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Bidual numbers - Overview

= Bidual numbers are an extension of dual numbers. They are useful for computing second order
(either full or mixed) and first order sensitivities.
= Bidual numbers consist of 4 real coefficients (x,, x4, x», X15) and three imaginary axes (€4, €5, €15).
« The imaginary axes are represented using the symbol e.

- The symbol € is analogous to the imaginary symbol i from complex numbers; however, e/ =
0; with € = 0. Also, €;€j # 0.

Example of a bidual number

x* = X0 + X1€1 + X)€p +x12€12

Note, there is an analogous bicomplex number but bidual numbers are more robust and efficient.
x* = X0 + x1i1 + .X'Ziz + x12i12
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Bidual numbers - Construction

= A Bidual number is constructed from two dual numbers.

B = D1 + szz Bidual

/ \

Dy =xy+x16 Dy = xy + x3€4 Dual

Expanded result

B = (x¢+x1€61) + (x5 + x3€1)€,
= Xg + X161 + X6, + X3€1€5

Renumbel’ x3 — x12 and 6162 — 612

B — xo + x1€1 + X2€2 + x12612
= bidual(xy, x1,x,,x1,) +—— Short-hand notation:
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Computing Derivatives using Bidual numbers —
univariate example

= To use bidual numbers to compute derivatives for univariate functions, we perturb the variable of
interest along 2 imaginary directions using step sizes i, and h,. We do not perturb along €;,. In

general, we use use h; = h, =1.

General case Recommended: h; = h, =1

F(x*) = f(bidual(xg, by, by, 0)) Fx*) = f(bidualCeo, 1,1,0)
L= Im(f&Y) = I (f () L= I, (F(x) = Im, (f ("))
d? 1 d*
I L = Iy, (F )

Where Im; means extract the real coefficient of the €;axes, Im, the ¢, axes, andim,, the ¢,, axis.
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Presenter Notes
Presentation Notes
Introduce  bidual numbers and explain why useful.


Bidual number definition w MultiZ

= Bidual numbers can be specified using MultiZ then used as a traditional real
number. MultiZ will handle the mathematical operations.

#Extracting the real and imaginary part of a multidual number.

#Note the input argument isindex or list of indices of the imaginary part
from multiZ.mdual import *

a =75+ 3%eps(1) + 4%eps(2) + 7*eps([1,2])

a@ = a.real()

al = a.imag(1)

a2 = a.imag(2)

al2 = a.imag([1,2])

print(a@,al,a2,al2)

#Qutputs: 5.8, 3.9, 4.9, 7.0 the coefficents of the bidual number
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Bidual numbers — Addition/Subtraction

= Addition and subtraction of bidual numbers is accomplished part by part.

X" =x9+ x160 + X565 + X15€12
Y =yot Vi€ + Vo6 + V12612

x* 2 y* = (xoxyo) + (x1 T y1)er + (xp £ y2)€e; +(x12 £ y12)€12

Notation: an asterisk is used to indicate a hypercomplex number, e.g., “x™”
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Bidual numbers — Multiplication

= Multiplication of bidual numbers a* * b* can be accomplished term by term and simplified using
the properties €7 = 0 as shown. Consider the outer product of a* and b*:

Ao a; € az€- A12€12
bo agbg agb, €, agb, €, agbyi2€17
by €4 a1byeq a1b1€12 aibyeq €, ai1bi€1€1
by €, abg€; a,b €€ azsz% a,bi€2€1;

2
bi2€12 A12bg€12  Aqpb1€1€1,  Aqpbyener,  agpbp€r;

Terms in dark red are zero due to:
=0

€1612 = €1€616, = €26, =0

€,617 = €16, = €£€5 =0

m University of Texas at San Antonio 7



Bidual numbers — Multiplication

= After removing the zero terms we have:

X0Yo X0Y1€1  XoY2€62 XoY12€12
x* %yt = X1Yo0€1 0 X1Y2€12 0
X2Y0€2  X2V1€12 0 0
X12Y0€12 0 0 0

Gathering terms we have:

x**y" = x0Yot(Xoy1t X1Vo)€r + (X2 + X2V0)€2 + (XoY12 T X1V + X2Y1 + X12V0) €12
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Bidual numbers — Division

= Consider the division of 2 bidual numbers ;— This result can be determined using the conjugate

operation for €, followed by a conjugate operation for €;. The end result is shown below. The
derivation is presented in the reference for MultiZ. (See the CR section for an alternate
derivation using matrices.)

x_* — X0 + X1 Xo)a + X2 Xo)Y2 + x12yg—x2hyg—yzyg"'zon/oJﬁyz—xongﬁz
* > | €1 > | €2 4 €12
y Yo Yo Yo Yo Yo Yo

Trans. Math. Softw. 46, 3, Article 23 (July 2020), 30 pages, https://doi.org/10.1145/3378538

m A.M. Aguirre-Mesa, M.J. Garcia, and H.R. Millwater, “MultiZ: A library for computation of high order derivatives using multicomplex or multidual numbers,” ACM
®


https://doi.org/10.1145/3378538

Bidual numbers — Reciprocal

= The reciprocal of a bidual number is a subset of division.
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Functions of Bidual numbers

= Functions of bidual numbers can be developed using the Taylor series
expansion as shown below.

Al

FO) =~ flxg) + 2 — x0)"

where for bldual numbers n = 2

1
fF(x*) = fxg) + U (xo) (x* — xp) + Ef(z)(xo)(x* — Xg)*
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Functions of Bidual numbers

= Notice that the function f is only applied to the real coefficient x,.

1
fF(x™) = fxo) + F®(x) (x* — x) + Ef(z)(xo)(X* — X)*

(x* — x¢) = bidual(0, x1, X5, X15)
and
(x* — x9)? = bidual(0, x{, x5, x15)* = bidual(0,0,0,2x,x5)

Apply the specific form of the Taylor series to each function.

m University of Texas at San Antonio

13



Exponential of Bidual numbers

= The Taylor series for the exponential function can be written as

2
~ e¥ Zki (x* —x9)*] =
e*o [1+(x*—x0)+5(x*—xo) ]Z

1
eXo [1 + bidual (0, x1, x5, x17) + Ebidual(0,0,0,2x1x2)] =

e*0 + xe*oe; + x,e*0€, + (1%, + x)e* 0€q,

Note, if x; =x, =1land x;, =0
Exp(ay,1,1,0) = e*o + e*og; + e¥0e, + e¥0¢q,
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Log of Bidual numbers

= The Taylor series for the natural log function can be written as

0g(x") =~ log(xo) + Ty S (" = 0)¥] =

x—x (x —xo)z

] +
Og(xO) x() ng
bidual(0, xq,x5,x1,) bidual(0,0,0,2x1x5)
log(xy) + — >
Xo 2x§
log(xg) +ﬁ6 +ﬁe + (012 — xle)E
9\ Xo Xq 1 Xq 2 xg 12

NOte, if X1 = Xp = 1 and X12 = 0
1 1 1
log(xy,1,1,0) = log(x,) +x—061 + €2~ x_ZEZ]

0
m University of Texas at San Antonio
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Sine of Bidual numbers

