases are
identical and machine-precision accurate.

The results of the previous code listings and their relative error with respect to analytical deriva-
tives of Equation (46) are shown in Table 9. The relative error is defined as

η =

v0 −v

v

 , (47)

where v is the exact value and v0 the approximation. It can be observed from the relative error in
Table 9 that the derivatives of the test function computed using hypercomplex numbers are exact
to machine precision.

In Figure 1, the accuracy of multicomplex and multidual numbers is compared for the compu-
tation of fourth- and fifth-order derivatives of the proposed function. It can be noticed that the
relative error of the multicomplex algebra converges quadratically for step sizes h > 10−9, while
the multidual algebra is step-size-independent and exact to machine precision. Notice that the

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:18 A. M. Aguirre-Mesa et al.

Fig. 1. Accuracy of derivatives of the function f (x) = exp(x)/
√

sin3 x + cos3 x computed using multicomplex

and multidual numbers for different step sizes.

multicomplex algebra reaches identical and machine-precision-accurate results for a step size h
lower or equal to 10−9.

3.2 Efficiency of hypercomplex multiplication methods

This test compares the execution time of multiplying two hypercomplex numbers using different
methods. It takes into consideration two possible cases of hypercomplex number data structure:
matrix-based and vector-based. Matrix-based refers to implementations of hypercomplex algebras
where all computations involve the use of Cauchy-Riemann matrices, while vector-based refers to
implementations where hypercomplex numbers are stored as vectors, and the Cauchy-Riemann
matrix is computed only as necessary.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:19

Table 10. Execution Times of Different Hypercomplex Multiplication Methods

(a) Multicomplex algebra

Order MM MV1 MV2 HC BB

1 1.00E-07 7.98E-08 1.95E-07 7.53E-08 8.15E-08
2 1.37E-07 8.73E-08 2.26E-07 8.87E-08 1.37E-07
3 3.26E-07 1.25E-07 3.23E-07 1.39E-07 3.57E-07
4 1.42E-06 2.89E-07 9.40E-07 3.47E-07 1.25E-06
5 8.05E-06 1.92E-06 5.34E-06 1.53E-06 4.71E-06
6 4.82E-05 7.72E-06 2.68E-05 6.20E-06 2.13E-05

(b) Multidual algebra

Order MM MV1 MV2 HC BB

1 9.94E-08 7.97E-08 1.99E-07 7.42E-08 7.47E-08
2 1.36E-07 8.83E-08 2.28E-07 8.43E-08 1.02E-07
3 3.27E-07 1.25E-07 3.20E-07 1.10E-07 1.94E-07
4 1.42E-06 2.86E-07 8.00E-07 2.15E-07 5.52E-07
5 8.05E-06 1.90E-06 3.37E-06 3.96E-07 1.76E-06
6 4.76E-05 7.64E-06 1.53E-05 1.42E-06 6.62E-06

All values provided in seconds. (MM) Matrix-Matrix multiplication, (MV1) matrix-based data

type Matrix-Vector multiplication, (MV2) vector-based data type Matrix-vector multiplica-

tion, (HC) Hard-Coded function, (BB) Binary Bitwise indexation of the CR matrix.

The methods to be compared are: (i) matrix-matrix multiplication for a matrix-based data struc-
ture (MM), (ii) matrix-vector multiplication for a matrix-based data structure (MV1), (iii) matrix-
vector multiplication for a vector-based data structure (MV2), (iv) a hard-coded function that con-
tains the multiplication operations required for each hypercomplex order (HC), and (v) use of
binary bitwise indexation of the Cauchy-Riemann matrix for performing matrix-vector multipli-
cation (BB).

For this test, MM, MV1, and MV2 used dense matrices. However, for the multidual algebra case,
HC and BB took into account the sparsity of the Cauchy-Riemann matrix to avoid unnecessary
calculations.

Differently from MV1, MV2 requires the allocation and the computation of the Cauchy-Riemann
matrix. The matrix was computed using a hard-coded function.

