

A fast method for computing arbitrary order Stress-Intensity Factor derivatives of 3D finite element simulations using Hypercomplex Automatic Differentiation

Mauricio Aristizabal, PhD

Harry Millwater, Professor

Arturo Montoya, Professor

WCCM 2024/ PANACM 2024 Vancouver, BC, Canada July 24, 2024

Analogy with the finite difference method

Finite Difference (FD)

Perturb along the real axis $\frac{df}{dx} \approx \frac{f(x+\hat{h}) - f(x)}{\hat{h}}$

Subtraction errors occur when $h \rightarrow 0$

Complex Taylor Series Expansion (CTSE)

CTSE is performed analogously to FD

Perturb along the imaginary axis

$$\frac{df}{dx} \approx \frac{Im(f(x+ih))}{h}$$

arbitrarily small with no concern about round-off error – **no subtraction error.**

UTSA.

University of Texas at San Antonio

 $h \ll \hat{h}$

FD

Re

2

Method – in a nutshell

 Uses hypercomplex algebra combined with traditional finite element methods to compute *arbitrary order high accuracy derivatives*.

- Step size independent method ensures high accuracy.
- The traditional real-valued results are still obtained.

- Methodology programmed as a user element (UEL) within Abaqus.
 - Intrusive code has to be reprogrammed for hypercomplex algebra but traditional functions still used, e.g., same shape functions, etc.

Perturbations

•Arbitrary *shape*, *material* and *loading* sensitivities are available.

Perturb nodal coordinates in imaginary axis only!

Imaginary nodal coordinates define the *perturbation* in the shape.

Calculation of the Energy Release Rate

 $G = \pm \frac{dU}{dA}$ - special case of shape sensitivity. Perturb the crack area along the imaginary axis and extract the imaginary component of strain energy:

$$G = \pm \frac{dU}{dA} \approx \frac{1}{\Delta A} \sum_{el=1}^{Nel} Im(U_{el})$$

 ΔA is related to the step size h – typically 10^{-10} times the smallest element at the crack tip.

Bi-Material Fracture

Virtual crack extension method for thermoelastic fracture using a complex-variable FEM

D. Ramirez Tamayo*, A. Montoya, H.R. Millwater, "A Virtual Crack Extension Method for Thermoelastic Fracture Using a Complex-Variable Finite Element Method", Engineering Fracture Mechanics 192 (2018) 328-342, https://doi.org/10.1016/j.engfracmech.2017.12.013

A Complex-Variable Virtual Crack Extension FEM for Elastic-Plastic Fracture Mechanics

- Extends ZFEM for elastic-plastic materials.
- In contrast to J-integral, ZFEM achieves contour path independence, and it is not restricted to monotonic loading.

CT specimen under uncontained yielding conditions. Highlighted plastic regions correspond to line-load displacement of 0.4140 mm.

A. Montoya, D. Ramirez Tamayo*, H.R. Millwater, and M. Kirby*, "A Complex-Variable Virtual Crack Extension Finite Element Method for Elastic-Plastic Fracture Mechanics, Engineering Fracture Mechanics", 202 (2018) 242-258 https://doi.org/10.1016/j.engfracmech.2018.09.023

Hypercomplex Algebras

Lantoine, G.; Russell, RP.; Dargent, T. (2012). Using Multicomplex Variables for Automatic Computation of High-order Derivatives. *ACM Transactions on Mathematical Software*, *38*(3), 21. Fike, J. & Alonso, J. The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations. in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2011). doi:10.2514/6.2011-886

