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Abstract 
     The tensor representation is an effective way to reconstruct the image from a 

finite number of projections, especially, when projections are limited in a small 
range of angles. The image is considered in the image plane and reconstruction 
is in the Cartesian lattice.  

       

     This paper introduces a new approach for calculating the splitting-signals of the 
tensor transform of the discrete image  f(xi, yj ) from a fine number of ray-
integrals of the real image  f(x,y). The properties of the tensor transform allows 
for calculating a large part of the 2-D discrete Fourier transform in the Cartesian 
lattice and obtain high quality reconstructions, even when using a small range 
of projections, such as [0, 30º) and down to [0, 20º). The experimental results 
show that the proposed method reconstructs images more accurately than the 
known method of convex projections and filtered back-projection. 
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Introduction 

 Image Reconstruction 

    Image reconstruction from projections is a mathematical process of producing 

an image of two-dimensional distribution (usually of some physical property) 

from estimates of its line-integrals along a finite number of lines of known 

locations. 

 

 

 

 

Object 

Pѳ(t) 
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 Limited-angle tomography 

Not possible to collect projection data 

over a complete angular range of 180º. 

 

Digital breast tomosynthesis, dental 

tomography, electron microscopy, etc. 

 

Reducing: scanning time, patient dose. 

 
Object 

Pѳ(t) 



Analytical Reconstruction 

  The mathematical problem of determination  

      of functions f(x, y) from an infinite set of  

      their line-integrals(projections) was  

      solved by Radon in 1917. 
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Sampled version of the inverse Radon transform 
 

Adapt Radon’s fundamental theory to the discrete model. 

The results are approximated and erroneous. 

),(),(),( yxfrflR   Figure 1. The geometry of projection by angle  

-(π/2-θ ) to the horizontal line. 

r 
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Figure 2. Diagram of Fourier slice theorem. 

2-D IFT 

Interpolation is required  

Cartesian lattice   

Polar grid 

 The main formula obtained in computerized tomography allow us to 

express the image in the form of the Fourier slice theorem. 
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 Tensor-transform based method 

 Based on the tensor representation of a two-dimensional image with respect to the 

Fourier transform.  

 Defines image as a set of one-dimensional(1-D) signals that split the Fourier 

transform into a set of 1-D transforms.  

 

 

 Methods based on the Fourier slice theorem 

 Interpolation is required 

 Filtered back-projection (FBP) methods  

 Computational efficiency and numerical stability 

 Reconstructions are not exact but approximations of the discrete images 
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 Proposed method 
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Image Model and Line-integrals 

 The image f (x,y) is considered in the discrete form fd (x,y) which has 

constant values inside small pieces or image elements (IE) of size 

(Δx)×(Δy) each, 
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 The discrete image is considered on the 

square grid 

     inside the region [0,1]×[0,1]. 
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Figure 3. Model of the Image 

on the 5x5 grid 

 The image can be considered in the matrix form 



 The line-integral along a ray l in the (n,m)-th IE is 

 

      where Δl= Δln,m is the length of the ray l in the (n,m)-th IE.  
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 The line-sum of the discrete image along the same ray is 
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Δl 



Image and Splitting-signals 

 The tensor representation of the image fn,m of size N×N is defined as a 

set of splitting-signal of length N. 
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 The components of these signals are calculated as the sum of the 

image along parallel lines. 
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 One can construct different sets JN,N, 

however, their cardinalities are equal. 
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Figure 4. Irreducible covering σ4,4. 
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Figure 5. Irreducible covering σ5,5 
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 The value of the 2-D DFT of the image at frequency-points of the group 

Tp,s: 
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The image fn,m of size N×N, where N is a power of 2, can be composed 

splitting-signals as follows: 

 

 

 

where we denote t = t(2kp,2ks;n,m) = (n2kp,m2ks)mod N. All components 
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k
s,t in this equation can be calculated using the following recursive 

formula: 
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 In other words, these components can be calculated from 3N/2 splitting-signals 
fTp,s generated by the frequencies (p, s). 

 

 

 Each image is the direction image with N values of the splitting-signal  fTp,s , 
which are located along the parallel lines (np +ms) mod N, which pass through 
the knots of the lattice. 

dn,m = fp,s,(np+ms) mod N,      n,m = 0 : (N − 1), 

Figure 6. (a) The 256×256 image, (b) splitting-signal {f2,1,t; t=0:255},  and (c) the 

corresponding direction image. 