The test was developed in Fortran and compiled with GNU Fortran 7.3. The computations were
performed on the UTSA’s HPC cluster SHAMU, on a computing node with an Intel Xeon E5-2650
processor running at 2.6 GHz.

Results for multiplication of multicomplex numbers are shown in Table 10(a) and Figure 2(a).
It can be observed that methods intended for matrix-based data structure implementations, such
as matrix-matrix multiplication (MM) and matrix-vector case 1 (MV1) are the upper and lower
bounds of efficiency for all methods of multiplication for multicomplex orders below five, where
HC is up to 17% less efficient than MV1. For fifth- and sixth-order multicomplex numbers, HC is
approximately 20% more efficient than MV1.

Results for multiplication of multidual numbers are shown in Table 10(b) and Figure 2(b). It can
be observed that methods based on matrix-matrix and matrix-vector multiplication have no im-
provement with respect to the results of the multicomplex algebra case due to the use of dense
matrices. In contrast, methods that take advantage of the triangular shape and the sparsity of the

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:20 A. M. Aguirre-Mesa et al.

Fig. 2. Ratio of execution times of the Matrix-Matrix multiplication over other methods. (MM) Matrix-Matrix

multiplication, (MV1) matrix-based data type Matrix-Vector multiplication, (MV2) vector-based data type

Matrix-vector multiplication, (HC) Hard-Coded function, (BB) Binary Bitwise indexation of the CR matrix.

Cauchy-Riemann matrix of the multidual numbers, such as HC and BB, have a significant im-
provement in performance with respect to the multicomplex case: For multidual numbers of order
six, HC runs almost 4.4× faster than HC for multicomplex numbers, and multidual multiplication
through BB runs approximately 3.2× faster than BB for multicomplex numbers.

MultiZ uses a vector-based data structure and offers no support for matrix-based data structures.
The library supports HC and BB to multiply hypercomplex numbers.

3.3 Design sensitivity example

In this section, MultiZ is used to compute sensitivities of a simple linear elliptic system. Consider
the spring system shown in Figure 3, proposed by Tortorelli and Michaleris [23]. The first and

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:21

Fig. 3. Spring system of the sensitivity analysis example.

second-order sensitivities of the compliance, c , with respect to the spring constants, k1 and k2, are
computed and compared to the reference, e.g., ∂2c/(∂k1∂k2).

The governing equation of the system is Ku = p, where the K is the stiffness matrix,u contains
displacements of nodes 1 and 2, and p contains the loads applied to those nodes. The compliance
of the system is given by c = p · u. The stiffness matrix of the spring system is defined as

K =

[
k1 + k2 −k2

−k2 k2

]
. (48)

For this example problem, the set of design parameters is composed of the spring constants,
k1,k2. The first step to numerically compute sensitivities of the compliance c using hypercomplex
numbers is to convert the design parameters to hypercomplex, as well as all of the variables that
depend on them. Therefore, the system of equations becomes K∗u∗ = p, and the hypercomplex
version of the compliance is c∗ = p · u∗. Note that the load vector p does not depend on the spring
constants, then its hypercomplex version is equal to the real version (p∗ = p). The hypercomplex
version of the stiffness matrix is defined as

K∗ =

[
k∗1 + k

∗
2 −k∗2

−k∗2 k∗2

]
. (49)

The second step is to choose a hypercomplex algebra and the hypercomplex order. For sim-
plicity, multidual algebra is used here, since it does not require the use of a step size parameter.
Additionally, second order is used, since it is the minimum hypercomplex order required to com-
pute second-order sensitivities. Consequently, the spring constants k∗1 ,k

∗
2 , the arrays of the system

of equations K∗ and u∗, and the compliance c∗ are all bidual variables.
The multidual system of equations needs to be solved three times to compute all second-order

sensitivities ∂2c/∂k2
1 , ∂2c/∂k2

2 , and ∂2c/(∂k1∂k2). Obtaining all sensitivities in a single run is also
possible, but it requires the use of fourth-order hypercomplex numbers, which means a higher
number of computations, since the solution of a such system is O (23n), where n is the order of the
hypercomplex numbers. To compute ∂2c/(∂k1∂k2), the multidual spring constants are defined as
k∗1 = k1 + ϵ1, k∗2 = k2 + ϵ2, then the multidual stiffness matrix is defined as