= The Taylor series for the sine function can be written as
sin(x*) = sin(xy) + cos(xg)(x* — xq) — %sin(xo)(x* — Xxg)% =

1
sin(xg) + cos(xg) bidual (0, x4, x5, x1,) — 5 sin(x,) bidual(0,0,0,2x,x,) =

sin(xgy) + a,cos(xy)e; + a, cos(xy)e, + (a1, cos(xy) — aa, sin(xy))€qo

Note, if x; =x, = 1land x;, =0
sin(xy, 1,1,0) = sin(xy) + cos(xy)e; + cos(xy)e, — sin(xy)€q,

m University of Texas at San Antonio
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Cosine of Bidual numbers

= The Taylor series for the cosine function can be written as
cos(x™) ~ cos(xp) — sin(xo)(x™ — xp) — %COS(XO)(X* —x0)% =

cos(xy) — sin(xy) bidual(0, xq, x5, X1) — > cos(xy) bidual(0,0,0,2x,x,) =

cos(xg) — x1 sin(xy)e; — x, sin(xy)eq; + (—xq5 Sin(xgy) — x1 x5 cos(xg)) €12

Note, if x; = x, =1and x4, =0
cos(xg, 1,1,0) = cos(xy) — sin(xy)e; — sin(xy)e; — cos(xy)€q,

m University of Texas at San Antonio
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Bidual raised to a bidual number

= A bidual number raised to a bidual number can be evaluated in terms of the
exponential and logarithmic functions

Use the formula x¥ = eYn®)

This formula can be implemented with bidual numbers using the previously

defined exponential and logarithmic functions.
q? = eb'in(a")

Bidual number a* raised to a real number n
(a)" = al + nal} ta,e; + nall ta,e, +na8_2((n —1Daqa, + aoalz) €12

Real number r raised to a bidual number a*
ré =rd 4 r%log(r)a, €, + r%log(r)a, e, +rlog(r)(log(r) a;a, + a;,) €13
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Derived functions of Bidual numbers

= Many functions can be derived in terms previously defined functions

sin(a™)

tan(a*) = os(@)

tan(ay) + a, sec(ag)? €1 + a, sec(ay)? €5 + sec(ag)? (a, + 2a,a, tan(ay)) €15

Note: tan(bidual(xy,1,1,0)) = tan(x,) + sec(xy)? €1 + sec(xy)? €, +
2sec(xg)? tan(xy) €15

sqri(x*) = (x")V/? =
—X1X9 + 2X12Xg

X2
€1 -+ €12
A ek
-1

1
Note: sqrt(bidual(xy, 1,1,0)) = \/xo + ?el Wi 1+ 3/2 €1
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Computing derivatives using bidual numbers —
univariate example

= Consider a Taylor series expansion of the following bidual number
h2
fix+h(e;+€))=Ff(x)+h(e +e)f (x)+ 5(61 +€,)%f"(x) + H.O.T.

= F() + h((er + €)' () + = (62 26,6, + B)f () + H. 0T,
= f(x) + h((e; + €)' (x) + h?(e16,)f" (x)

General case Recommended: h; = h, = 1
F(x*) = f(bidual(xy, hy, by, 0)) (e = f(bidualGeo, 1,1,0))
L= Im () = - Im (F () L= I, (f(x*)) = Im, (f ("))
g = ﬁlmlz(f(x*)) g = Imy, (f (x*))

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Closed-form example: f(x) = x?2

= The use of bidual numbers to compute 1st and 2" order derivatives can be
demonstrated using some closed-form examples. All examples assume h; = h, = 1.

2.00 1 — f(x) - exact
f (X) — X I dffdx(x)- exact
27 —— d?ffdx?(x)- exact
f(x + €1 + EZ) - (X + €1 + 622 — 1504 ° Relfix+er+e)
' X Imi[fix+ &1+ €2)1/h
x% 4+ 2x€; + 2x€, + 26165 + y’z + Q’Z Lol v maties e e

1.00 A

0.75

d
é = Iml(f(x + e)) = Imz(f(x + E)) = Iml((x + 6)2) = 2Xx 050
2 0.25 A
dX]; - Imlz(f(x + E)) B Im((x * E) ) =2 o 0.0 0.2 0.4 0.6 0.8 1.0
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Closed-form example: f(x) = x?

= The use of bidual numbers to compute 1st and 2" order derivatives can be

demonstrated using some closed-form examples. All examples assume h; = h, = 1.

f(x) =x°
f(x+61+62) = (x+61+62)3 =
x3 t 3x? 61 + 3x%€, + 6x€.€, + 3x/51 + 3x§/2 + 361;72 + 3§/262
+$+¢

= x3 4+ 3x%€; + 3x%€, + b6x€q €,
af _
dx = Imy (f(x + €1 + €2)) = Imy(f(x + €1 + €3))
= Iml((x + €1 + 62)3) = 3x?
d*f

i Im,(f(x+€) =Im((x + €)3) = 6x

UTSA

(x) - exact
dffdx(x)- exact
d?fldx?(x)- exact

e  Re[flx+e1+&r)]

X

Imi[fix+ &1+ €2)1/h

1+ Implfix+ &1+ €2)1/h?

0.0

0.2

0.4

Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Closed-form example: f(x) = e”*

= The use of bidual numbers to compute 1st and 2" order derivatives can be
demonstrated using some closed-form examples. All examples assume h; = h, = 1.

flx)=e*

fx +€e +e) =eXTertez =

e*+ere; +e’e, +eree

d
d—i =Im(f(x+e1+€))=Im,(f(x+ €6 +¢))
— Iml(ex+61+€2) — ex
d*f x+e te x
—— = Imip(f(x +€)) = Imyp(e¥*1%2) = e

2.75 1

2.50

2.25 1

2.00

1.75

1.50 1

1.25

1.00

— f(x) - exact
—— df/dx(x)- exact
—— d?fldx?(x)- exact

e  Re[fl(x+¢e1+&r)]
Iml[f(x + &1+ 52)]//7
Imyo[f(x + €1 + €2)1/h?

X

+

0.0

0.2 0.4 0.6 0.8

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Closed-form example: f(x) = sin(x)

= The use of bidual numbers to compute 1st and 2"d order derivatives can be
demonstrated using some closed-form examples. All examples assume h; = h, = 1.

f(x) — Sln(x) 1.00 7 —— f(x) - exact
—— dffdx(x)- exact
f(x+e€;+€) =sin(x + €, +€) 0731 — A exact
. e[fix+ &1 + &
= sin(x) + cos(x) €; + cos(x) €, — sin(x)e€ € 0501 imlfix+e1 +e2)lh

+ . Imylfix + €1 + €2)1/h?

0.25 1

% =Im(f(x+¢€)) = Im,(f(x + €)) = Im,(sin(x + €, + €;)) _ZZ:
= cos(x) e
dzf —0.75 1

ke Im,(f(x +¢€) =Imy,(sin(x + €1 + €;)) = —sin(x)  _4.

0 2 n 3172 2
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Closed-form example: f(x) = cos(x)

= The use of bidual numbers to compute 1st and 2"d order derivatives can be
demonstrated using some closed-form examples. All examples assume h; = h, = 1.

