
1

ART code II: Lossless Encoding Based
on Redistribution of Statistics

Artyom M. Grigoryan
amgrigoryan@utsa.edu

The calculation of codeword lengths is based on construc-
tion of a new source with statistics that is determined by
the consecutive redistribution of the probabilities of sym-
bols in accordance with their original probabilities at each
stage of the encoding.

Notes for class 4663 from the presentation in the International IEEE confer-
ence ITCC-2003



2

1. We construct an optimal coding set for an-
other source

Am = {a1, a2, ..., am} → Bm = {b1, b2, ..., bm}
with statistics different from Am.

2. The set of codeword lengths for bi is used
for encoding the letters ai, moreover, we may
consider that

c(ai) = c(bi), i = 1 : m.

1. To start, we sort the letters of the alphabet
Am in descending order of their probabilities
and consider p1 ≥ p2 ≥ ... ≥ pm. For a new
alphabet Bm, we first assign the probabilities
p′i = pi to the letters bi.
2. On each stage of the algorithm, the proba-

bilities p′i of the letters bi will be renewed, and
we will use the notation p′i;new when it will be
necessary.



3

3. After encoding each following letter bi by
a codeword c(bi) of length l̄i bits, we consider
that the letter bi has a probability equal to

p̄i =
1

2l̄i
.

4. If the difference of probabilities is not zero

Di = p′i − p̄i 6= 0

the difference is transferred to the rest (m −
i) letters bi+1, bi+2, ..., bm in accordance with
probabilities of letters ai+1, ai+2, ..., am.

Probabilities of these letters are considered to
be equal to

p′i+k;new = p′i+k+
Di
∑

k>i
pk

·pi+k, k = 1 : (m−i).



4

It is obvious that p′i+1 ≥ p′i+k, k = 2 : (m−i).

The value p′i+1 will be considered next. Since
the probability of symbol bi+1 has been recounted,
the new length for this symbol is calculated as

l′i+1 = log2
1

p′i+1
= [l′i+1]−mi+1, 0 ≤ mi+1 < 1

and l̄i+1 = [l′i+1] bits are assigned for encoding
the letter bi+1 and its probability will be there-
fore considered equal

p̄i+1 =
1

2l̄i+1
. (1)

In a similar way, the remainder Di+1 = p′i+1−
p̄i+1 of the probability is distributed between
the rest (m − i − 1) letters. As a result, we
obtain the following optimal source coding set
with the entropy ratio

ε̄ =
m∑

i=1

{

ε̄i = p̄il̄i
}

=
m∑

i=1
p̄i log2

1

p̄i

and p̄1 + ... + p̄m = 1.



5

Example 1: The letters of the alphabet

A5 = {a5, a4, a3, a2, a1}.
are taken in ascending order of their probabili-
ties P = {0.1, 0.1, 0.2, 0.2, 0.4}. (We can change
the order and begin from the symbol a1.)

Step 1: Letter is a5, p5 = 0.1

l′5 = − log2 p5 = 3.32193 → [l′5] = 4bits

Thus, we consider the probability of the letter
a5 is considered to be

p̄5 =
1

2l̄5
=

1

16
= 0.0625.

The difference of probabilities

D5 = p5 − p̄5 = 0.1 − 0.0625 = 0.0375 (2)

will be redistributed to the rest for symbols pro-
portional to their probabilities. Then we con-
tinue encoding the next symbol a4 and so on.



6

p′5 = p̄5 = 0.0625
p′4 = 0.1 + (D5/0.9) · 0.1 = 0.1 + 0.0042 = 0.1042
p′3 = 0.2 + (D5/0.9) · 0.2 = 0.2 + 0.0083 = 0.2083
p′2 = 0.2 + (D5/0.9) · 0.2 = 0.2 + 0.0083 = 0.2083
p′1 = 0.4 + (D5/0.9) · 0.4 = 0.4 + 0.0167 = 0.4167

Stage 1

A5 pi Di p′i ε̃i li l̄i
a5 0.1 0.0375 0.0625 = p̄5 0.4 3.3 4
a4 0.1 +1/9· 0.1042
a3 0.2 +2/9· 0.2083
a2 0.2 +2/9· 0.2083
a1 0.4 +4/9· 0.4167

Stage 2.
A5 pi p′i Di p′k;new ε̃i l′i l̄i
a5 0.1 0.03750 0.0625 0.4 3.3 4
a4 0.1 0.1042 0.04167 0.0625 0.4 3.3 4
a3 0.2 0.2083 +1/4· 0.21875
a2 0.2 0.2083 +1/4· 0.21875
a1 0.4 0.4167 +1/2· 0.43750



7

Stage 3.

A5 pi p′i Di p′k;new ε̃i l′i l̄i
a5 0.1 0.03750 0.0625 0.4 3.3 4
a4 0.1 0.04167 0.0625 0.4 3.3 4
a3 0.2 0.21875 0.09375 0.1250 0.6 2.2 3
a2 0.2 0.21875 +1/3· 0.25
a1 0.4 0.43750 +2/3· 0.5

Stage 4.

