Automatic Differentiation Using Complex and Hypercomplex Variables

Applying CTSE within a Newton-Rhapson solver

University of Texas at San Antonio July, 2023

University of Texas at San Antonio

Newton-Rhapson

The Newton-Raphson Method is an algorithm that can be used to approximate the root of a function. The estimate of the root of function *f* at iteration *j* + 1 can be estimated from the result at step *j* as

$$x_{j+1} = x_j - \frac{f(x_j)}{\frac{df}{dx}(x_j)}$$

This equation can be rewritten to use CTSE as

$$x_{j+1} = x_j - \frac{Re\left(f(x_j + ih)\right)}{\frac{1}{h}Im\left(f(x_j + ih)\right)}$$

Hence, one complex-variable evaluation of $f(x_j + ih)$ can be used to estimate $f(x_j)$ and $\frac{df}{dx}(x_j)$.

UTSA

Newton-Rhapson

• Example1: $f(x) = \cos(ax) - x/a$. Find the root f(x) = 0 using Newton-Rhapson.

$$x_{j+1} = x_j - \frac{Re(\cos(a(x_j+\epsilon)) - (x_j+\epsilon)/a)}{\frac{1}{h}Im(\cos(a(x_j+\epsilon))) - (x_j+\epsilon)/a}$$

Iteration no.	x value	Relative error
0	0.2	
1	0.850777122431116	$1.51 * 10^{-1}$
2	0.741530193469262	$3.31 * 10^{-3}$
3	0.739086449877212	$1.78 * 10^{-6}$
4	0.739085133215543	$5.18 * 10^{-13}$
5	0.739085133215161	0

Results for a = 1. Starting value x = 0.2. Assuming $h = 10^{-10}$.

