Automatic Differentiation Using Complex and Hypercomplex Variables

Applying CTSE to closed-form examples

University of Texas at San Antonio July, 2023

University of Texas at San Antonio

1

Closed-form example: $f(x) = x^2$

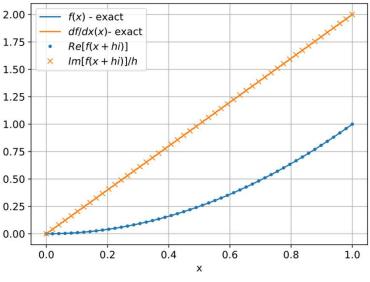
The use of CTSE to compute derivatives can be demonstrated using some closed-form examples.

$$f(x) = x^{2}$$

$$f(x + ih) = (x + ih)^{2} = x^{2} - h^{2} + 2ihx$$

$$\frac{df}{dx} = \frac{Im(f(x+ih))}{h} = \frac{2hx}{h} = 2x$$

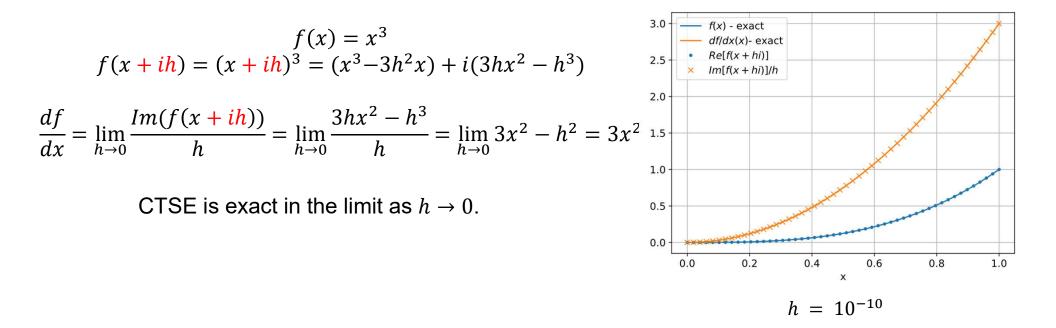
In this example we see that CTSE is exact.



 $h = 10^{-10}$

UTSA

Closed-form example: $f(x) = x^3$



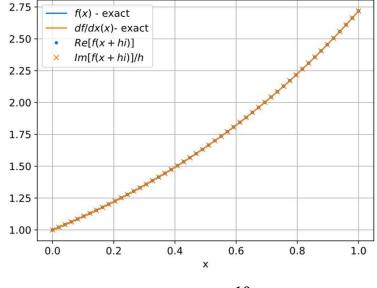
UTSA

Closed-form example: $f(x) = e^x$

$$f(x) = e^{x}$$

$$f(x + ih) = e^{x+ih} = e^{x}e^{ih} = e^{x}(\cos(h) + i\sin(h))$$

$$\frac{df}{dx} = \lim_{h \to 0} \frac{Im(f(x + ih))}{h} = \lim_{h \to 0} e^{x} \frac{\sin(h)}{h} = e^{x}$$
CTSE is exact in the limit as $h \to 0$ since $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$



 $h = 10^{-10}$

UTSA.

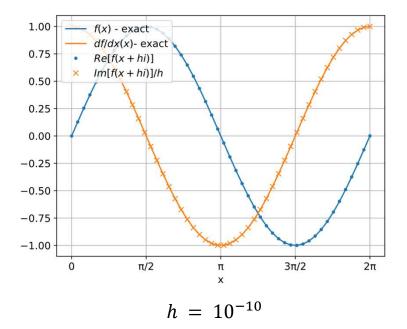
Closed-form example f(x) = sin(x)

$$f(x) = \sin(x)$$

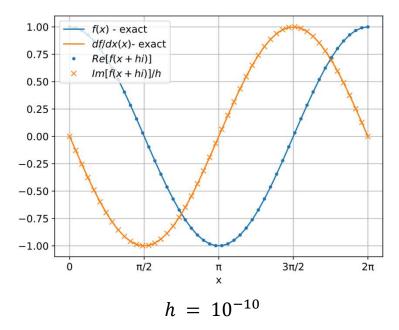
$$f(x + ih) = \sin(x + ih) = \sin(x)\cos(ih) + \cos(x)\sin(ih) =$$

$$= \sin(x)\cosh(h) + i\cos(x)\sinh(h)$$

$$\frac{df}{dx} = \lim_{h \to 0} \frac{Im(f(x + ih))}{h} = \lim_{h \to 0} \cos(x)\frac{\sinh(h)}{h} = \cos(x)$$
CTSE is exact in the limit as $h \to 0$ since $\lim_{h \to 0} \frac{\sinh(h)}{h} = 1$.



