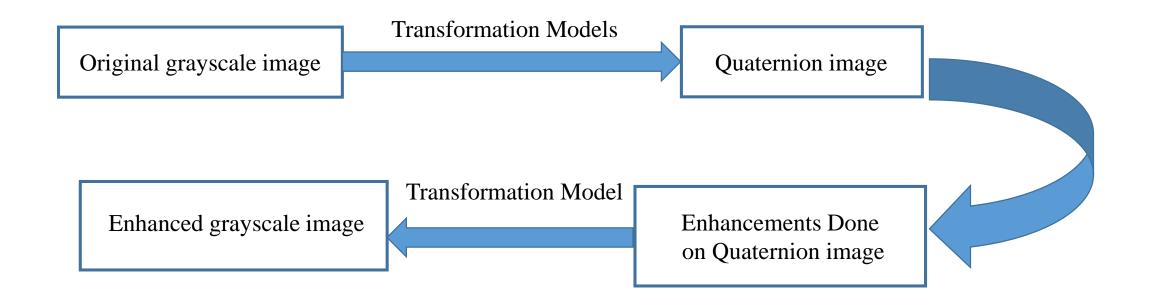
Quaternion Alpha-Rooting Image Enhancement of Grayscale Images

Artyom M. Grigoryan^a, Aparna John^a, Sos S. Agaian^b

^aDepartment of Electrical and Computer Engineering The University of Texas at San Antonio, San Antonio, Texas, USA, and

^bComputer Science Department, College of Staten Island and the Graduate Center, Staten Island, NY, USA

amgrigoryan@utsa.edu, aparna.john@utsa.edu, sos.agaian@csi.cuny.edu


OUTLINE

- Introduction
- Transformation Models
- Quaternion Alpha-rooting Method
- Enhancement Measure Estimation (EME)
- Experimental Results
- Summary
- References

Abstract

- The proposed method is a novel image enhancement for grayscale images.
- In this method, the grayscale image is transformed first to quaternion image and then the enhancement algorithm, quaternion alpha-rooting, is applied to the quaternion image.
- This paper also makes a comparative study of image processing on grayscale images by quaternion alpha-rooting method and direct alpha-rooting method.
- The enhancement is quantitatively measured by the metric called the enhancement measure estimation (EME).
- SNR and MSE values of the resulting images are also determined.

Enhancement Method

Transformation Models

2×2 model

	Gray (n,0)	Gray (n,1)	Gray (n,2)	Gray (n,3)	
Gray (0,m)	Q1(0,0)	Q2(0,0)	Q1(0,1)	Q2(0,1)	•••
Gray (1,m)	Q3(0,0)	Q4(0,0)	Q3(0,1)	Q4(0,1)	•••
Gray (2,m)	Q1(1,0)	Q2(1,0)	Q1(1,1)	Q2(1,1)	
Gray (3,m)	Q3(1,0)	Q4(1,0)	Q3(1,1)	Q4(1,1)	
			•••	•••	

Quaternion Alpha-Rooting Method

• In the Quaternion Alpha-rooting method of image enhancement, for each frequency point (p,s), the magnitude of the Quaternion Discrete Fourier transform are transformed as

$$|F_{p,s}| \rightarrow |F_{p,s}|^{\alpha}$$
, $\alpha \in (0, 1)$.

- By alpha-rooting method, the magnitude of the transform co-efficient are reduced exponentially by alpha.
- The modified high frequency and low frequency transform co-efficient provides image enhancement in both the edges and smooth surfaces.
- The optimum choice of alpha for is the alpha which gives the best visual perception. The alpha that has the maximum EME is optimum alpha.