Non-intrusive Residual Method

• <u>Residual Concept:</u> $\mathbf{r}(\mathbf{u}(a), a) = \mathbf{0}$ $\frac{d^{n}\mathbf{r}}{da^{n}} = \mathbf{0}$ • <u>In Linear elasticity</u>, $\mathbf{r}(\mathbf{u}, a) = \mathbf{K}\mathbf{u} - \mathbf{f} = 0$ $\mathbf{K}\frac{\partial \mathbf{u}}{\partial a} = \frac{\partial \mathbf{r}}{\partial a} = \frac{\partial \mathbf{f}}{\partial a} - \frac{\partial \mathbf{K}}{\partial a}\mathbf{u}$ RHS difficult to obtain in closed form $\mathbf{K}\frac{\partial^{2}\mathbf{u}}{\partial a^{2}} = \frac{\partial^{2}\mathbf{r}}{\partial a^{2}} = \frac{\partial^{2}\mathbf{f}}{\partial a^{2}} - 2\frac{\partial \mathbf{K}\partial \mathbf{u}}{\partial a \partial a} - \frac{\partial^{2}\mathbf{K}}{\partial a^{2}}\mathbf{u}$ • <u>New residual approach</u>: $\mathbf{K}\frac{\partial \mathbf{u}}{\partial a} = -\mathrm{Im}_{\epsilon_{1}}[\mathbf{r}(\mathbf{u}, a + \epsilon_{1})]$ $\mathbf{K}\frac{\partial^{2}\mathbf{u}}{\partial a^{2}} = -\mathrm{Im}_{\epsilon_{1}^{2}}\left[\mathbf{r}\left(\mathbf{u} + \frac{\partial \mathbf{u}}{\partial a}\epsilon_{1}, a + \epsilon_{1}\right)\right]$

Advantages

- Non-intrusive postprocessing approach.
- Applicable to transient linear and non-linear problems.
- Parallelizable and memory efficient.
- Does not compute derivatives of tangent-stiffness matrix (which are costly)

Non-intrusive Residual Method

Generalized form:

 $\mathbf{r}(\mathbf{u}, a) = \mathbf{K}(\mathbf{u})\mathbf{u} - \mathbf{f} = 0$

• First order derivatives:

$$\mathbf{T}\frac{\partial \mathbf{u}}{\partial a} = -\mathrm{Im}_{\epsilon_1}[\mathbf{r}(\mathbf{u}, a + \epsilon_1)]$$

• Second order derivatives:

$$\mathbf{T}\frac{\partial^2 \mathbf{u}}{\partial a^2} = -\mathrm{Im}_{\epsilon_1^2} \left[\mathbf{r} \left(\mathbf{u} + \frac{\partial \mathbf{u}}{\partial a} \epsilon_1, a + \epsilon_1 \right) \right]$$

Efficient 3D ERR and Mode-I SIF sensitivities

- Analyzed a 3D penny-shaped crack problem with FEM (20 node bricks) to compute ERR and SIF.
- Displacements obtained using Abaqus.
- Methods: 1) HYPAD + VCE and 2) HYPAD + J-integral.
- Computed up to 3rd order derivatives of ERR and SIF to a, E, ν and σ (34 derivatives) with residual method.

Mesh Statistics	Elements	Nodes	Total DOFs
Fine mesh	175 098	718 376	2 155 128

Analytical solution of 3D Penny-shaped crack

 Analytic solution of ERR for Pennyshaped crack.

$$G = \frac{K_I^2}{\frac{E}{1 - \nu^2}} = 4(1 - \nu^2) \frac{\sigma^2 a}{\pi E}$$

- ERR has 27 Non-zero derivatives
- Results HYPAD + J-Integral:
 - ZFEM + residual → compute derivatives of u
 - ERR obtained with hypercomplex