K∗ =

[
k1 + ϵ1 + k2 + ϵ2 −k2 − ϵ2

−k2 − ϵ2 k2 + ϵ2

]
, (50)

which expressed in terms of real and imaginary parts becomes

K∗ =

[
k1 + k2 −k2

−k2 k2

]
+

[
1 0
0 0

]
ϵ1 +

[
1 −1
−1 1

]
ϵ2 +

[
0 0
0 0

]
ϵ1ϵ2. (51)

Notice that K = Re(K∗), ∂K/∂k1 = Im1 (K∗), ∂K/∂k2 = Im2 (K∗), and ∂2K/(∂k1∂k2) = Im1 2 (K∗).
Using comma notation for derivatives, the multidual stiffness matrix for this case can be expressed
as

K∗ = K +K,1ϵ1 +K,2ϵ2 +K,12 ϵ1ϵ2, (52)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:22 A. M. Aguirre-Mesa et al.

Listing 2. Computation of first- and second-order sensitivities of the compliance with respect to the spring

constants.

where K,i � ∂K/∂ki and K,i j � ∂2c/(∂ki∂kj). The displacement vector u∗ and the compliance
c∗ are expanded as bidual numbers as

u∗ = u +u,1ϵ1 +u,2ϵ2 +u,12 ϵ1ϵ2, (53)

c∗ = c + c,1 ϵ1 + c,2 ϵ2 + c,12 ϵ1ϵ2, (54)

where, u,i � ∂u/∂ki , u,i j � ∂2u/(∂ki∂kj), c,i � ∂c/∂ki , c,i j � ∂2c/(∂ki∂kj).
The computation ofu∗ is carried out by solving the hypercomplex system of equationsK∗u∗ = p.

This system can be solved using a standard linear algebra library, such as LAPACK, by rewriting
the system in terms of real-valued arrays, where the stiffness matrix K∗ is converted to a Cauchy-
Riemann block matrix, and u∗ and p∗ are expressed as block vectors. For the case where k∗1 =
k1 + ϵ1 and k∗2 = k2 + ϵ2 the system can be rewritten in terms of real-valued arrays as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
K 0 0 0

K,1 K 0 0

K,2 0 K 0

K,12 K,2 K,1 K

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
u
u,1
u,2
u,12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (55)

MultiZ includes functions to format arrays as shown in Equation (55)

and also to convert Cauchy-Riemann compatible arrays to hypercomplex variable types.

Following a similar procedure, ∂2c/∂k2
1 is determined by defining the multidual spring con-

stants as k∗1 = k1 + ϵ1 + ϵ2, k∗2 = k2, and ∂2c/∂k2
2 by defining k∗1 = k1, k∗2 = k2 + ϵ1 + ϵ2. The code

required for computing all sensitivities through second order using multidual variables is included
in Listings 2–4. The real data type version of the compliance function is shown in Listing 3, and

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:23

Listing 3. Function to compute the compliance of spring system using real data types. This is a real-valued

example code that is modified in Listing 4 using multidual variables.

Listing 4. Function to compute the compliance of spring system using multidual data types. This function

is used in Listing 2 for the sensitivity analysis of the compliance.

the multidual version is shown in Listing 4. Results of the sensitivities computed using multidual
numbers are shown in Table 11.

The sensitivity results shown in Table 11 are machine-precision-accurate, or in some cases exact.
The sensitivity analysis procedure shown in this section can be easily applied to different finite
element models.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:24 A. M. Aguirre-Mesa et al.

Table 11. Sensitivities of the Compliance with Respect to the Spring Constants

Sensitivity Numerical result Analytical value Relative error

∂c/∂k1 −8.9999999999999964 −9 3.9475e-16
∂c/∂k2 −1. −1 0.
∂2c/∂k2

1 17.999999999999993 18 3.9475e-16
∂2c/∂k2

2 1. 1 0.
∂2c/(∂k1∂k2) 0. 0 0.

