Automatic Differentiation Using Complex and Hypercomplex Variables

Approximating 2nd order derivatives using dual numbers

University of Texas at San Antonio July, 2023

Second Order Derivatives with Dual Numbers

- Method: Finite differences of dual numbers to obtain a second order derivative.
 - Evaluate first-order derivatives with dual numbers at two points: (x) and $(x + h_{FD})$:

$$\frac{df}{dx}(x) = Im(f(x + \epsilon)) \qquad \frac{df}{dx}(x + h_{FD}) = Im(f((x + h_{FD}) + \epsilon))$$

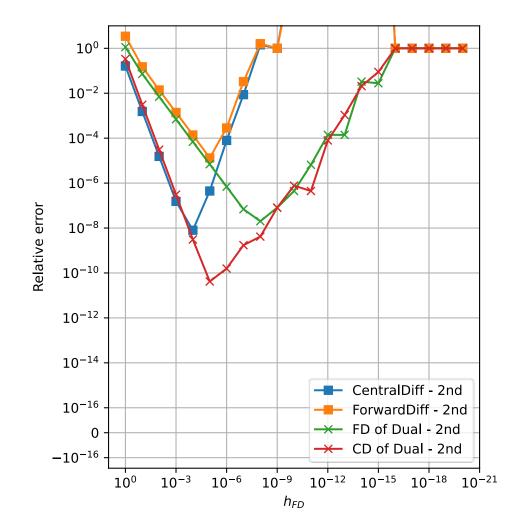
Apply Forward differences with the two evaluations to get the second derivative

$$\frac{d^2f}{dx^2}(x) \approx \frac{\frac{df}{dx}(x + h_{FD}) - \frac{df}{dx}(x)}{h_{FD}} = \frac{Im(f((x + h_{FD}) + \varepsilon)) - Im(f(x + \varepsilon))}{h_{FD}}$$

Easily extended to Central Differences:

$$\frac{d^2f}{dx^2}(x) \approx \frac{Im\left(f\left((x+h_{FD})+\varepsilon\right)\right) - Im\left(f\left((x-h_{FD})+\varepsilon\right)\right)}{2h_{FD}}$$

Second Order Derivatives with Dual Numbers


Example: Closed form function: $f(x) = x^2 e^x$

Step size for dual first derivative was fixed at h = 1Finite Differences for 2^{nd} order derivatives:

ForwardDiff:
$$\frac{d^2f}{dx^2}(x) \approx \frac{f(x+2h_{FD})-2f(x+h_{FD})+f(x)}{h_{FD}^2}$$

CentralDiff:
$$\frac{d^2f}{dx^2}(x) \approx \frac{f(x+h_{FD})-2f(x)+f(x-h_{FD})}{h_{FD}^2}$$

- Dual with finite differencing outperforms traditional finite difference methods.
- Second order derivatives suffers subtractive cancellation error.

