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Abstract 

     In this paper, we present a novel concept of the quaternion discrete Fourier 

transform on the two-dimensional hexagonal lattice, which we call the two-

dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). 

The concept of the right-side 2D HQDFT is described and the left-side 2-D 

HQDFT is similarly con sidered.  

     We analyze and present a new approach in processing the color images in the 

frequency domain, which is based on the tensor representation of color images.  

•  In color tensor representation on the hexagonal lattice, three components of the 

image in the RGB space are described by one dimensional signal in the 

quaternion algebra. The representation is effective and allows us to process the 

color image by 1-D quaternion signals which can be processed separately. 

• The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier 

transforms (QDFT) of the splitting-signals. 

 The tensor transform-based 2-D QDFT is simple to apply and design, which 

makes it very practical in color image processing in the frequency domain. 
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Inroduction – Quanterions in Imaging 

  The quaternion can be considered 4-dimensional generation of a complex number with 

one real part and three imaginary parts. 

      Any quaternion may be represented in a hyper-complex form 

                      q = (a + bi) + (c + di)j = a + bi + cj + dk = a + (bi + cj + dk), 

     where a, b, c, and d are real numbers and i, j, and k are three imaginary units with the 

following multiplication laws: 

              ij = −ji = k,  jk = −kj = i,   

              ki = −ik = −j,  i2 = j2 = k2 = ijk = −1.  
 

 The commutativity does not hold in quaternion algebra, i.e.,  q1q2≠q2q1.  

 A unit pure quaternion is  μ=iμi+jμj+kμk  such that |μ| = 1, μ2 = −1. 

    For instance, the number μ=(i+j+k)/√3,  μ=(i+j)/√2,  μ=(i-k)/√2, and μ=-k. 

 The exponential number is defined as (when μ2 = −1) 

          exp(μx) = cos(x) + μ sin(x) = cos(x) + iμi sin(x) +jμj sin(x) +kμk sin(x). 
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RGB Model for Color Images 
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 A discrete color image fn,m in the RGB color space can be transformed into 
imaginary part of quaternion numbers form by encoding the red, green, and blue 
components of the RGB value as a pure quaternion (with zero real part):   

                                               fn,m = 0 + (rn,mi + gn,mj + bn,mk)  

 

 

 

 

  

 
  
     Figure 1: Transformation of the RBG color cube into the quaternion space. 

 

 The advantage of using quaternion based operations to manipulate color 
information in an image is that we do not have to process each color channel 
independently, but rather, treat each color triple as a whole unit. 



Model of color images 

 A quaternion number has four components, a real part and three imaginary parts, which 

naturally coincides with the three components, R(ed), G(reen), and B(lue) of a color 

pixel for 2-D images. Therefore, a discrete color image fn,m in the RGB color space can be 

transformed into imaginary part of quaternion numbers form by encoding the red, 

green, and blue components of the RGB value as a pure quaternion (with zero real part): 
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In quaternion imaging, each color triple is treated as a whole unit38 and new 

operations and methods in quaternion space may result in effective methods in color 

image processing, such as enhancement and filtration. We also can consider the 

quaternion image with the real part equal to the gray-image as 

where fn,m is the gray-scale image calculated by   fn,m =(rn,m + gn,m + bn,m )/3,  or the 

image describing the brightness of the color image   



The right-side 2-D QDFTs 

 The generalized quaternion Fourier transform of the quaternion image qn,m is defined as  
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where the basic functions of the transform are 

The 2-D QDFT is parameterized, i.e., is based on the choice of the unit pure quaternion μ. 

Such quaternion numbers are located on the unit sphere μ1
2+μ2

2+μ3
2=1 in the 3-D space.  

•  The special cases when μ =i,j, and k lead to the traditional complex 2-D DFT. The diagonal in 

the color cube in the RGB model corresponds to the gray-level and the value of μ equal 

(i+j+k)/√3 can be considered as a vector (1,1,1)/√3 in this direction.  

•  It should be noted, that the right-side 2-D QDFT is not separable, since the multiplication of 

quaternion does not posses the commutativity and for the basic functions we have 

for many (p,s). 



Tensor Representation of the regular 2-D DFT 

     Let  fn,m be the gray-scale image of size N×N.  

  The tensor representation of the image fn,m is the 2D-frequency-and-1D-time represen-

tation when the image is described by a set of 1-D splitting-signals each of length N 
 

 

 

8 

The components of the signals are the ray-sums of the image along the parallel lines 

The components of the spliting-signal {fp,s,t =fp,s(t); t=0:(N-1)} are numbered by the 

frequency-point (p,s)  and time t.  

 

The set of splitting-signals defines uniquely the image, in other words, the image can 

be calculatded by splitting-signals.  



Tensor Representation of the regular 2-D DFT 
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 Each splitting-signals {fp,s,t =fp,s(t); t=0:(N-1)} defines 2-D DFT at N frequency-

points of the set   

on the cartesian lattice    

The 1-D DFT of the splitting-signal equals the 2-D DFT of the image fn,m at N 

frequency-points of the set Tp,s, i.e.,      

Each such set contains N points in the Cartesian lattice if (p,s) is not (0,0). The subsets 

cover the lattice with minimum number of intersections. For instance, when N is a 

power of two, this set contains 3N/2 generators and can be defined as 



Example: Tensor Representation of the right-side 2-D DFT 

1-D splitting-signal of the tensor representation of the image 1024×1024 
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Figure 2. (a) The image, (b) the splitting-signal for the frequency-point (6,1), (c) the 1-D 

DFT of the splitting-signal, and (d) the 2-D DFT of the image with the frequency-points 

of the subset T6,1. (The DFTs are shown in the absolute scale and shifted to the middle.). 