 

 



Incomplete Set of Projections 
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 Equivalent sets of angles 

    The complete set of angles: }),(;)/{arctan( ,NNN Jspps 
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Figure 7. Sets of angles of projections at (a) 45˚, (b) 60˚, and (c) 90˚. 

Generators and angles for (2k + 1)(p, s)-projections, when (p, s) = (1, 2). 

Equivalent sets of angles that are close to 45º, 60º, and  90º.  



 Intersection between subsets Tp,s: 

   (p,s)=(1,1) and (p,s)=(1,9) 
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Figure 8. The covering of the 2-D DFT for (a) (1,1)-projection, (b) (1,9)-projection 

 (c) (1,2)-projection, (d) (1,10)-projection 

(c) (d) 



 Removal of the first 2 projections and 5 projections 

 

 

 

 

 

Grids in frequency 

domain 

 Cartesian lattice and polar grid 
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Ray-integrals and Ray-sums 
 Example : Image reconstruction on the lattice 8×8. 

 
I. (p, s)=(2,1)-projection 
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I. (p, s)=(2,1)-projection 
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I. (p, s)=(2,1)-projection 
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Preliminary Results 
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Figure 9. Original image on the lattice 256×256, and reconstruction by projections 

with the angles within the range of  (b) [0, 30˚) and  (c) [0, 20˚). 

Limited-angle range image reconstruction ( Tensor transform)  
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(a) (b) (c) 

Figure 10. Original image on the lattice 256×256, and reconstruction by projections 

with the angles within the range of (b) [0, 30°) and (c) [0, 20°).  

30° 
20° 



Comparison with Projections onto Convex sets 
(POCS) method 

 Projection onto Convex sets (POCS) 

 known as alternating projection method 

 Iterative algorithm. 

 

 

 

 Relax algorithm 
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incomplete view data by convex projections and direct Fourier method.”   



 Projection operators 

Projection P1 
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         Comparison 
Limited-angle range image reconstruction  

( by POCS ): 

Angle range: [−45°, 45°]   

Figure 11. (a,d) Original images and reconstructions by the POCS algorithm, when the 

projection data are limited to [−45°, 45°] after (b,e) 30 and (c,f) 300 iterations. 

45° 

-45° 

45° 
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Angle range: [−30°, 30°] 

Comparison 

(a) 

(b) (f) 

(d) 

(c) (e) 
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Tensor 
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Comparison 
Angle range: [−20°, 20°] 

(b) (c) (e) (f) 

(a) (d) 

Tensor 

20° 

POCS 

20° 

-20° 



Noise Effect 

 Noise of the projection data 

Follows approximately a Gaussian distribution 

Additive Gaussian noise with a distribution 

Signal independent 

 

 Quantitatively Evaluation 

    Reconstruction signal-to-noise ratio (SNR) 

 

31 

 2,0 N























1

0

1

0

2

,,

1

0

1

0

2

,

10

)ˆ(

)(

log10
N

n

N

m

mnmn

N

n

N

m

mn

ff

f

SNR

mnf , :  Reference image- noise free Reconstruction  

mnf ,
ˆ

:  Noisy Reconstruction  



 Image reconstructions from limited angular range ([0,30°)) 
projections with Gaussian noise with mean 0 
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Figure 11. Image reconstructions from limited angular range projections with Gaussian noise with 

mean 0 and standard deviation  (a) 0.01, (b) 0.025, (c) 0.05, and (d) 0.1. 
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Figure 12. Phantom mage reconstructions from limited angular range projections with Gaussian 

noise with mean 0 and standard deviation  (a) 0.01, (b) 0.025, (c) 0.05, and (d) 0.1. 



Conclusion 

34 

    A novel approach for reconstructing the discrete image on the Cartesian lattice 
from a finite number of projections of the image is applied. This approach is 
based on the tensor transform and an idea of transferring the geometry of 
integrals from the image space to the Cartesian lattice. All line-integrals over 
f(x,y) image can be used for exactly calculating line-sums of the discrete 
image  fn,m defined in the Cartesian lattice and the tensor transform of the 
image as the sum of direction images. The parallel beam scanning scheme is 
described and the reconstruction is exact.  

 

    Preliminary results show good results of image reconstruction when the 
angular range is 30º and down to 20º. The proposed method is also analyzed 
for the noisy projection data. The preliminary results show that the proposed 
method of reconstruction is robust relative to an additive signal-independent 
noise. 
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