Enhancement Measure Estimation (EME)

•
$$f \to \hat{f}$$

•
$$EME_{\alpha}(\hat{f}) = \frac{1}{k_1k_2} \sum_{k=1}^{k_1} \sum_{l=1}^{k_2} 20 \log_{10} \left[\frac{\max_{k,l}(\hat{f})}{\min_{k,l}(\hat{f})} \right]$$

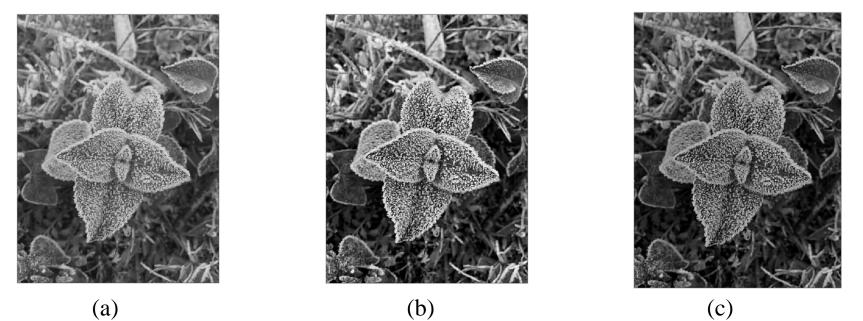


Figure 1: (a) Original image "Snow on Leaves.jpg"; (b) Quaternion Alpha-rooting (alpha = 0.92); (c) Direct Grayscale Alpha-rooting (alpha = 0.93).

Image "Snow on Leaves.jpg	Enhancement Method	Alpha	EME	SNR	MSE	Time Elapsed (Seconds)
	Quaternion Alpha- Rooting	0.92	25.1154	8.8886	991.47	4.9158
	Direct Grayscale Alpha- Rooting	0.93	25.0611	2.8643	2047.65	9.0271

Experimental Results -1 (contd) – Choosing best Alpha

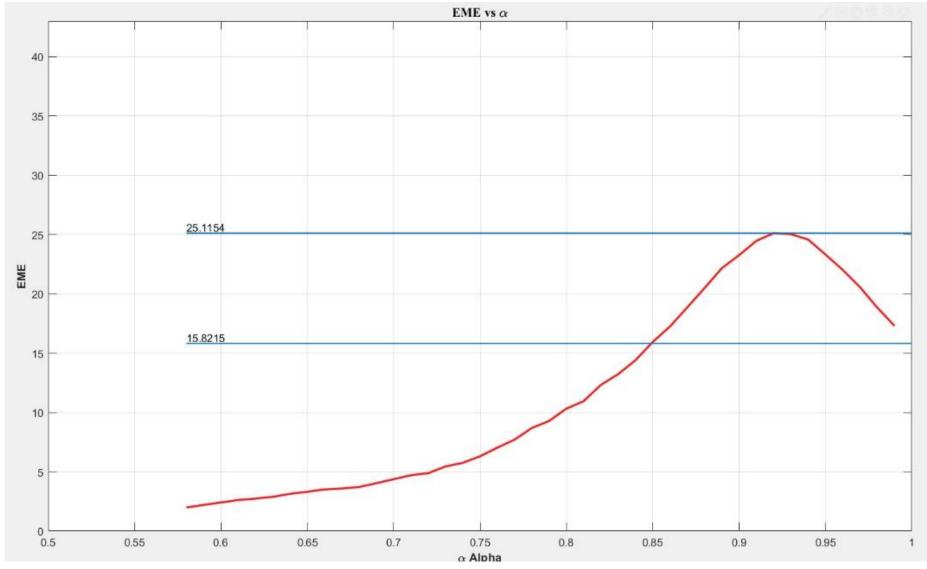


Figure 2: EME vs alpha of Quaternion Alpha-rooting (Snow on Leaves.jpg)

(a) (b) (c) Figure 3: (a) Original image "Platform RP.jpg"; (b) Quaternion Alpha-rooting (alpha = 0.97); (c) Direct Grayscale Alpha-rooting (alpha = 0.97).

Image "Platform RP.jpg	Enhancement Method	Alpha	EME	SNR	MSE	Time Elapsed (Seconds)
	Quaternion Alpha- Rooting	0.97	17.3439	63.37	210.41	6.1608
	Direct Grayscale Alpha-Rooting	0.97	17.0455	2.22	2654.17	14.7279