Table 12. Data Types of the Python Version of MultiZ

Name Description

mcomplex Multicomplex number.
mdual Multidual number.
marray Hypercomplex N-dimensional array.

4 PYTHON VERSION OF THE MULTIZ LIBRARY

Similar to the Fortran version of MultiZ, a Python version was developed to take advantage of
object-oriented programming and operator overloading. It was developed using Python classes,
and the syntax for the creation of multicomplex and multidual numbers is mostly the same as
the Fortran version. The Python version of the simple numerical example (Section 3.1) is shown
below.

For the multidual case, only two lines of the previous code need to be modified.

The data structures of the Python version are based on NumPy arrays to efficiently support vec-
torized operations, slicing, and linear algebra computations. The use of Numpy allows the array
data structures of the Python version to be defined as a single data type called marray instead
of requiring specific data types for vectors and matrices of multicomplex and multidual numbers.
Furthermore, the Python version offers convenient support for assigning and extracting informa-
tion from hypercomplex arrays, since the syntax is the same used for Numpy arrays and intrinsic
Python data types due to the overloading of the indexing operators. Tables 12 to 17 contain a
summary of the functions and operators supported by the Python version of MultiZ.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:25

Table 13. Functions and Methods of the Python Version to Handle Hypercomplex Numbers

Name Description

mcomplex Create a multicomplex number by providing the coefficients.
mdual Create a multidual number by providing the coefficients.
im Create a unit value imaginary part for multicomplex numbers.
eps Create a unit value imaginary part for multidual numbers.

x.real Extract the real part of the number x.
x.imag Extract the specified imaginary part of the number or array x.

x.conjugate Compute the conjugate of the hypercomplex number x with respect to the
specified imaginary unit.

Table 14. Operators and Elementary Functions of the Python Version

Op. Description Func. Description

+ Addition sin Sine
− Subtraction and negation cos Cosine
* Multiplication exp Exponential
/ Division and reciprocal log Natural log.
** Power (integer and fraction) sqrt Square root

Table 15. Linear Algebra Operators of the Python Version

Name Description

x.T Transpose of the hypercomplex matrix x.
dot Matrix-matrix multiplication, matrix-vector multiplication, and dot product.

All performed without complex conjugation.

Table 16. Functions of the Python Version to Handle Hypercomplex Arrays

Name Description

zeros Allocate space for arrays of hypercomplex numbers.
x.change_order Increase or decrease number of imaginary coefficients of the array x.

shape Get the shape of an array. Number of elements per dimension.
size Get total number of elements of the array.

Table 17. Support for Cauchy-Riemann Matrices of the Python Version

Name Description
x.to_cr Convert a hypercomplex number or array x to a Cauchy-Riemann

compatible array.
mcr_to_mnumber Convert CR matrix to hypercomplex number
mcr_to_marray Convert CR compatible array to hypercomplex array

x.get_cr Compute a CR matrix element at the specified position from a
hypercomplex number x

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:26 A. M. Aguirre-Mesa et al.

5 CONCLUSIONS

In this article, MultiZ is presented as a library primarily intended for the computation of high-order
derivatives of real-valued functions using multicomplex or multidual numbers. MultiZ supports
the overloading of mathematical operators and functions, allowing users to perform sensitivity
analysis with minimum code rewriting. This library can also be used for general purpose multi-
complex and multidual calculations. However, it is recommended to use matrix functions for the
computation of elementary multicomplex functions, as the functions included in this library are
only valid for small imaginary parts.

The hypercomplex algebras supported by the library, multicomplex and multidual, share
various similarities such as commutative multiplication, recursive definition, and the capability
of computing high-order derivatives with machine-precision accuracy. Moreover, numerical tests
show that both methods obtain exactly the same results when the step size h is sufficiently small
for multicomplex.