Closed-form example: f(x) = cos(x)



$$f(x) = \cos(x)$$

$$f(x + ih) = \cos(x + ih) = \cos(x)\cos(ih) - \sin(x)\sin(ih) =$$

$$= \cos(x)\cosh(h) - i\sin(x)\sinh(h)$$

$$\frac{df}{dx} = \lim_{h \to 0} \frac{Im(f(x+ih))}{h} = \lim_{h \to 0} -\sin(x)\frac{\sinh(h)}{h} = -\sin(x)$$

CTSE is exact in the limit as $h \to 0$ since $\lim_{h \to 0} \frac{\sinh(h)}{h} = 1$.

UTSA.

Closed-form example: $f(x) = \ln(x)$

$$f(x) = \ln(x)$$

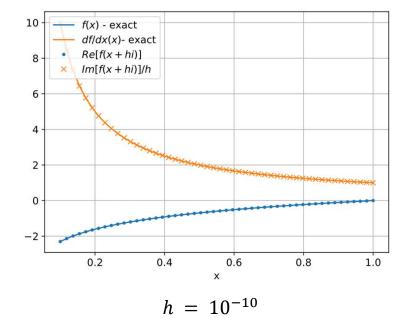
$$f(x + ih) = \ln(x + ih)$$
Using the fact that $x + ih = (x^2 + h^2)e^{i\theta}$:
$$\ln(x + ih) = \ln(x^2 + h^2) + i\theta$$

$$\Rightarrow$$

$$\frac{Im(f(x+ih))}{h} = \frac{\theta}{h}$$

$$\theta = \arctan\left(\frac{x}{h}\right)$$

$$\frac{df}{dx} = \lim_{h \to 0} \frac{\arctan\left(\frac{h}{x}\right)}{h} = \frac{1}{x}$$



CTSE is exact in the limit as $h \to 0$ since $\lim_{h \to 0} \frac{\arctan(\frac{h}{x})}{h} = \frac{1}{x}$.

7

Closed-form example: $f(x) = xe^x$

$$f(x) = xe^{x}$$

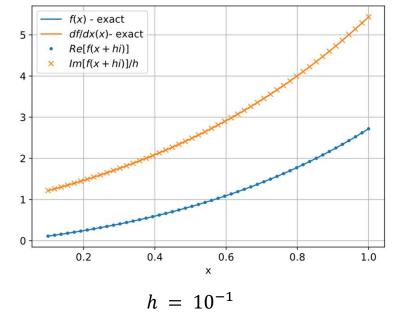
$$f(x + ih) = (x + ih)e^{(x+ih)} = (x + ih)e^{x}e^{ih} =$$

$$(x + ih)e^{x}(\cos(h) + i\sin(h)) =$$

$$e^{x}(x\cos(x) - h\sin(h)) + e^{x}(x\sin(h) + h\cos(h))i$$

$$\frac{df}{dx} = \lim_{h \to 0} \frac{Im(f(x + ih))}{h} = \lim_{h \to 0} \frac{e^{x}(x\sin(h) + h\cos(h))}{h}$$

$$= \lim_{h \to 0} e^{x}(x\sin(h)/h + \cos(h)) = e^{x}(x + 1)$$



CTSE is exact in the limit as $h \to 0$ since $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$ and the $\lim_{h \to 0} \cos(h) = 1$.

UTSA.

CTSE using Excel

 CTSE can be employed with Excel - although somewhat cumbersome and only with single precision accuracy. In all cases, complex functions must be used.

Function	Result	
Complex(a,b) or "a+bi"	a + bi	
Imreal(complex(a,b))	a	
Imaginary(complex(a,b))	b	
Imsum(c1,c2,)	Sum of 2 or more complex numbers $(c_1 + c_2 + \cdots)$	
Imsub(c1,c2)	Subtraction of 2 complex numbers $(c_1 - c_2)$	
Improduct(c1,c2,)	Multiplication of 2 or more complex numbers ($c_1 c_2 \dots$)	
Imdiv(c1,c2)	Complex division of 2 complex numbers, (c_1/c_2)	
Imsin(c1)	Sine of a complex number $(sin(c_1))$	
Imcos(c1)	Cosine of a complex number $(cos(c_1))$	
Imexp(c1)	Exponential of a complex number $(\exp(c_1))$	
lmln(c1)	Natural log of a complex number $(\ln(c_1))$	

UTSA

CTSE examples using Excel

• Several examples are shown below. In all cases x = 1.5 + ih with $h = 10^{-10}$, that is $x^* = 1.5 + 10^{-1}$ *i* and x^* is located in cell A1.

Spreadsheet	Function	Excel command	dfdx-CTSE	dfdx-exact
	X^2	= Improduct(A1,A1)	3.0000	3.0000
	X^3	= Improduct(A1,A1,A1)	6.7500	6.7500
	Sin(x)	= Imsin(A1)	0.0707	0.0707
	Cos(x)	= Imcos(A1)	-0.9975	-0.9975
	Exp(x)	= Imexp(A1)	4.4817	4.4817
	ln(x)	= Imln(A1)	0.6667	0.6667
	x exp(x)	= Improduct(A1,Imexp(a1))	11.2042	11.2042
	Sin(x^2)	= Imsin(Improduct(A1,A1))	-1.8845	-1.8845

Click here to open the Excel example.

Simulated

10