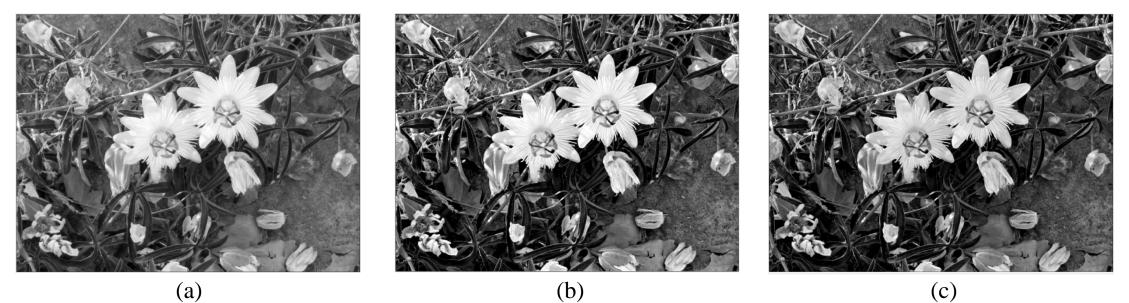


Figure 4: (a) Original image "White Flower.jpg"; (b) Quaternion Alpha-rooting (alpha = 0.92); (c) Direct Grayscale Alpha-rooting (alpha = 0.92).

Image "White Flower.jpg	Enhancement Method	Alpha	EME	SNR	MSE	Time Elapsed (Seconds)
	Quaternion Alpha- Rooting	0.92	14.9033	7.58	1219.01	16.9903
	Direct Grayscale Alpha-Rooting	0.92	14.9816	5.07	1585.01	52.1153

(a) (b) (c) Figure 5: (a) Original image "Platform Fence.jpg"; (b) Quaternion Alpha-rooting (alpha = 0.96); (c) Direct Grayscale Alpha-rooting (alpha = 0.97).

Image "Platform Fence.jpg	Enhancement Method	Alpha	EME	SNR	MSE	Time Elapsed (Seconds)
	Quaternion Alpha- Rooting	0.96	20.4245	32.17	518.49	6.1505
	Direct Grayscale Alpha-Rooting	0.97	20.1653	2.11	3725.33	15.4689

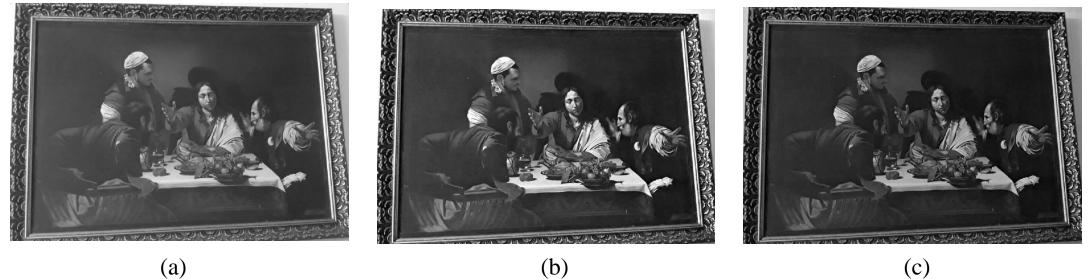


Figure 6: (a) Original image "Journey to Emmaus.jpg"; (b) Quaternion Alpha-rooting (alpha = 0.93); (c) Direct Grayscale Alpha-rooting (alpha = 0.93).

<section-header><section-header></section-header></section-header>	Enhancement Method	Alpha	EME	SNR	MSE	Time Elapsed (Seconds)
	Quaternion Alpha- Rooting	0.93	13.5407	8.49	1431.30	8.6243
	Direct Grayscale Alpha-Rooting	0.93	13.2209	2.10	3539.45	18.0678

Summary

- The transformation of the grayscale image into quaternion image helps in using quaternion based enhancement algorithms.
- The proposed image processing method enables us to transform a grayscale image to 3-4 channel image.
- EME values are used to select the optimum alpha.
- The proposed method shows good enhancement image results. The SNR and MSE values of the proposed images are better than the images enhanced by direct application of the alpha-rooting method.

References

1. A.M. Grigoryan, S.S. Agaian, *Practical Quaternion and Octonion Imaging With MATLAB*, SPIE PRESS, 2018.

2. A. M. Grigoryan, A. John, S. S. Agaian, "A Novel Color Image Enhancement Method by the Transformation of Color Images to 2-D Grayscale Images", p16, International Journal of Signal Processing and Analysis (2017)..

3. ...