Example: Tensor Representation of the right-side 2-D DFT 
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Figure 3. (a) The image 127×127, (b) the splitting-signal for the frequency-point (4,1), (c) 

its 1-D DFT, and (d) the 2-D DFT of the image with the frequency-points of the subset 

T4,1. (The DFTs are shown in the absolute scale and shifted to the middle.). 

In the N prime case, the number of such splitting-signals equals (N+1) of length N each. 



Example: Tensor Representation of the 2-D QDFT 
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Figure 5. (a) The real part and (b) the imaginary part of the 2-D QDFT of the 

2-D color-in-quaternion girl image.  

Figure 4. (a) The 1-D QDFT the quaternion  splitting-signal q1,4,t (in absolute scale), and 

(b) the location of 1223 frequency-points of the set T1,4 on the Cartesian grid, wherein 

this 1-D QDFT equals the 2-D QDFT of the quaternion image of size 1223×1223.  

μ=(i+2j+k)/√6 



The 2-D Quaternion Hexagonal DFT 

 Consider the hexagonal lattice of size 2N×N:        
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The 2-D HDFT of the quaternion image qn,m is defined as 

where                                   for all integer s=0:(N−1). For even s, [s]=0, and [s]=0.5 for 

odd s. Each second row of knots in the lattice is shifted by 0.5. 

The kernel of the transform is composed by the quaternion exponential functions 

The basic functions are not separable and the traditional row-column method cannot be 

applied directly for computing 2-D HDFT.   The lattice of size 2N×N is the fundamental 

period of the 2-D DHFT not the hexagonal lattice of size N×N, i.e., Q(p+2N)+[s+N],s+N = 

Qp+[s],s for any integer p and s.  



Tensor Representation of the 2-D Quaternion HDFT 

The quaternion “image”, i.e., the set of four images in the quaternion space, 

 

where fn+[m],m, rn+[m],m, gn+[m],m, and bn+[m],m are images on the lattice, which are not necessary 

to be related to the red, green, and blue components of the image in the RGB color model. 

We define the following subsets of frequency-points on the hexagonal lattice: 
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where the operation     denotes the l mod(2N) or l mod(N), depending of the dimension. 



Tensor Representation of the 2-D QHDFT 

Given frequency-point (p+[s],s) in the hexagonal lattice X2N,N and integer 4t in [0,4N−1], 

we consider in the lattice the subsets of knots on the parallel lines, 
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and the following components of the splitting-signal generated by the frequency: 

of length N, 2N, or 4N, depending on the frequency-point (p+[s],s) and values of N. 

The index t varies from 0 through N with step ∆=1/4 or 1/2. This 4-D signal is 

calculated component-wise as  



The Tensor Representation of The Quaternion Image  

on the Hehagonal Lattice 
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Statement:    The 1-D quaternion DFT of the splitting-signal qn+[m],m equals the 2-D 

quaternion HDFT of the image at the frequency-points of the subset Tp+[s],s, i.e.,  

where k is an integer.   

If we construct an irreducible covering of  hexagonal lattice X2N,N composed of the 

subsets T,  
 

for a certain subset of frequency-points J of the latice X2N,N, then the 2-D QHDFT 

will be split by the 1-D DFTs of the quaternion splitting-signals. 



The Tensor Representation of The Quaternion Image 
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 In the N=2r case, the number of elements of subsets Tp1+[s],s shows that the 2-D 

QHDFT is split by the 1-D QDFT which has the following order M: 

For instance, when N=4, we can consider the following set of generators: 

The subset T1,0 has eight elements, and therefore the 8-point QDFT is used for the 

quaternion splitting-signal {q1,0,t; t = 0, 0.5, 1, 1.5, . . . , 3.5}.  

The next two subsets, T0.5,1 and T1.5,1 have 16 elements each. Therefore, the 16-point 

QDFT is used for each of the corresponding quaternion splitting-signals to fill the 2-D 

8×4-point QHDFT at frequency-points of these subsets. At frequency-points of 

subsets T2,2, T0,2, and T4,2 the 8×4-point QHDFT is calculated by the the 4, 4, and 4-

point QDFTs, respectively. 



The Tensor Representation of The Quaternion Image 
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 N=4 case. The subsets T with these generators are the following: 

One can notice, that the subsets have intersections at many frequency-points (p+[s], 

s) with s = 0 and 2. The redundancy of the tensor algorithm at these intersection can 

be removed by the method of paired transforms which is described in [1,2]. For the 

N = 8 case, such set is  



Conclusion 
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 We  presented a new concept of the 2-D quaernion DFT on the hexagonal 
lattice. 

 The 2-D right-side hexagonal quaternion discrete Fourier transform (HQDFT) 
is described in the tensor representation in the quaternion algebra wherein the 
color image can be transformed from different color models, such as RGB and 
XYZ.    

 The color and quaternion images on the hexagonal lattice can uniquely be 
described by a set of quaternion splitting-signals which allow to calculate the 2-
D right-side HQDFT by a minimum number of 1-D right-side QDFTs.  

  The tensor representation is revealing the structure of both right- and let-side 
2-D HQDFT and allows for transferring the processing of color and quaternion 
images through 1-D splitting-signals.  

 The concept of the 2-D left-side hexagonal quaternion DFT is similarly defined 
and can be described by the same tensor representation.  
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