Fx) = cos(x) e
— . T — 2 2 T
fx+e+e€) =cos(x+e€;+€y) - ot et

0.50 ~
X Imi[fix+ &1+ &2)1/h

+  Imqlfix + €1+ €2)1/h?

= sin(x) + sin(x) €; + sin(x) €, — cos(x)€e; €,

0.25 1

d 0.00 A
é = Iml(f(x + E)) = I'mz(f(x + E)) =Im;(cos(x + €1 + €2)) _pas]
= sin(x) 7
dzf —0.75 A
dx? Imp,(f(x + €)) = Imy,(cos(x + €1 + €)) = —cos(x) 0.

0 2 n 372 2n
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Closed-form example: f(x) = In(x)

= The use of bidual numbers to compute 1st and 2"d order derivatives can be
demonstrated using some closed-form examples. All examples assume h; = h, = 1.

(x) =1 3
f(x) = In(x) o ) S

xX+e,+e)=In(x+¢,+¢6,)) =—€;,+—-€6, ——¢€ 0
f( 1 2) ( 1 2) L1 T €27 g6 o
_5_
af 10
T Im;(In(x +€; +€3)) =Im,(In(x + €; + €,))
X _15 — f(x) - exact
— dffdx(x)- exact

=Imi(n(x+e+e)) =7 ] St g
d2 X Imilfix + &1+ €2)l/h
d_x]; =Imy,(f(x + €1 + €)) = Imp(In(x + €1 + €3)) = —xiz 25| o e+ e’

02 03 04 05 06 07 08 09 1.0
X

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Computing derivatives using bidual numbers —
multivariate example

= Consider a multivariate Taylor series expansion of the following bidual number
2
f(x+he,y+hey) =f(x)+h(e; +6)f (x) + %(61 +€,)%f"(x) + H.0.T.

= G + h((er + &)f () + 5 (6 + 2e16, + 5" () + H.O'T.
= f(x) + h((e1 + €)f ' (x) + h*(e16)f" (%)

General Case: arbitrary h

x* =x+ heq
y* =y + he;
fx*,y*) = f(bidual(xo,h, 0,0), bidual(xy, 0, h, 0))

L= i (F,y)

= Im, (f (x*,y))

1
U'I'SA 6xay:ﬁ1m12(f(x*’y*))
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Computing derivatives using bidual numbers —
multivariate example

= Consider a multivariate Taylor series expansion of the following bidual number
2
f(x+he,y+hey) =f(x)+h(e; +6)f (x) + %(61 +€,)%f"(x) + H.0.T.

= G + h((er + &)f () + 5 (6 + 2e16, + 5" () + H.O'T.
= f(x) + h((e1 + €)f ' (x) + h*(e16)f" (%)

Recommended: h = 1

X*=x4+€
y'=y+te
flx*,y*) = f(bidual(xo, 1,0,0), bidual(x,, 0, 1, O))

T=Im(fxy)
= Imy(f(x",y")
0%f

UTSA oy Imy, (f (x*, %))
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Closed-form example: f(x,y) = xy

= The use of bidual numbers to compute 1st and 2" order derivatives can be
demonstrated using some closed-form examples. All examples assume h; = h, = 1.

flx,y) =xy
x+e)(y+e) =xy+ye; +xe, + 1€g,

d
g_ﬁ = Imy (f((x +e)y + 62))) =y
T~ i, (G + )0 + ) = x
az
ax;y = Imy; (f((x +e)ly + 52))) =1
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Closed-form example: f(x,y) = x*y?

flx,y) = x*y?
f((x+e) (y+ 62)) =(x+e)+e) =
(x2+2x61+g (y? +2y62+e § =
= x%y?% + 2xy?e; + 2x°%ye, + 4xy612

0

g_i = Imy (f((x +e)ly + 62))) = 2xy*

% = Im, (f((x +e)y + 62))) = 2x°%y

62

axafy = Imy; (f((x +e)ly + 62))) = 4xy

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023



Closed-form example: f(x,y) = xe”

flx,y) =xe”
(G +€), (v +6)) = (x + e;)e¥+ez =
xeY*ez 4 eY¥eze,

But (exp(xg + x1€61 + X565 + X15€12)) =
exp(xg) + xexp(xg)eq + x5 exp(xg)ey + (x1x5 + x1,)exp(xg) €12

Then e¥Y*€2 = eY + eY¢,

(x +e)ev ez = (x+€)(e¥ +e¥ey,) =
xeY +eYe, +xeVey, +eVey, =

0
% =Im, (f((x +e)(y + 62))) — oV
of
dy

S= 1 (f(Gr+ @) + €)= xe”

62
UI'SA® Oxafv =Im4, (f((x +e)(y + 62))) — eV
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Closed-form example: f(x,y) = xsin(y)

f(x,y) = xsin(y)
f((x +€), (¥ + 62)) = (x + €1)sin(y + €,)

But (sin(xg + x161 + X565 + X15€15)) =
sin(xg) + x,cos(xg)€q + x5 cos(xy)€y + (x1, cos(xy) — x1%5 Sin(xg)) €12

Then sin(y + 0e; + €, + 0€1,) =sin(y) + 0e; + cos(y)e, + 0€q,
and

(x + €1)(sin(y) + cos(y))e; =
xsiny + sin(y) €; + xcos(y) €, + cos(y) €15

9,

a% = Im, (f((x +e)(y + 62))) = sin(y)
% = Im; (f((x + €D + &) ) = x cos(y)
02
axafy =Imy, (f((x +e)(y + Ez))) = cos(y)
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Closed-form example: f(x,y) = xsin(y)

f(x,y) = xsin(y)
f((x +€), (¥ + 62)) = (x + €1)sin(y + €,)

But (sin(xg + x161 + X565 + X15€15)) =
sin(xg) + x,cos(xg)€q + x5 cos(xy)€y + (x1, cos(xy) — x1%5 Sin(xg)) €12

Then sin(y + 0e; + €, + 0€1,) =sin(y) + 0e; + cos(y)e, + 0€q,
and

(x + €1)(sin(y) + cos(y))e; =
xsiny + sin(y) €; + xcos(y) €, + cos(y) €15

9,

a% = Im, (f((x +e)(y + 62))) = sin(y)
% = Im; (f((x + €D + &) ) = x cos(y)
02
axafy =Imy, (f((x +e)(y + Ez))) = cos(y)
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Incorrect method for computing derivatives using
bidual numbers — univariate example

= What happens if we perturb ¢, €,, and €,,7 Consider a Taylor series expansion
of the following bidual number

2
fx+h(e;+e,+€3)=f(x)+h(e; +e,+e)f ' (x) + o7 (e, + €, +€15)*f"(x) + H.O.T.

=f(x)+h((e; + €5 +€1)f (%) + ’;—?(?fo"' 261%012 + Efzo+ 2€1€; + 251fegz + ?)%Sf”(x) +H.0.T.
= f() + hf'(x)eg + hf'()ez + (hf'(x) + h*f" (x))€12

f(x*) = f(x+ h(er + € + €12))
Im, (F () = Im,,(f(x) = h L
d*f

dx?

f

Imlz(f(x )) h— + h?— «—— Convolve f, and f,
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Incorrect method for computing derivatives using
bidual numbers — univariate example

* How do we determine which non-real axes to perturb? Consider the following
options — only case 4 provides the correct result.

