Applying dual numbers using the Cauchy-Riemann matrix form

University of Texas at San Antonio July, 2023

University of Texas at San Antonio

Cauchy-Reimann (CR) form

 Dual numbers can be employed using all real numbers with no imaginary parts using Cauchy-Reimann matrices of all real values. This may be useful for numerical algorithms/software when a dual library is not available.

Any dual number $a + b\epsilon$ can be rewritten in the matrix form $\begin{bmatrix} a & 0 \\ b & a \end{bmatrix}^{\dagger}$.

Thus, to differentiate a function using dual numbers, one computes $f(x + \epsilon) = f(\begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix})$ Then

$$\frac{df}{dx} = f\left(\begin{bmatrix} x & 0\\ 1 & x \end{bmatrix}\right)_{21}$$

Where the subscript 21 indicates the first column second row of the resulting matrix.

[†]An equivalent alternate form is
$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$
.

Closed-form example: $f(x) = x^2$

• Compute the derivative of $f(x) = x^2$ using the CR form for dual numbers.

$$f(x) = x^{2}$$

$$f(x + ih) = \begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix}^{2} = \begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix} \begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix} = \begin{bmatrix} x^{2} & 0 \\ 2x & x^{2} \end{bmatrix}$$

$$\frac{df}{dx} = f(\begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix})_{21} = 2x$$

Closed-form example: $f(x) = x^3$

• Compute the derivative of $f(x) = x^3$ using the CR form for dual numbers.

$$f(x) = x^{3}$$

$$f(x + ih) = \begin{bmatrix} x & -h \\ h & x \end{bmatrix}^{3} = \begin{bmatrix} x & -h \\ h & x \end{bmatrix} \begin{bmatrix} x^{2} & 0 \\ 2x & x^{2} \end{bmatrix} \begin{bmatrix} x^{3} & 0 \\ 3x^{2} & x^{3} \end{bmatrix}$$

$$df \qquad [x = h]$$

$$\frac{df}{dx} = f\left(\begin{bmatrix} x & -h\\ h & x \end{bmatrix}\right)_{21} = 3x^2$$

Closed-form example: $f(x) = e^x$

• Compute the derivative of $f(x) = e^x$ using the CR form for dual numbers.

$$f(x) = e^{x}$$

$$f(x + \epsilon) = expM(\begin{bmatrix} x & 0\\ 1 & x \end{bmatrix}) = \begin{bmatrix} e^{x} & 0\\ e^{x} & e^{x} \end{bmatrix}$$

$$\frac{df}{dx} = f(\begin{bmatrix} x & -h\\ h & x \end{bmatrix})_{21} = e^{x}$$

Note, functions of matrices must be used for the exponential operator NOT the standard exponential function.

Closed-form example: f(x) = sin(x)

• Compute the derivative of f(x) = sin(x) using the CR form for dual numbers.

$$f(x) = \sin(x)$$

$$f(x + \epsilon) = sinM(\begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix}) = \begin{bmatrix} \sin(x) & 0 \\ \cos(x) & \sin(x) \end{bmatrix}$$

$$\frac{df}{dx} = f\left(\begin{bmatrix} x & 0\\ 1 & x \end{bmatrix}\right)_{21} = \cos(x)$$

Note, functions of matrices must be used for the sine operator NOT the standard sine function.

Closed-form example: f(x) = cos(x)

• Compute the derivative of f(x) = cos(x) using the CR form for dual numbers.

$$f(x) = \cos(x)$$

$$f(x + \epsilon) = \cos M(\begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix}) = \begin{bmatrix} \cos(x)\cosh(h) & \sin(x)\sinh(h) \\ -\sin(x)\sinh(h) & \cos(x)\cosh(h) \end{bmatrix}$$

$$\frac{df}{dx} = f\left(\begin{bmatrix} x & 0\\ 1 & x \end{bmatrix}\right)_{12} = -\sin(x)\frac{\sin(h)}{h} = -\sin(x)$$

Note, functions of matrices must be used for the cosine operator NOT the standard cosine function.

Functions of Matrices

Functions of matrices¹ are not the same as the standard functions. For example,

$$Exp\begin{bmatrix}a & 0\\c & d\end{bmatrix} = \begin{bmatrix}e^{a} & 0\\\frac{c(e^{a} - e^{d})}{a - d} & e^{d}\end{bmatrix}$$
$$Sin\begin{bmatrix}a & 0\\c & d\end{bmatrix} = \begin{bmatrix}\sin(a) & 0\\\frac{c(\sin(a) - \sin(d))}{a - d} & \sin(d)\end{bmatrix}$$

 Hence to use the CR form, one must have a language with good support of functions of matrices.

¹Higham, Nicholas J. Functions of matrices: theory and computation. Society for Industrial and Applied Mathematics, 2008.

Functions of matrices

As discussed in the CTSE section, the dual variable CR form has superior numerical performance compared to the complex variable CR form.