Derivative Relative Error [%]		Derivative	Relative Error [%]	
		$\partial^3 \boldsymbol{G} / \partial a^3$		
G	0.016	$\partial^3 \boldsymbol{G} / \partial a^2 \partial E$		
∂ G /∂а	0.048	$\partial^3 \boldsymbol{G}/\partial a \partial E^2$	0.048	
∂ G /∂E	0.016	$\partial^3 \boldsymbol{G} / \partial E^3$	0.016	
a c /a	0.017	$\partial^3 \boldsymbol{G} / \partial a^2 \partial v$		
06/00	0.017	∂ ³ G /∂а∂Е∂v	0.341	
$\partial \boldsymbol{G}/\partial \sigma$	0.016	$\partial^3 \boldsymbol{G} / \partial E^2 \partial v$	0.017	
$\partial^2 \boldsymbol{G} / \partial a^2$		$\partial^3 \boldsymbol{G} / \partial a \partial v^2$	0.728	
22 C /2~2E	0.049	$\partial^3 \boldsymbol{G} / \partial E \partial v^2$	0.087	
$\partial^{-}\mathbf{G}/\partial a\partial E$	0.040	$\partial^3 \boldsymbol{G} / \partial v^3$		
$\partial^2 \boldsymbol{G} / \partial E^2$	0.016	$\partial^3 \boldsymbol{G} / \partial a^2 \partial \sigma$		
д² G /дадv	0.341	д ³ G /дадЕд <i></i>	0.048	
$a^2 c / a E a u$	0.017	$\partial^3 \boldsymbol{G} / \partial E^2 \partial \sigma$	0.016	
0 0/0200	0.017	<i>∂</i> ³ G /∂a∂ν∂σ	0.341	
$\partial^2 \boldsymbol{G} / \partial v^2$	0.087	<i>∂³G/∂Ε∂ν∂σ</i>	0.017	
$\partial^2 \pmb{G}/\partial a\partial\sigma$	0.048	$\partial^3 \boldsymbol{G} / \partial v^2 \partial \sigma$	0.087	
$\partial^2 \mathbf{G} / \partial F \partial \sigma$	0.016	$\partial^3 \boldsymbol{G}/\partial a \partial \sigma^2$	0.048	
		$\partial^3 \boldsymbol{G} / \partial E \partial \sigma^2$	0.016	
<i>д</i> ² G /дνдσ	0.017	$\partial^3 \boldsymbol{G} / \partial \nu \partial \sigma^2$	0.017	
$\partial^2 \boldsymbol{G} / \partial \sigma^2$	0.016	$\partial^3 \boldsymbol{G} / \partial \sigma^3$		

3D Penny-shaped crack – ERR Sensitivities

ERR analytic solution for Penny-shaped crack.

 $G = 4(1-\nu^2)\frac{\sigma^2 a}{\pi E}$

All derivatives below 1% relative error

34 derivs (4 first, 10 second and 20 third)

3D Penny Shaped crack – Performance results

- Implementation: Fortran + Python code run in a node with
 - 2x Intel(R) Xeon(R) Gold 6248 CPU (up to 40 cores)
 - 376 GB RAM
- Residual method approximately ~2X Abaqus real run
- Residual method scales well with parallelization.
- Each order of derivative adds around 7% CPU time.

Interaction integral (Overview)

Also known as M-integral- calculates the mutual energy release rate

$$M = \int_{A} \left(\sigma_{ij}^{\text{aux}} u_{j,1} q_{,i} + \sigma_{ij} u_{j,1}^{\text{aux}} - \sigma_{jk}^{\text{aux}} \varepsilon_{jk} q_{,1} \right) \mathrm{d}A,$$

• Used in the calculation of mixed-mode stress intensity factors.

$$M(u_{j,1}, u_{j,1}^{\mathrm{aux}}, \sigma_{ij}^{\mathrm{aux}}) = \begin{cases} M_I & \text{if } K_I^{\mathrm{aux}} = 1 \text{ and } K_{II}^{\mathrm{aux}} = 0, \\ M_{II} & \text{if } K_I^{\mathrm{aux}} = 0 \text{ and } K_{II}^{\mathrm{aux}} = 1. \end{cases}$$

 $K_I = \frac{E'}{2}M_I, \quad K_{II} = \frac{E'}{2}M_{II}, \quad \text{where } E' = \begin{cases} E & \text{for plane stress,} \\ E/(1-\nu^2) & \text{for plane strain.} \end{cases}$

2D mixed-mode stress intensity factor rates using a complex-variable interaction integral - dK/da

Applies ZFEM to the interaction integral.