Case Perturbation Result

1 f(x+ 1e; + 0€, + 0€q5) f(x)+ fr€e1 + 0€y + O€qy

2 f(x+0e; + 1€, + 0€q5) f(x)+ 0€ey + fr€e3 + O€qy

3 f(x + 061 + 062 + 1612) f(X) + 061 + 062 + f:xelz

4 f(x + 161 + 1EZ T 0612) f(x) T f,xel + f,xEZ T f,xxelz

5 f(x + 161 + 062 + 1612) f(x) + ﬁxel + 062 + ﬁxelz

6 f(x+0e; + 1€, + 1€45) f(x)+ 0€y + [ + [r€12

7  flx+leg+1e; +1€13) f(x) + frer + [r€r + (fxtSxx)€r2

daf d?f
where ﬁx =E,and]fxx =ﬁ
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Step size study - f(x) = sin(x)

= Only bidual numbers can provide step-size independent 2" order sensitivities.

I
100 f
10—2 _
10—4 _
] Show both
107° -
. 1st and 2nd
5 10-84 order
2
4(3‘ —10 ]
< 10
o
10—12 _
1014 - —l— CentralDiff - 2nd
ForwardDiff - 2nd
1016 - —>— FD of CTSE
0 - —>— CD of CTSE
_10-16 - —+~— Real part of CTSE

10° 103 107%® 107° 107%2 10715 107'® 1072
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Step size study — numerical integration

= A similar behavior will be seen for more complicated algorithms; however, CTSE
will not always provide machine precision accuracy— the accuracy is dependent

upon the algorithm in which it is deployed.

%I(a,b,c) =%(f;xe‘cxdx) witha=1,b=2,c =2

e T T T T T T T
‘ —A— Forward Difference

—B— Central Difference BOth first and 2nd
—e— CTSE
order

1072 1

Relative Error

Mery Aron oo oo oo oo oo po oo ;e A A A
&=~=-A-a-a-a-afaaf o —o—6—60——0—60—0—0—60—b—6—0—0—0—6——-

1073 1

100 10-5 10-10 10-15 10-20 10-25 10-30
Step size h

:—al(a, b, c¢) using Simpson’s rule
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921

da?

Application: Simpson'’s rule -

= Biduals can be used to calculate first and second derivatives of an integral using

the Simpson’s rule. Here we show 2" order.
Simpson’s Rule

’ a 2a+b a+ 2b
I(a,b,c)=jf(x,c)dsz<f(a,c)+3f< ,c)+3f< ,C>+f(b,C)>

3 3

02 .
To calculate: a_ai =Im, ,(I(a+ €, +¢€,Db,c), replace a witha + €, + ¢,

I(a+€e, +¢€yb,0)
zb_(a-l_el+62)<f(a+61+62,c)+3f<2(a+61+62)+b,c>+3f((a+61+€2)+2b,c>+f(b,c)>

8 3 3
Then, 0l
I =Re(I(a+ €, +€,b,0)) ap ~ Imelat et esb,o)
)| 021
3a = Img (I(a+ €, +€,,b,0)) 32 = Img (I(a+ € +€5,b,0))

UTSA .



921

d b2

Application: Simpson'’s rule -

92 .
To calculate: a—bi =Im, ,(I(a,b + €, +€,,¢), replace b with b + €, + ¢,

I(a,b + €, + €,,C)

N (b+61—;62)—a(f(alc)+3f<2a+(b43—el+62)’C>+3f<a+2(b43—61+62)

,c) + f(b+ ¢, —i—ez,c))

Then, ol
I =Re(Il(a,b + €, + €,5,0)) b
021
32 = Img (I(a,b + € + €,,¢))

=Im.,(I(a,b + €, + €;,¢))

0l
Frie Img (I(a,b + €, + €;,¢))




To calculate: —

Application: Simpson’s rule -

021
dc?

I(a,b,c + €, +¢,)

~
~

8

(f(a’b’c+61+62)+3f< 3 ,C+E1+€2>+3f<

2a+ b

da

Then,

I =Re(I(a,b,c+ e +¢€y))

=Im¢ (I(a,b,c + € + ¢3))

921

dc?

=Im. ,(I(a,b+ €, +¢€,,c+ € +€,), replace b withc + €, + ¢,

a-+2b
3

,C+61+62>+f(b,c+61+62)>

db
d%1

da?

=Im.,(I(a,b,c + €, + ¢,))

=1Im¢ (I(a,b,c+ €, + €;))

40



Application: Simpson’s rule

= Example: I(a, b, c) = f: xe Ydxwtha=1b=2,c=2

Exact Biduals Relative Error
| 0.0786069 0.0785338 9.3%107*
9%1/0a* 0.135335 0.131951 2.5 %1072
0%1/0b* —0.0549469 —0.0554347 8.9« 1073
9%1/0c? 0.15887 0.15893 3.7« 107%

Note that the accuracy of the derivatives are ~one order less than the integral.

This behavior is often seen in applications.

The first order results are the same as when using CTSE and dual numbers.

UTSA
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Application: Simpson’s rule -

= Biduals can be used to calculate first and mixed second derivatives of an

iIntegral using

921
To calculate:

the Simpson’s rule.

2

dadb

921
dadb

=Im,. ,(I(a+¢€,b+¢€,yc), replace a with a + €, and b with b + ¢,

Note, a and b can be perturbed using either €, or ¢, i.e.,

I(a+¢€,b+¢€y,0)

N(b+€2)—(a+61)

8

(f(a+61,c) +3f(

Then,
I =Re(l(a+¢€,b+€,y,C))

ol
Erie Img (I(a+€,b + €3,0))

2(a+e)+ (b +¢€y) C>+

Img (I(a+¢€,b+¢€,c),=Ime (I(a+€,b+€,0),

3 ((a +e,)+2(b +¢)

ob

0°1
daodb

=Img,(I(a + €;,b + €;,¢))

=1Im. (I(a+¢€,b+ €,,¢))

3 ,c>+f(b+62,c)>
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Application: Simpson'’s rule -

921
To calculate:
adc

0

I(a+e€,b,c+ey)
b_(a‘l‘el)

~ (f(a+61,c+ez)+3f(

8

2

2(a+61)+b

3

da

Then,

I =Re(I(a+¢€y,b,c+ey))

=Img (I(a+€y,b,c+¢3))

41
dadc

=Im, ,(I(a+ €1,b,c + ¢€,), replace a with a + €; and c with ¢ + ¢,

,c+ez>+3f((a+61)+2b,c+62>+f(b,c+ez)>

3

dac
0°1

dadc

=Img,(I(a+ €1,b,c + €,))

=Im¢ (I(a+€,b,c+¢€;))
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921
dbdc

Application: Simpson'’s rule -

2
To calculate: 63961c =Im. ,(I(a,b + €;,c + €,), replace b with b + €, and ¢ with ¢ + ¢,

I(a,b +€,c+€y)

N (b+2)_a<f(a,c+ez)+3f<2a+(51,9+€1),c+62>+3f<a+2(§+61)

,C+62>+f(b+61,c+62)>

Then, 0l
I =Re(l(a,b+e,c+¢€y)) dc Ime,(I(a, b+ €,¢ 1 6))
0l 021
ET Img (I(a,b + €y,¢ + €3)) hae Im (I(a,b + €1, ¢+ €;))




Application: Simpson’s rule

= Example: I(a, b, c) = f: xe “Ydxwitha=1b=2¢c=2.

