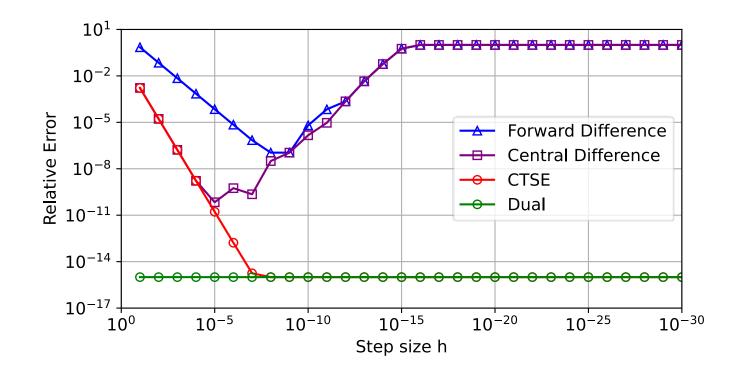
Automatic Differentiation Using Complex and Hypercomplex Variables

Assessing the accuracy of dual number differentiation using a step size study


University of Texas at San Antonio July, 2023

University of Texas at San Antonio

Step size study - f(x) = sin(x)

• Compare the accuracy of the dual number method against forward and central differencing. $f(x) = \sin(x)$ f(1) = 0.84147098480790

f(1) = 0.84147098480790f'(1) = 0.54030230586814

Forward:
$$\frac{df}{dx}(x) \approx \frac{f(x+h)-f(x)}{h}$$

Central: $\frac{df}{dx}(x) \approx \frac{f(x+h)-f(x-h)}{2h}$
CTSE: $\frac{df}{dx}(x) \approx \frac{Im(f(x+ih))}{h}$
Dual: $\frac{df}{dx}(x) = Im(f(x+\epsilon))$

Step size study – numerical integration

A similar behavior will be seen for more complicated algorithms; however, dual numbers will not always provide machine precision accuracy— the accuracy is dependent upon the algorithm in which it is deployed.

