Automatic Differentiation Using Complex and Hypercomplex Variables

Assessing the accuracy of CTSE using a step size study
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Step size study - f(x) = sin(x)

= CTSE converges as h? and produces machine precision results for h < 1078,
= FD converges as h with increasing error for h < 10~° due to subtractive error.
= CD converges as h? with increasing error for h < 10~> due to subtractive error.

Step size study for the function sin(x)
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Step size study — numerical integration

= A similar behavior will be seen for more complicated algorithms; however, CTSE
will not always provide machine precision accuracy— the accuracy is dependent

upon the algorithm in which it is deployed.

ZI(a,b,¢) = =({; xe~¢ dx)witha =1,b =2,c =2

Note, CTSE results are
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