Note that the accuracy of the derivatives are ~one order of magnitude less than the integral.
This behavior is often seen in other applications.

Exact Simpson’s Rule Relative Error
Integral 0.0786069 0.0785338 9.3 %1074
9%1/0adb 0.0000 0.00152859 1.5 % 10737
021 /dadc 0.135335 0.134908 3.2%1073
d%1/0boc —0.0732626 —0.0728604 5.5%1073

Absolute error

The first order results are the same as when using CTSE and dual numbers.

UTSA
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Application: Simpson’s rule

= Observe the accuracy of the derivative dI/dc as a function of the step size for
CTSE, FD, and CD.

I(a,b,c) = f;xe‘cxdx witha=1,b=2c=2

Relative error using CTSE, FD, and CD to calculate dl/dc

0
10 — —— oo o mooooT e Update for 2nd order.
\ Numerical integration of | —A— Forward Difference
_ I(a, b, c) using Simpson’s rule 5— Central Difference
10714 —e— CTSE
§ ]
Lh E
v 1072+
= ]
©
E) ]
10_3? e o R R : ................
10_4§
100 10-5 10-10 10-15 10-20 10-25 10-30
Step size h
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Application: Simpson’s rule

= Compare the accuracy of 9%41/dc* computed 2 ways: 1)Bidual numbers applied directly to I, and
2) Integration of the analytical equation. Both integrals computed using Simpson’s rule.

I(a,b,c) = f:xe‘cxdx witha=1,b=2,c=2

2 b b b
I 921 0 02
- 1. 1 _ _ _ _ _
5c2 Im(I(a, b,C + €, + 62)) 302 — 302 f xe Xdx = fﬁ('xe Cx)dx — j(xBQ Cx)dx
a a a
Biduals Analytical derivative
0*l, 2L
32 ~Im(l(a,b,c + €, +¢€;,)) ?22 — j(xSe—cx)dx
a
0.158929633274781 0.158929633274781

To summarize, Biduals provide the most accurate derivative possible — the accuracy
is only limited in this case by the accuracy of Simpson’s rule.

UTSA “



Application: Gauss-Legendre quadrature

= Let’s study the behavior of CTSE to calculate the derivative the parameters of
an integral using Gauss-Legendre quadrature.

b _ n _
I(a,b,c)zj flx,c) = <b > a>ZWif(b > afi+b;a,c>

=1
= Where w;, &; are weights and evaluation points, and n defines the number of
integration points.

= As an example, consider n = 3 with the evaluation points ¢ = (—\E 0, \E) with

weights w = (g,g,g) respectively.

UTSA “



Application: Gauss-Legendre quadrature

= To calculate: dI/da ~ Im(l(a;ih’b’c), replace a with a + ih within G-L quadrature
and similarly for dI/db and dlI/dc.

dl  Im(I(a +ih,b,c)) 1 b—(a+lh) . b—(a+lh) b+ (a+ ih)
D (2GS (2 200 )

i=1

dl _ Im(I(a,b +ih,c)) 1 (b+1h)—a - (b+lh)—a (b+ih)+a
db R E(’ (( )ZIWJ ( it C>>>

=1

dl. _Im(I(a,b,c+ih)) 1 /
db h “h

3
~
A/
S
DN
Q
~_—
gt
\h
A/
oy
DN |
Q
A
_|_
S
N+
Q
a
_|_
=
~__—
~—_
~_
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Application: Gauss-Legendre quadrature

= Example: I(a, b,c) = ff xe “Ydxwitha=1b=2c=2.

Exact Gauss Quadrature | Relative Error
Integral 0.0786069 0.0786094 3.17 * 107°
dl/da —0.135335 —0.135356 1.55 % 10~*
dl/db 0.0366313 0.0366457 3.93 x107*
dl/dc —0.109643 —0.109642 1.27 * 107>

CTSE results (h = 1071% was used).



Application: Gauss-Legendre quadrature

= Example: I(a, b, c) = f: xe Ydxwtha=1b=2,c=2

Exact Biduals Relative Error
| 0.0786069 0.0785338 9.3%107*
9%1/0a* 0.135335 0.135495 1.2 %1073
0%1/0b* —0.0549469 —0.0548812 1.2 %1073
9%1/0c? 0.15887 0.158867 1.8 x 107°

The first order results are the same as when using CTSE and dual numbers.




Application: Gauss-Legendre quadrature

= Observe the accuracy of the integral and its derivatives as a function of the step
size for CTSE, FD, and CD.

Relative error using CTSE, FD, and CD to calculate d//dc

—A— Forward Difference

=E=—Central Difference CTSE reaches an accurate result for h <
1073,

FD and CD can also obtain the same
accuracy but only for a window of h and
the window is not known a priori.

Relative Error

100 10-5 10-10 10-15 10-20 10-25 10-30
Step size h
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Application: Gauss-Legendre quadrature

= Example: I(a, b, c) = f; xe “Ydxwitha=1b=2¢c=2.

Note that the accuracy of the derivatives are ~one order of magnitude less than the integral.
This behavior is often seen in other applications.

Exact Simpson’s Rule Relative Error
Integral 0.0786069 0.0785338 9.3 %1074
9%1/0adb 0.0000 —0.0001044 1.0 * 10741
021 /dadc 0.135335 0.135321 1.0 x 10~*
d%1/0boc —0.0732626 —0.0732562 8.6 x 107>

Absolute error

The first order results are the same as when using CTSE and dual numbers.

UTSA
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Example: Newton-Raphson Method— multivariate
example

= Consider the vector valued function:

x% +y*—4

feay) =4, 2 _ v — 4

= Suppose we want to find where f(x,y) = 0. To solve, we implement multivariate
Newton-Raphson method

X = Xp—1[Df (Xpe—1)1f (Xp-1) Use J for
Jacobian?

= Here Df represents the Jacobian matrix of the function f

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023 54



Example: Newton-Raphson Method— multivariate
example

Lot = {200

= Recall Df is given by: [2/1 9h]
dx dy

of, 0f;

Ldx  Ox.

We can find 22, 21 912 9/ using bidual numbers so that:
dx 0y’ 0x O0x

%: Im(fi(x+ &y + ¢€)), aa_];lz fmz(i(x + &y + €)
P d

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023



Example: Newton-Raphson Method— multivariate

Suggest we show the intermediate calculations in some

example

form for users to follow & verify their code

Iteration
no.

Relative Error X

Relative Error Y

UTSA

Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Example: Newton-Raphson Method— multivariate
example

= Using this approach, we arrive at the solution:

x* =1.2649110640673549 Align x* and y*

y* = 1.549193338549693
= Note that:

(e y*) = 2.06751949¢ 10
FORYD) =\ 5 06712425610

= This solution is within an acceptable tolerance for solving the problem

flx,y) =0

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Example: Newton-Raphson Method— multivariate
example

= A plot showing the number of iterations versus the relative error of the Newton-
Raphson method using bidual numbers. This example converges after just three
iterations.