The use of an indexation method based on the binary numbering system, and the use of binary
bitwise operations for the indexation of the Cauchy-Riemann matrix, provide a straightforward
and low-memory-consuming method for the computation of derivatives of arbitrary order using
multicomplex and multidual numbers. Furthermore, binary indexation techniques can be used to
generate high-efficiency code for derivative computation.

A truncated Taylor series approach was presented as an alternative to matrix functions
for the computation of hypercomplex functions. This approach, which combines hypercom-
plex multiplication with exact derivatives of real-valued functions, yields machine-precision
high-order derivates of composite real-valued functions for both multicomplex and multidual
algebras.

Numerical tests using matrix functions showed that, in contrast with Cauchy-Riemann matrices
of multicomplex numbers, the Cauchy-Riemann matrices of multidual numbers can be readily used
with common matrix function methods for the computation of high-order derivatives, even when
very small imaginary parts are involved.

APPENDICES

A MATRIX REPRESENTATION OF BIDUAL NUMBERS

Consider the multiplication of two bidual numbers a∗,b∗ ∈ D2,

a∗ = a0 + a1ϵ1 + a2ϵ2 + a3ϵ1ϵ2, (56)

b∗ = b0 + b1ϵ1 + b2ϵ2 + b3ϵ1ϵ2, (57)

c∗ = a∗b∗ = a0b0 + a1b1 ϵ
2
1 + a2b2 ϵ

2
2 + a3b3 ϵ

2
1ϵ

2
2

+
(

a1b0 + a0b1 + a3b2 ϵ
2
2 + a2b3 ϵ

2
2

)
ϵ1

+
(

a2b0 + a3b1 ϵ
2
1 + a0b2 + a1b3 ϵ

2
1

)
ϵ2

+
(

a3b0 + a2b1 + a1b2 + a0b3

)
ϵ1ϵ2.

(58)

Applying the nilpotent rule of the dual numbers (ϵ2
p = 0 ∀p), the product is equal to

c∗ = a0b0 + (a1b0 + a0b1) ϵ1 + (a2b0 + a0b2) ϵ2

+ (a3b0 + a2b1 + a1b2 + a0b3) ϵ1ϵ2. (59)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:27

Extracting the real and the imaginary parts from c∗,

c0 = Re(c∗) = a0b0, (60)

c1 = Im1 (c∗) = a1b0 + a0b1, (61)

c2 = Im2 (c∗) = a2b0 + a0b2, (62)

c3 = Im1,2 (c∗) = a3b0 + a2b1 + a1b2 + a0b3. (63)

The product a∗b∗ can be also expressed, from Equation (58), as a matrix multiplied by two vec-
tors,

a∗b∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1
ϵ1

ϵ2

ϵ1ϵ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 a1 ϵ

2
1 a2 ϵ

2
2 a3 ϵ

2
1ϵ

2
2

a1 a0 a3 ϵ
2
2 a2 ϵ

2
2

a2 a3 ϵ
2
1 a0 a1 ϵ

2
1

a3 a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (64)

LetA be the matrix in the previous expression. Applying the nilpotent rule of the dual numbers,
the following coefficients are obtained for A:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 0 0 0
a1 a0 0 0
a2 0 a0 0
a3 a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (65)

Also, let M be a mapping function M : C2 → R4×4, such that A = M (a∗). If A is a valid matrix
representation of the bidual number a∗, then C = M (c∗) must be obtained as C = AB, where B =
M (b∗).

AB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 0 0 0
a1 a0 0 0
a2 0 a0 0
a3 a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
b0 0 0 0
b1 b0 0 0
b2 0 b0 0
b3 b2 b1 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0b0 0 0 0
a1b0 + a0b1 a0b0 0 0
a2b0 + a0b2 0 a0b0 0
a3b0 + a2b1 + a1b2 + a0b3 a2b0 + a0b2 a1b0 + a0b1 a0b0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
c0 0 0 0
c1 c0 0 0
c2 0 c0 0
c3 c2 c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= C . (66)

From previous result, it was verified that M (a∗b∗) = M (a∗)M (b∗). It is also straightforward to
notice that M (a∗ + b∗) = M (a∗) +M (b∗). Therefore, the function M (x∗) maps a valid matrix rep-
resentation of the bidual number number x∗, and there is an algebra isomorphism between the
bidual algebra and the algebra of the matrices generated by M .

