Automatic Differentiation Using Complex and Hypercomplex Variables

Introduction to the Complex Taylor Series Expansion (CTSE) method for first order sensitivities

University of Texas at San Antonio July, 2023

University of Texas at San Antonio

Complex Taylor Series Expansion (CTSE)

 Complex variables can be used to compute accurate first order sensitivities. The derivation starts from the classical Taylor series expansion shown below.

$$f(x+h) \approx f(x) + \frac{df}{dx}h + \frac{1}{2}\frac{d^2f}{dx^2}h^2 + \frac{1}{3!}\frac{d^3f}{dx^3}h^3 + \frac{1}{4!}\frac{d^4f}{dx^4}h^4 + HOT$$

where *h* is the step, $\frac{d^n f}{dx^n}$ is the *n*'th derivative at (*x*), and *HOT* denotes the higher order terms.

If we replace real variable step h by an imaginary step *ih*, we obtain the following

$$f(x+ih) \approx f(x) + \frac{df}{dx}(x)(ih) + \frac{1}{2}\frac{d^2f}{dx^2}(x)(ih)^2 + \frac{1}{3!}\frac{d^3f}{dx^3}(x)(ih)^3 + \frac{1}{4!}\frac{d^4f}{dx^4}(x)(ih)^4 + HOT$$

$$= f(x) + \frac{df}{dx}(x)ih - \frac{1}{2}\frac{d^2f}{dx^2}(x)h^2 - \frac{1}{3!}\frac{d^3f}{dx^3}(x)ih^3 + \frac{1}{4!}\frac{d^4f}{dx^4}(x)h^4 + HOT$$

UTSA

Complex Taylor Series Expansion (CTSE)

The end result, separated into real and imaginary terms, is

$$f(x+ih) \approx \left(f(x) - \frac{1}{2}\frac{d^2f}{dx^2}h^2\right) + i\left(\frac{df}{dx}h - \frac{1}{3!}\frac{d^3f}{dx^3}ih^3\right) + HOT$$

The real result is

$$\operatorname{Re}(f(x+ih)) = f(x) + -\frac{1}{2}\frac{d^{2}f}{dx^{2}}h^{2} + HOT$$

The imaginary result is

$$Im(f(x+ih)) = \frac{df}{dx}h - \frac{1}{3!}\frac{d^{3}f}{dx^{3}}ih^{3} + HOT$$

UTSA

Complex Taylor Series Expansion (CTSE)

Summary, the first order derivative can be approximated as

For sufficiently small
$$h$$

 $f \approx \operatorname{Re}(f(x + ih))$
 $\frac{df}{dx} \approx \frac{\operatorname{Im}(f(x + ih))}{h}$

Note 1: that the derivative can be computed without any subtraction of terms, hence h can be made sufficiently small such that the terms of $O(h^2)$ can be reduced to below machine precision.

Note 2: the real part is also affected but again terms of order $O(h^2)$ can be reduced to below machine precision, hence, practically speaking, the real part is not affected.

Analogy with the finite difference method