100_

—e— Error
—— Tolerence
10—2_
What does § 10-4
"forward o
9 =
error’ mean. 5 105
Should we
use “Relative Lo
error’? \

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of iterations
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ODE solver — Euler’s method with bidual numbers

= Using bidual numbers, in a single analysis compute either: a) 15t and 2"d order
derivatives with respect to a single variable, or b) 1st and 2"d order mixed
derivatives can be computed of two variables. As examples:
. C t ol 921
a) Compute 20 Baz
or
ol a1 021

da’ db’ 0adb’

* b) Compute

y'(x) = ay(x) + bx — x* y(0) =g
a=1b=2,g=1

UTSA .



ODE solver — Euler’s method with bidual numbers

Exact solutions (a =1,b =2g =1)

d 2 X (__ 2
a—y —2—-2x—x%+ (2 +x)e* . 07y e’ ( 12+4x+32c)
S a 8 | 9a2 +2(6 + 4x + x*)
-O | -
S [ 5 O | 52
9 9y —1—x4+e”* © a_y 0
B [ 0b S | b2
L a_y o % azy 0
0g dg?
- 2
e o’y e*(x—2)+x+2
O | dadb
©
52
2 | a0 xer
$ | 9909
8| 9%y 0
X
S | dbdg 50




ODE solver — Euler’s method

= The numerical results using Euler’s method are shown below using a step size of h,;, = 0.1.

y'(x) = f(x,y) = ay(x) + bx — x?

y(0)=g
a=1b=2,g=
Euler's method: Numerical solution for y:
Vi1 () = y; + ¥ () hyge X Vi y'(x) Vi1 Yexact Relative Error
, 0.0 1.0 1.0 1.1 1.0 -—-
‘(x) =1 2x —
v () ) %’O(;C)fl XX 01| 11 |1129| 1290 | 1.1152 9.80 1072
0(0) =
hoge = 0.1 0.2| 1.229 | 1.589 | 1.388 | 1.2614 1.09 * 1071
-1
hyq4e is the step size used for Euler’s method — 03| 1388 | 1898 ) 1578 1.4399 1.20+10
this is independent from the h used by biduals. 04| 1578 | 2.218 | 1.799 1.6518 1.29 x 1071

UTSA
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ODE solver — dy(x)/da and d*y(x)/da* results

= The sensitivities dy(x)/da and d?y(x)/da? can be obtained using the standard Euler’s method
but now with a is replaced by a + ¢; + €, and the derivatives are obtained as 3;( 2N

Im; (y()), 222 ~ Imy, (y(2)).
V' (x) = (1 + € + ;)y(x) + 2x — x? with y(0) = 1

X | dy/da | dy/da Relative | d%y/da? | d%?y/da®? | Relative

Exact Error Exact Error
0.0 1.0 0 -—- 0 0 0
0.1 0.1 0.1108 9.80 * 102 0 0.0111 1

0.2| 0.22 0.2471 1.09 * 1071 0.0200 0.0491 5.93 %1071

0.3 | 0.3649 0.4147 1.20 1071 0.0660 0.1230 4,64 x 1071

0.4 | 0.5402 0.6204 1.29 x 1071 0.1456 0.2437 4.03 %1071




ODE solver — dy(x)/db and d?y(x)/db* results

= The sensitivities dy(x)/db and d?y(x)/db? can be obtained using the standard Euler’'s method
but now with b is replaced by b + €, + ¢, and the derivatives are obtained as 2 ~

2 db
I'm, (y(x)), ddj;,(zx) ~ Imy,(y(x)).
y'(x) =y(x)+ (2 +e€; +6€)x—x?withy(0) =1

X | dy/db dy/db Relative d?y/db* | d?y/db* | Relative
Exact Error Exact Error

0.0 1.0 0 --- 0 0 0

0.1 0.1 0.1108 9.80 * 102 0 0 0

0.2| 0.22 0.2471 1.09 = 1071 0 0 0

0.3 | 0.3649 0.4147 1.20 % 1071 0 0 0

0.4 | 0.5402 0.6204 1.29 x 1071 0 0 0




ODE solver — dy(x)/dg and d*y(x)/dg* results

= The sensitivities dy(x)/dg and d*y(x)/dg? can be obtained using the standard Euler’s method
but now with g is replaced by g + €; + €, and the derivatives are obtained as —— y( ) ~

Iml(y(x)) 4 y( N Imy,(y(x)).
y'(x) = 1y(x) + 2x — x? with y(0) = 1 + €, + €,

X |dy/dg | dy/dg Relative d*y/dg? | d?y/dg? | Relative
Exact Error Exact Error

0.0 1.0 0 --- 0 0 0

0.1 0.1 0.1108 9.80 * 102 0 0 0

0.2| 0.22 0.2471 1.09 x 1071 0 0 0

0.3 | 0.3649 0.4147 1.20 * 1071 0 0 0

0.4 | 0.5402 0.6204 1.29 x 1071 0 0 0




9%y (x)
dadb

ODE solver — mixed derivative

= The sensitivities dy(x)/da , dy(x)/0b and 0%y (x)/dadb can be obtained using the standard
Euler’'s method but now with a is replaced by a + ¢; and b is replaced by b + €,. The derivatives

2
are obtained as 2% ~ Im,(y(x)), M ~ Im,(y(x)), aac):a(z) ~ Imq,(y(x)).

da

y'(x) = (1+ e)y(x) + (2 + €)x — x% with y(0) = 1

Exact Error
a+e; b+e,
0.0 0 0 0
a+ e, b+ e
0.1 0 .00018 1
0.2 0 .00148 1
0.3 001 .00524 8.09 «+ 1071
0.4 .0042 .01308 6.79 * 1071

Note, either €, or €, can be used to perturb a or b, that
IS .
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9%y (x)
dadb

= The sensitivities dy(x)/da , dy(x)/0b and 0%y (x)/dadb can be obtained using the standard
Euler’'s method but now with a is replaced by a + ¢; and b is replaced by b + €,. The derivatives

62
are obtained as 3(;( 2 Iml(y(x)) M ~ Im,(y(x)), 62’;? ~ Imq, (y(x)).