B QUALITY OF THE MATRIX FUNCTION IMPLEMENTATIONS FOR

COMPUTING DERIVATIVES

As discussed in Section 2.9, functions of matrices have been traditionally used as a method for ap-
proximating multicomplex functions, in particular, for the computation of high-order derivatives.
However, most widely used methods to approximate matrix functions, such as those included in
MATLAB [22] or the open-source Python library SciPy [12], are not designed to work with Cauchy-
Riemann matrices of multicomplex numbers, i.e., diagonally dominant matrices produced by very

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

23:28 A. M. Aguirre-Mesa et al.

Table 18. Accuracy Comparison for the Computation of the Second-order

Derivative of log(x) at x = e2, Using a Stepsize h = 10−10

Algebra Method 2nd derivative Relative error
Bicomplex TS −1.8315638888734179e-02 0.

ISSQ −3.8302694349567895e+05 2.09125e+07
GS −1.8315638888734161e-02 9.47127e-16

Bidual TS −1.8315638888734179e-02 0.
ISSQ −1.8315638888734224e-02 2.46253e-15
GS −1.8315638888734161e-02 9.47127e-16

Methods: (TS) Truncated Taylor Series, (ISSQ) Inverse Scaling and Squaring, (GS) Gre-

gory’s Series.

Table 19. Accuracy Comparison for the Computation of the Second-order

Derivative of
√
x at x = 16, Using a Stepsize h = 10−10

Algebra Method 2nd derivative Relative error
Bicomplex TS −3.9062500000000000e-03 0.

Schur −2.8865798640254070e+05 7.38964e+07
DB −3.9062500000000009e-03 2.22045e-16

Bidual TS −3.9062500000000000e-03 0.
Schur −3.9062500000000000e-03 0.
DB −3.9062500000000009e-03 2.22045e-16

Methods: (TS) Truncated Taylor Series, (Schur) Schur’s Decomposition, (DB) Denman and

Beavers Iterative Method.

Table 20. Suitability of Different Matrix Function Methods Using

Multicomplex and Multidual CR Matrix Inputs

Matrix func. Method
Suitable for a CR matrix

Multicomplex Multidual

Exponential SSQ Yes Yes
Sine, Cosine SSQ Yes Yes
Logarithm ISSQ No Yes

GS Yes Yes
Square root Schur No Yes

DB Yes Yes

Methods: (SSQ) Scaling and Squaring, (ISSQ) Inverse Scaling and Squaring, (GS) Gregory’s

Series, (Schur) Schur’s decomposition, (DB) Denman and Beavers iterative method.

small imaginary parts. Note, first-order derivative calculations are performed using complex func-
tions, which are intrinsic to most programming languages.

However, the availability of matrix function libraries in different programming languages offers
a good opportunity to accelerate the adoption of other hypercomplex algebras for the computation
of high-order derivatives, e.g., multidual algebra. To the best of the authors’ knowledge, matrix
functions have not been used with Cauchy-Riemann matrices of multidual numbers.

In this section, the accuracy of the hypercomplex truncated Taylor series expansion for comput-
ing derivatives is compared against matrix functions included in Scipy 1.0.0. If the matrix function
implementation failed to compute accurate results, an alternative method was tested. Evaluated
functions were: exponential, logarithm, sine, square root, and fractional matrix power.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

MultiZ: A Library for Computation of High-order Derivatives 23:29

Scipy’s implementation of the exponential of a matrix is based on a scaling and squaring algo-
rithm [1], and it provides machine-precision results for computing derivatives using the Cauchy-
Riemann matrix of multicomplex and multidual numbers. The sine and the cosine of a matrix im-
plementations in SciPy are based on the exponential function and yield accurate derivative results
as well.

