Automatic Differentiation Using Complex and Hypercomplex Variables

Assessing the accuracy of CTSE using a step size study

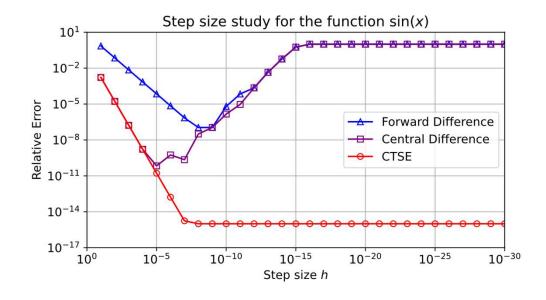
University of Texas at San Antonio July, 2023

University of Texas at San Antonio

1

Step size study - f(x) = sin(x)

- CTSE converges as h^2 and produces machine precision results for $h < 10^{-8}$.
- FD converges as h with increasing error for $h < 10^{-9}$ due to subtractive error.
- CD converges as h^2 with increasing error for $h < 10^{-5}$ due to subtractive error.



CTSE:
$$\frac{df}{dx} \approx \frac{Im(f(x+ih))}{h}$$

Forward: $\frac{df}{dx} \approx \frac{f(x+h)-f(x)}{h}$
Central: $\frac{df}{dx} \approx \frac{f(x+h)-f(x-h)}{2h}$

How small can we make *h* for CTSE?
For a double precision system, *h* can be as small as 10⁻³⁰⁷.

Step size study – numerical integration

A similar behavior will be seen for more complicated algorithms; however, CTSE will not always provide machine precision accuracy – the accuracy is dependent upon the algorithm in which it is deployed.

$$\frac{\partial a}{\partial a} I(a, b, c) = \frac{\partial a}{\partial a} (J_a \times e^{-ax}) \text{ with } a = 1, b = 2, c = 2$$

UIS

 $\frac{\partial}{\partial t} I(a, b, c) = \frac{\partial}{\partial t} \left(\int_{a}^{b} x e^{-c} dx \right)$ with a = 1, b = 2, c = 2

Note, CTSE results are independent of step size but are *NOT* machine precision accurate. The accuracy of Simpson's rule sets the accuracy of the differentiation.

How small can we make *h* for CTSE?
For a double precision system, *h* can be as small as 10⁻³⁰⁷.