ODE solver — mixed derivative

y'(x) = (14 e)yx) + (2 + €5)x — x? with y(0) = 1

X | 8%2y/@adb | 8%*y/dadb | Relative

Exact Error
0.0 0 0 0
0.1 0 .00018 1
0.2 0 .00148 1
0.3 .001 00524 |8.09x1071

0.4 .0042 01308 |6.79*1071




ODE solver — mixed derivative

= The sensitivities dy(x)/db , dy(x)/dg and 0?y(x)/dbdg can be obtained using the standard

0%y (x)

dbdg

Euler’s method but now with b is replaced by b + €; and g is replaced by g + €,. The derivatives

are obtained as

dy(x)

5~ Imy (y(x)),

dy(x)
g zlmz(y(x)), 9bdg

0%y (x)

~ Imq,(y(x)).

y'(x) = y(x) +* (2 + €))x — x? with y(0) = 1 + ¢,

X | 8%y/0bdg | d*y/dbdg | Relative
Exact Error
0.0 0 0 0
0.1 0 0 0
0.2 0 0 0
0.3 0 0 0
04 0 0 0
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0%y (x)
dadg

ODE solver — mixed derivative

= Equivalent results can be obtained for all cases by perturbing a along €, and b along ¢;.The

sensitivities can be obtained with a is replaced by a + ¢, and g is replaced by g + €;. The

L : dy (x) a0y (x) 0%y (x)
derivatives are obtained as == ~ Im, (y(x)),j(;—; ~ Imy (y(x)), acj:az ~ Imy, (¥(x)).

y'(x) = (1+e)y(x) + 2x — x? with y(0) = 1 + ¢,

X | 8*’y/0adg | 0*°y/0adg | Relative
Exact Error
0.0 0 0 0
0.1 0.1000 0.1105 9.52 * 1072
0.2 0.2200 0.2443 9.94 * 10~2
0.3 0.3630 0.4050 1.04 * 1071
0.4 0.5324 0.5967 1.08 x 1071
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Cauchy-Reimann form of biduals

= Bidual numbers have an equivalent CR form consisting of a matrix of all real
coefficients.

= |In this form there are no imaginary numbers and matrix operations can be used
to manipulate the bidual numbers.

xo2 0 0 O
x1 X 0 O
x, 0 x9 O
X12 X2 X1 Xp

Xo T+ X1€1 T Xp€p + X12€12 =

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Operations using CR form - Multiplication

= Consider the muiltiplication of two bidual numbers using the CR form

X" = X9t X161 + X265 + X261 y'=Yo + V161 + Y262 + V12612

X6 0 0 O\ /yo O O O
x1 X 0 O\ v vo O O

S X2 0 x O 2 0 ¥y O

X12 X2 X1 Xp Yi2 X2 Y1 Yo
XoYo 0 0 0
_ X1Yo + QoY1 X0Yo 0 0
X2Yo T ApY2 0 X0Yo 0

XoY12 T X1Y2+tX2Y1 + X12Y0 X1Yo T XoY1  X2Yo + XoY2  X0Yo

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Operations using CR form - Division

= Consider a bidual number divided by a bidual number using the CR form

X" =Xg+ X161 + X265 + X261 Y'=Yo+ V161 t Y262 + V12612

X 0 0 O\ /y, 0 0 0
x* x; X9 0 0 yi Yo 0 0
0

y*_szXOO y2 0 ¥y
X12 X2 X1 Xp Yi2 X2 Y1 Yo

xo/yo 0 0 0
_ X1/}’0—x0}’1/}’g Xo/Yo 0 0
xz/}’o—xo}’2/}’g 0 Xo/Yo 0

X12/Yo — xz)’1/3’g_x1)’2/yg — X0 (2YoY1Y2 — 3&23’5)/)’3 X1/3’0—X0)’1/3’5 xz/)’o‘%)’z/)’g Xo/Yo

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023 71



Functions of Bidual numbers using the CR form

= Functions of bidual numbers can be computed using the CR form if one uses
functions of matrices.

X" =2x9+ X161 + X6, + X19€1>

x, 0 0 O

. x1 X9 0 O
expCc) =expl| R ) (]

X12 X2 X1 Xp

e*o 0 0 0

x,e*o eXo 0 0

B X, e%o 0 eXo 0
X0

(x1%5 + x10)e*°  xe*0 x,e*0 e

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023
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Computing derivatives using Bidual numbers using the CR
form — general univariate example

= To use bidual numbers to compute derivatives with the CR form, perturb x along
€, and €5, l.e.,

fx*D = f(

f (xo)

UTSA

X
hq
hy

h,0f (x0)/0x
h,0f (x0)/0x
_hlhzazf(xo)/axz

| 0

h20f (x0)/0x  hy0f(x0)/0x  f(%o)!

x* = X0 ~+ h1€1 + hzez

0
X0
0
h,

0

f (xo)

0

0
0
X0
hq

0-

0
0

X0

University of Texas at San Antonio

0
0

f (%)

0 1

0
0

xo 0 0 07
hi x 0 O
h, 0 x5 O

0 h, hy xol

f(xo) = f(Ix" D11

1 1
df (x9)/0x = h_f([X*])m = h_f([X*])31
1 2

0%f (x0)/0x* = -

= F s

73




Computing derivatives using Bidual numbers using the CR

form — recommended univariate example

= |t is recommended that we use h; = h, = 1 and the method simplifies to,

X*=x+¢€+¢,

fx*D = f(

0f (x0)/0x
0f (x0)/0x
0% f (x0)/0x

UTSA

0f (x0)/0x  0f (x0)/0x  f (o)

University of Texas at San Antonio

0

0

0

0

f(xo) = f(Ix" D11

df (x9)/0x = f([x"D21 = f([x"D31

0%f (x0)/0x* = f([x"Daa
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Closed-form example: f(x) = x?2

= Compute the derivatives of f(x) = x? using the CR form for bidual numbers.

flx) = x**
x, 0 0 071> [x¢ 0 0 0
. 1 x, 0 0 2x x5 0 0
X = =
S F xo 0 2x 0 x¢ 0
01 1T xl ]2 2¢ 20 x3

f(xe) = f(Ix" D11 = xg
0f (x0)/0x = f([x*])21 = 2x
0% f (xo)

0x2

= f([x" D41 =2
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Closed-form example: f(x) = x?

= Compute the derivatives of f(x) = x> using the CR form for bidual numbers.

flx) =x*
X, 0 0 0718 [x 0 0 0]
1 3x2 x5 0 0
fay=[7 o=
1 0 x5 O 3x 0 x5 O
01 1 Xl Jex 3x2 3x2 «2

fxo) = f([x" D11 = x5

d

! a(;‘) = f(lx"D2 =327
62

(;ff") = f([x"Das = 6x
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Closed-form example: f(x) = e”*

= Compute the derivatives of f(x) = e*using the CR form for bidual numbers.

flx) =e*

Fae)=exp(| | ¢
0

f(xo) = f(Ix* D1 = ™0
df (x0)/0x = f([x*])21 = e*©

02f (x0)/0x% = e¥o
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Closed-form example: f(x) = sin(x)

= Compute the derivatives of f(x) = cos(x)using the CR form for bidual numbers.

f(x) = sin(x")

xo 0 0 07 [ sin x 0 0 0 7
~_ A1 x 0 0], _|cosxy sinxg 0 0
fx™) = sin( 1 0 x O ) = COS X 0 sin x 0
0 1 1 xoqf |—sinxy CO0SXy COSXy Sinxg]
f(xo) = f([x"D11 = sin(x)
Of (xo) *
= f([x* D21 = cos(xo)
0% f (xo) L
o —sin(xg)
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Closed-form example: f(x) = cos(x)

= Compute the derivatives of f(x) = cos(x)using the CR form for bidual numbers.

