Automatic Differentiation Using Complex and Hypercomplex Variables

Derivation of dual numbers for first order sensitivities

University of Texas at San Antonio July, 2023

Dual numbers for first order sensitivities

 Dual numbers can also be used to compute highly accuracy first order sensitivities. A comparison between Complex and Dual numbers is shown below.

	Complex	Dual
Format	a + bi	$a + b\epsilon$
Real part	а	а
Imaginary part	b	b
Imaginary unit	i	ϵ
Imaginary unit squared	$i^2 = -1$	$\epsilon^2 = 0, \epsilon \neq 0$
f'(x)	Im(f(x+ih))/h	$Im(f(x+h\epsilon))/h$
Step size h	$10^{-8} < h < 10^{-308}$	Arbitrary, typically $h = 1$
Cauchy-Reimann matrix - general	$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$
Cauchy-Reimann matrix - differentiation	$\begin{pmatrix} x & -h \\ h & x \end{pmatrix}$	$\begin{pmatrix} x & 0 \\ 1 & x \end{pmatrix}$
Туре	Numerical	Symbolic or Numerical

Dual number definition

- A dual number is analogous to a complex number in that it contains a real and an imaginary part.
 - $x^* = a + b\epsilon$
 - With $\epsilon^2 = 0$, $\epsilon \neq 0$
- Dual numbers are well known for automatic differentiation; however, they are not built into programming languages although there are often packages that can be used.
- In our case, we will use MultiZ to define and operate with dual numbers.

```
from multiZ.symdual import *
a,b = sym.Symbol('a'),sym.Symbol('b')
x = sdual(a, b)

print(x)
#Output sdual(a, b): Represents a symbolic dual number of the form x = a + be
```


Dual number – basic operations

- Addition/subtraction
 - $(a + b\epsilon) \pm (c + d\epsilon) = (a \pm c) + (b \pm d)\epsilon$

a, b, r - real numbers

- Multiplication of 2 dual numbers
 - $(a + b\epsilon)(c + d\epsilon) = ac + ad\epsilon + bc\epsilon + bd\epsilon^2$
 - $ac + (ad + bc)\epsilon$
- Multiplication of a real times a dual number
 - $(r)(a+b\epsilon) = (ra+rb\epsilon)$
- Multiplication of a pure dual number times a dual number
 - $(\epsilon)(a+b\epsilon)=a\epsilon$

Dual numbers - division

Division of two dual numbers

•
$$\frac{a+b\epsilon}{c+d\epsilon} = \frac{a+b\epsilon}{c+d\epsilon} \frac{c-d\epsilon}{c-d\epsilon} = \frac{ac+(bc-ad)\epsilon}{c^2} = \frac{a}{c} + \left(\frac{bc-ad}{c^2}\right)\epsilon$$

Division of a dual number by a real number

•
$$\frac{a+b\epsilon}{r} = \frac{a}{r} + \left(\frac{b}{r}\right)\epsilon$$

Division of a real number by a dual number

•
$$\frac{r}{a+b\epsilon} = \frac{r}{a+b\epsilon} \frac{a-b\epsilon}{a-b\epsilon} = \frac{ra-rb\epsilon}{a^2} = \frac{r}{a} + \left(\frac{-rb}{a^2}\right)\epsilon$$

■ Note, division by a dual number of the form $(0 + \epsilon)$ is not defined.

Functions of dual numbers

 Functions of dual numbers can be determined in a straightforward manner using the Taylor series definition of a dual number. This definition is,

•
$$f(a + b\epsilon) = f(a) + b\frac{df}{dx}(a)\epsilon$$

• Note, the function f and its derivative are only evaluated at the real number a.

Function	Mathematical expression
$\sin(a+b\epsilon)$	$\sin(a) + b\cos(a)\epsilon$
$\cos(a+b\epsilon)$	$\cos(a) - b\sin(a)\epsilon$
$\cosh(a+b\epsilon)$	$\cosh(a) + b \sinh(a) \epsilon$
$\sqrt{a+b\epsilon}$	$\sqrt{a} + \frac{b}{2\sqrt{a}}\epsilon$
$ln(a+b\epsilon)$	$\ln(a) + \frac{b}{a}\epsilon$
$e^{a+b\epsilon}$	$e^a + be^a \epsilon$
$\sin(a+b\epsilon)^{-1}$	$\sin^{-1}(a) + \frac{b}{\sqrt{1-a^2}}$

Dual number raised to a dual power

- Use the mathematical expression $x^y = e^{y \ln(x)}$
 - $(a + b\epsilon)^{c+d\epsilon} = e^{(c+d\epsilon)\ln(a+b\epsilon)}$
 - Substituting: $\ln(a + b\epsilon) = \ln(a) + \left(\frac{b}{a}\right)\epsilon$ we obtain
 - $(a + b\epsilon)^{c+d\epsilon} = a^c + a^{c-1}(ad \ln(a) + cb)\epsilon$
- Real raised to a dual power this is a subset of the above equation with a = r and b = 0.
 - $(r)^{c+d\epsilon} = r^c + r^c (rd \ln(r))\epsilon$
- Dual raised to a real power this is a subset of the above equation with c=n and d=0.
 - $(a+b\epsilon)^n = a^n + a^{n-1}nb\epsilon$

Dual Numbers for first order sensitivities

■ Dual numbers can be used to compute highly accuracy first order sensitivities. Consider the Taylor series expansion of a dual number $a + b\varepsilon$ expanded about a

$$f(a+b\epsilon) \approx f(a) + \frac{df}{dx}(a)b\epsilon + \frac{1}{2}\frac{d^2f}{dx^2}(a)(b\epsilon)^2 + \frac{1}{3!}\frac{d^3f}{dx^3}(a)(b\epsilon)^3 + HOT$$

Using the fact that $e^n = 0$ for $n \ge 2$, we obtain,

$$f(a+b\epsilon) = f(a) + \frac{df}{dx}(a)b\epsilon$$
$$f'(a) = \frac{1}{h}Im(f(a+h\epsilon))$$

h is arbitrary so h = 1 is typically used. In this case

$$\frac{df}{dx}(a) = Im(f(a+\epsilon))$$