The matrix logarithm function included in Scipy is based on an inverse scaling and squaring al-
gorithm [2]. This method produces machine-precision-accurate results when the Cauchy-Riemann
matrix of a multidual number is used as input, even when a very small step size h is used, and fails
when the matrix comes from a multicomplex number. In contrast, the use of a Gregory’s series
[11] yields good results in both multicomplex and multidual cases. An accuracy comparison for
the computation of the matrix logarithm is shown in Table 18.

The square root of a matrix is implemented in Scipy using a blocked Schur algorithm [5],
which fails to compute accurate derivate results for multicomplex Cauchy-Riemann matrices, but
yields accurate results for multidual Cauchy-Riemann matrices. The Denman and Beavers itera-
tion method [6] is an alternative that yields accurate derivative results in both the multicomplex
and multidual cases. The accuracy comparison is shown in Table 19.

Results in Tables 18 and 19 show that the truncated Taylor series method (TS) provided exact
results in the multicomplex and the multidual algebra cases. In the multicomplex algebra case,
some methods included in Scipy fail to compute a second-order derivative. However, all methods
provide exact or machine-precision results in the multidual algebra case, even when a small step
size h is used. The summary of the matrix function methods studied for this test is shown in
Table 20. Based on these results, the truncated Taylor series method is used for both multicomplex
and multidual algebras.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham. 2010. A new scaling and squaring algorithm for the matrix exponential. SIAM J.

Matrix Anal. Appl. 31, 3 (2010), 970–989. DOI:https://doi.org/10.1137/09074721X

[2] A. H. Al-Mohy and N. J. Higham. 2012. Improved inverse scaling and squaring algorithms for the matrix logarithm.

SIAM J. Sci. Comput. 34, 4 (2012), C153–C169. DOI:https://doi.org/10.1137/110852553

[3] W. K. Anderson, J. C. Newman, D. L. Whitfield, and E. J. Nielsen. 2001. Sensitivity analysis for Navier-Stokes equations

on unstructured meshes using complex variables. AIAA J. 39, 1 (2001), 56–63. DOI:https://doi.org/10.2514/2.1270

[4] A. Cohen and M. Shoham. 2015. Application of hyper-dual numbers to multibody kinematics. J. Mechan. Robot. 8, 1

(08 2015), 011015–011015–4. DOI:https://doi.org/10.1115/1.4030588

[5] E. Deadman, N. J. Higham, and R. Ralha. 2013. Blocked Schur algorithms for computing the matrix square root. In

Applied Parallel and Scientific Computing, Pekka Manninen and Per Öster (Eds.). Springer Berlin, 171–182. DOI:https:

//doi.org/10.1007/978-3-642-36803-5_12

[6] E. D. Denman and A. N. Beavers. 1976. The matrix sign function and computations in systems. Appl. Math. Comput.

2, 1 (1976), 63–94. DOI:https://doi.org/10.1016/0096-3003(76)90020-5

[7] J. A. Fike and J. J. Alonso. 2011. The development of hyper-dual numbers for exact second-derivative calculations. In

Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition

(Aerospace Sciences Meetings), Vol. 886. Orlando, FL. DOI:https://doi.org/10.2514/6.2011-886

[8] J. Garza. 2014. Multicomplex Variable Differentiation in Probabilistic Analysis and Finite Element Models of Structural

Dynamic Systems (Accession no. 3670563). Doctoral Dissertation, The University of Texas at San Antonio. ProQuest

Dissertations Publishing.

[9] J. Garza and H. Millwater. 2015. Multicomplex Newmark-beta time integration method for sensitivity analysis in

structural dynamics. AIAA J. 53, 5 (2015), 1188–1198. DOI:https://doi.org/10.2514/1.J053282

[10] J. Garza and H. Millwater. 2016. Higher-order probabilistic sensitivity calculations using the multicomplex score

function method. Probab. Eng. Mech. 45 (2016), 1–12. DOI:https://doi.org/10.1016/j.probengmech.2015.12.001

[11] N. J. Higham. 2008. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics.