f(x) = cos(x”)

xo 0 0 07 [ COS X 0 0 0
o~ 1 xo 0 O0J, |—sinxyg cosxg 0 0
f(x") = cos( 1 0 x5 O ) = —sin x 0 COS X 0
0 1 1 xof |—COoSXxy —Sinxy —sinXxg COS Xy
f(xo) = f([x"])11 = cos(xp)
0f (x0) \ .
= f([x" D21 = —sin(xo)
02f(x0)
o —cos(xg)
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Closed-form example: f(x) = In(x)

= Compute the derivatives of f(x) = In(x)using the CR form for bidual numbers.

f(x) = In(x")

o 0 0 071 [In(x) 0 0 0

- 1 x 0 O |1/x0 In(x) O 0

f&7) =In(] 4 0 xo, O ) = 1/x 0 In(xo) 0
0 1 1 xp —1/x§  1/xqg 1/xy In(xp)]

f(xo) = f([x"D11 = In(xo)

0
fa(;CO) = f([x*" D21 = 1/x9
62
0

m Automatic Differentiation Using Complex and Hypercomplex Variables— USNCCM17, July 23, 2023



Computing derivatives using Bidual numbers using the CR
form — general multivariate example

= To use bidual numbers to compute mixed derivatives, perturb x along €; and y

along €, I.e., X, 0 0 0 v 0 0 0
x %1 h X0 0 0 * %1 _ 0 Yo 0 0
X = Xp + h1€1 [x ] = 01 0 X, 0 Y =Y + hZEZ [y ] = hz 0 Yo 0
0 0 hy xq. L0 hy 0 ol
xo 0 0 0711y, O O 07
h 0 0 0 0 0 f(xo) = f(Ux"D1s
ey =700 D o ol Y . D=
0 2 Yo 0f(xy) 1 . .
| O O h1 xo_ | O hz O yo_ ax = hl f([x ]; [y ])21
0 1
f(x0) 0 0 0 - Y LD,
hy0f (x0)/0x f (x0) 0 0
h,0f (x0)/0x 0 f (xo) 0 0°f(xo) 1 D
|h1hy,0%f (x0)/0x0y  hy0f (x0)/0x hi0f (x0)/0x  f(xo). 0xdy  hqh, H

m University of Texas at San Antonio



Computing derivatives using Bidual numbers using the CR
form — recommended multivariate example

= The recommendation is to use h; = h, = 1.

X, 0 0 07 'y 0 0 0
. — 1 x 0 0 . _— 0 yo O 0
X —X+h1€1 [.X']— O 00 xO O y _y+h262 [y]_ 1 O yO O
0 0 1 xg. 0 1 0 y
X 0 0 071 O 0 0]
1 o ollo 0 0 fxo) = fIx"D1a
FyD=F0o 0 x oll1 o v oP= s
X
0 0 1 xJdlo 1 0 v, = (L D
0
(o) 0 o o P el s,
0f (x0)/0x  f(xo) 0 0
0f (x0)/dy 0 £ (xo) 0 LG _ ey
02f (x0)/0x%  3f (x0)/dy 9f (x0)/0x  f (o). 0x0y "

m University of Texas at San Antonio



Closed-form example: f(x) = xy

= Compute the derivatives of f(x) = xy using the CR form for bidual numbers.

X" =x9+ hy€q

fx*) =

X 0 0 0] Vo 0 0 07
%1 1 xO O O * ¥l — O yO 0 0
T=10 0 x o0 yiEvethe D=1y, 0
0 0 1 xq. 0 1 0 yql
fx) =x"y" _
o 0 0 O0J[y O 0 o071 [x¥ O 0 0
1 x 0 0||l0 yo 0 0| |2xy8 x%y3 0 0
0 0 x, O]l1 0 y, 0 2x%ye 0 x5y6 0
L0 0 1 xl L0 10yl {ayy, 2x5Y0  2X0y5 X5V
9 ( ) f(x0,¥0) = f([X*g’;]()n :)xo)’O
X ’y * * X ’y * *
00 == flx* y" D21 = 2x0¥5; ~ = fx*,y* Ds1 = 2x550
X dy
0%f (xo)
ax2 4x0Y0
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Closed-form example: f(x) = x?y?

= Compute the derivatives of f(x) = x?y? using the CR form for bidual numbers.

X 0 0 0] Vo 0 0 07
*x __ x1 __ 1 X0 0 0 * — 1 = 0 Yo 0 0
X Xo + hq€q [x*] = 0 0 x, 0 V' =yo+ he; [yl = 1 0 y, O
0 0 1 xf 0 1 0 vyl
fG) =x"y
] 22 . 12 [ x2v2 0 0 0
X 0 0 O07'[yo O O O 0Y0
fay= |1 Ho 0 0110y 00 12xy8 xfyg 0 0
(1) (1) xlo 0 (1) (i’ Yo O 2%§Y0 0 X5¥6 0
i Xod L 0 Yo- _4-x0y0 ngyo ZXOyg xgyg_
f(x0,¥0) = fUx™y* D11 = x0¥0
of (X0, ¥o) .. 0f (x0, ¥0) -
00— Py D = 2wy T = (0 D = 26
y
02
f(xo) — 4x,4y,
0x?
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Closed-form example: f(x) = xsiny

= Compute the derivatives of f(x) = x siny using the CR form for bidual numbers.

X" =x9+ hy€q

fx*) =

xo 0 0 07 Vo 0 0 07
a_ |1 x 0 0 . a_10 vy 0 0
[.X' ]_ 0 0 X 0 y _y0+h262 [y ]_ 1 0 Yo 0
0 0 1 xq. 0 1 0 yql
f(x) =x"siny”*
0 0 07 Vo 0 0 07 X Sin(yg) 0 0 0
X 0 O] . ( 0 yo 0 O ) = sin(yg)  xgsin(yg) 0 0
0 x, 0|°™Y1 0o y, o)~ Xo sin(yg) 0 Xo sin(yy) 0
0 1 X0l L0 1 0 ol | cos(Yo)  xpsin(yg)  sin(¥o)  xosin(yo).
5f ) f(xo,¥0) = f([x;]}c’z])n :) X0Yo
X0, Y * * . X0, Y * * :
= [,y Do = sin(o); —— = f([x%,y" Dar = xosin(yo)
X dy
02 f (xo) _
—5 = cos(¥)
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Closed-form example: f(x) = xe”

= Compute the derivatives of f(x) = xe* using the CR form for bidual numbers.

% 0 0 07 Yo 0 0 0]
* *71 __ 1 x() O O * ¥l — O yO 0 0
X = Xp + h1€1 [X ] — 0 0 Xo 0 Y =Yo + hZEZ [y ] — 1 0 Yo 0
0 0 1 x 0 1 0 7y,
f(x) = xe*
X 0 0 01 [rve O 0 o7] [x¥6 0O 0 0
1 O O 0 2 2 2.,2 O O
fe =y o S | A | B B
xg O 10 yo O 2X5Vo 0 X0Y0 0
00 1 xl L0 1 0 woll [axyy, 2x2y, 2x,v2 x2y2
97 ( ) f(x0,¥0) = f([X*g’;]()n :)xo)’O
X ,y " " X 'y * *
= F Uy D = 20y T = £y D = 280
Ozf(xo)_
92 = 4xoY0
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