A. Aguirre-Mesa*, S. Restrepo-Velasquez*, D. Ramirez-Tamayo, A. Montoya and H. Millwater, "Computation of two dimensional mixed-mode stress intensity factor rates using a complex-variable interaction integral," 277 (2023) Engineering Fracture Mechanics, <u>https://doi.org/10.1016/j.engfracmech.2022.108981</u>

Inclined Penny-Shaped Crack problem

• Parameters for the analysis were as follows*:

Parameter		Value		Parameter		Value
Crack Inclination	γ	45°		Veurermedulue	г	10.000
Crack longth	~	0 1 2 5		Young modulus	E	10 000
Clack length	7 0.123			Poisson's ratio		0.0
	l_{r}, l_{z}	5.0				4.0
Dimension	l_y	10.0		Far-field stress	σ	1.0
			_			

*Corresponds to benchmark problem 3 in Franc3D website.

• SIFs analytical solution (Murakami, 1987)

$$K_{I} = \frac{2\sigma}{\pi} \sqrt{\pi r} \sin^{2}(\gamma)$$
$$K_{II} = \frac{2\sigma}{\pi} \sqrt{\pi r} \sin(\gamma) \cos(\gamma) \sin(\theta) \frac{2}{2-\nu}$$
$$K_{III} = \frac{2\sigma}{\pi} \sqrt{\pi r} \sin(\gamma) \cos(\gamma) \cos(\theta) \frac{2(1-\nu)}{2-\nu}$$

Mesh Statistics	Wedge 15	Brick 20	Tetra 10	Total Elements	Nodes	Total DOFs
Value	2 360	14 160	111 374	127 894	228 814	646 442

Results for **ring 0** of elements – vertex perturbation (two slices).

- This ring contains only wedge15, two element slices.
- Computed using q-function for wedge vertex nodes.
 - Q-function linear in element, two slice span.
- Results show error of 0.284% to analytical solution.

First order derivatives

Third order derivatives

V

a,v,σ

- Elegant, straightforward method to compute G, K, and its derivatives with respect to crack size and any other parameter.
 - Promote variables to complex/hypercomplex.
 - Largely use the same/existing solution methods.
- Higher order derivatives are available.
 - Applicable to linear and nonlinear problems.
- Non-intrusive residual method very effective for 3D fracture.
 - Residual method approximately ~2X Abaqus real run

Acknowledgements

- Efficient Sensitivity Methods for Probabilistic Lifing and Engine Prognostics, Pat Golden, AFRL/RXLMN, Aug. 2007-Sep. 2010
- Efficient Finite Element-based 3D Fracture Mechanics Crack Growth Analysis using Complex Variable Sensitivity Methods, DoD PETTT, Sep. 2010 - Aug. 2011
- Implementation of Complex Variable Finite Element Methods in Abaqus, DOD PETTT, Sep. 2011- Aug. 2012
- Enhanced Fracture Mechanics Crack Growth Analysis using Complex Variable Sensitivity Methods, AFOSR (David Stargel), May 2011-2014
- Probabilistic Residual Stress Modeling, AFRL through Clarkson Aerospace, Sept. 2012 Dec. 2018
- A New Progressive Curvilinear Strain Energy-based Crack Growth Modeling Algorithm using Multicomplex Variable Finite Elements, Bill Nickerson, ONR, Sept. 2013-Sept. 2016
- Three Dimensional Fracture Mechanics Capability for Structures operating in High Temperature Thermal Environments, DoD, Aug. 2015-Aug. 2018.
- A Fast and Effective Sensitivity and Uncertainty Quantification Method for Additively Manufactured Metals, Aug. 2020 – July 2024, Michael Bakas, Army Research Office (ARO) grant W911NF2010315
- 3D Fracture Simulations using the Hypercomplex Finite Element Software, July 2020 Feb. 2024, Metis Design Corporation – Alan Timmons, NavAir SBIR Program (SBIR Phase II.5 N12-T007), Contract No. N68335-20-C-0858