[12] P. Virtanen, R. Gommers, T. E. Oliphant, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in

Python. Nature Methods 17 (2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

https://doi.org/10.1137/09074721X
https://doi.org/10.1137/110852553
https://doi.org/10.2514/2.1270
https://doi.org/10.1115/1.4030588
https://doi.org/10.1007/978-3-642-36803-5_12
https://doi.org/10.1007/978-3-642-36803-5_12
https://doi.org/10.1016/0096-3003(76)90020-5
https://doi.org/10.2514/6.2011-886
https://doi.org/10.2514/1.J053282
https://doi.org/10.1016/j.probengmech.2015.12.001
https://doi.org/10.1038/s41592-019-0686-2

23:30 A. M. Aguirre-Mesa et al.

[13] I. L. Kantor and A. S. Solodovnikov. 1989. Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer-

Verlag.

[14] G. Lantoine, R. P. Russell, and T. Dargent. 2012. Using multicomplex variables for automatic computation of high-

order derivatives. ACM Trans. Math. Softw. 38, 3, Article 16 (Apr. 2012), 21 pages. DOI:https://doi.org/10.1145/2168773.

2168774

[15] J. N. Lyness and C. B. Moler. 1967. Numerical differentiation of analytic functions. SIAM J. Numer. Anal. 4, 2 (1967),

202–210. DOI:https://doi.org/10.1137/0704019

[16] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. 2003. The complex-step derivative approximation. ACM Trans. Math.

Softw. 29, 3 (Sept. 2003), 245–262. DOI:https://doi.org/10.1145/838250.838251

[17] M. Metcalf, J. Reid, and M. Cohen. 2011. Modern Fortran Explained. OUP Oxford.

[18] H. Millwater, D. Wagner, A. Baines, and A. Montoya. 2016. A virtual crack extension method to compute energy

release rates using a complex variable finite element method. Eng. Fract. Mech. 162 (2016), 95–111. DOI:https://doi.

org/10.1016/j.engfracmech.2016.04.002

[19] G. B. Price. 1990. An Introduction to Multicomplex Spaces and Functions. Taylor & Francis.

[20] W. Squire and G. Trapp. 1998. Using complex variables to estimate derivatives of real functions. SIAM Rev. 40, 1 (1998),

110–112. DOI:https://doi.org/10.1137/S003614459631241X

[21] M. Tanaka, D. Balzani, and J. Schröder. 2016. Implementation of incremental variational formulations based on the

numerical calculation of derivatives using hyper dual numbers. Comput. Meth. Appl. Mech. Eng. 301 (2016), 216–241.

DOI:https://doi.org/10.1016/j.cma.2015.12.010

[22] The MathWorks Inc. 2017. MATLAB version 9.3.0 (R2017b). Natick, Massachusetts.

[23] D. A. Tortorelli and P. Michaleris. 1994. Design sensitivity analysis: Overview and review. Inverse Prob. Eng. 1, 1 (1994),

71–105. DOI:https://doi.org/10.1080/174159794088027573

[24] A. Voorhees, H. Millwater, and R. Bagley. 2011. Complex variable methods for shape sensitivity of finite element

models. Finite Elem. Anal. Des. 47, 10 (2011), 1146–1156. DOI:https://doi.org/10.1016/j.finel.2011.05.003

[25] B. P. Wang and A. P. Apte. 2006. Complex variable method for eigensolution sensitivity analysis. AIAA J. 44, 12 (2006),

2958–2961. DOI:https://doi.org/10.2514/1.19225

Received October 2018; revised December 2019; accepted January 2020

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 23. Publication date: July 2020.

https://doi.org/10.1145/2168773.2168774
https://doi.org/10.1145/2168773.2168774
https://doi.org/10.1137/0704019
https://doi.org/10.1145/838250.838251
https://doi.org/10.1016/j.engfracmech.2016.04.002
https://doi.org/10.1016/j.engfracmech.2016.04.002
https://doi.org/10.1137/S003614459631241X
https://doi.org/10.1016/j.cma.2015.12.010
https://doi.org/10.1080/174159794088027573
https://doi.org/10.1016/j.finel.2011.05.003
https://doi.org/10.2514/1.19225