A5 εi pi Di p̄i ε̃i l′i l̄i
a5 0.33219 0.1 0.03750 0.0625 0.4 3.3 4
a4 0.33219 0.1 0.04167 0.0625 0.4 3.3 4
a3 0.46439 0.2 0.09375 0.125 0.6 2.2 3
a2 0.46439 0.2 0 0.25 0.4 2 2
a1 0.52877 0.4 0 0.5 0.4 1 1

The corresponding source coding set is

A′ = {A5, (0.1, ε5, 4), (0.1, ε4, 4), (0.2, ε3, 3),

(0.2, ε2, 2), (0.4, ε1, 1),
˜
l}.

The rate of the coding is
˜
l = 2.20bit/symbol.



8

The variance is σ(
˜
l) = 0.58652, and the redun-

dancy is calculated as

R =
˜
l − ε =

5∑

i=1
pi

(

l̄i + log pi
)

= 0.07807.

Shannon-Fano algorithm for coding bi:

Table 7.

B5 p̄i step1 step2 step3 step4 c(bi)
b5 1/16 II 1111
b4 1/16 II I 1110
b3 1/8 II I 110
b2 1/4 II I 10
b1 1/2 I 0

The obtained codewords will be used for A5.
Thus, we consider c(a5) = 1111, c(a4) = 1110,

c(a3) = 110, c(a2) = c(b2) = 10, and c(a1) = 0.



9

Example 2: We consider an alphabet that con-
sists of three letters,

A3 = {a1, a2, a3}
with the probability data

{p1, p2, p3} = {0.8, 0.18, 0.02}.
The entropy of A3 is ε = 0.81573bit/symbol.
The following table shows the above algorithm

for encoding A3 :

Table 8.

A3 εi pi Di p̄i l′i l̄i
a1 0.25754 0.80 0.30 0.50 0.3 1
a2 0.44531 0.18 0.20 0.25 1.2 2
a3 0.11288 0.02 0 0.25 2.0 2

The rate of the coding
˜
l = 0.8 · 1 + 0.18 · 2 +

0.02 ·2 = 1.20bit/symbol , and the redundancy
for the coding is R = 0.38427bit/symbol.



10

Example 3: Consider the alphabet A9 of nine
letters, which is the extended alphabet com-
posed by all groups of two letters of the alphabet
A3 considered above.
The probability data and the outputs of the

proposed algorithm for encoding A9:

Table 9.
A9 pi εi Di p̄i l′i l̄i
a1 0.6400 0.41207 0.14000 0.5 0.6 1
a2 0.1440 0.31143 0.07500 0.125 2.3 3
a3 0.1440 0.23105 0 0.250 2.0 2
a4 0.0324 0.09608 0.25000 0.03125 4.2 5
a5 0.0160 0.06329 0.00663 0.03125 4.7 5
a6 0.0160 0.06280 0.01112 0.03125 4.6 5
a7 0.0036 0.02131 0.00699 0.00781 6.1 7
a8 0.0036 0.02105 0.00547 0.01563 5.6 6
a9 0.0004 0.00305 0.00391 0.00391 7.0 7

(
˜
l = 1.73160) − (ε = 1.63145) = 0.10015

and variance σ(
˜
l) = 1.15467.



11

It should be noted for comparison that the
Huffman code results in codewords with the se-
quence of length

LH = {1, 3, 2, 4, 5, 6, 7, 8, 8}.
The Huffman code yields the better coding than
the proposed algorithm, in terms of the minimal
average codeword length, which is

˜
lH = 1.72280bit/symbol <

˜
l = 1.73160

but the variance of the Huffman code σ(
˜
lH) =

1.32919 is greater than variance σ(
˜
l) = 1.15467

of the proposed code.
By starting with symbol a9, we can reduce the

minimal average codeword length as the Huff-
man code does.
The both codes are optimal, and for them the

following equality holds

9∑

i=1
2−l̄i =

∑


2
−Li; Li ∈ LH , i = 1 : 9



 = 1.



12

Conclusion

The proposed manageable algorithm is a conse-
quent procedure for encoding the symbols from
a alphabet which probability data is known.

The encoding is reduced to encoding another
alphabet of letters whose probabilities are re-
distributed between letters which already have
been encoded and rest part of letters to be en-
coded.

The procedure is very simple in the standpoint
of calculation and reduces the problem of en-
coding to the problem of finding the optimal
lengths for codewords.

The example of the MATLAB©R-based program
for computing codewords is given below.



13

% gen_code.m file of program for MATLAB 5

% To generate codewords of given lengths, L,

% that are sorted in the ascending order

%

% (C) Copyright 2003, Serkan Dursun, EE UTSA

%

function C=gen_code(L)

L=sort(L);

N=length(L);

C=cell(N,1); % space for codewords

same = sum(L == L(1)) == length(L);

w(1)=0;

for j=2:N

w(j)=2^L(j)*sum(2.^-L(1:j-1));

end;

if same

C = dec2bin(w);

else

C{1}=dec2bin(w(1),L(1));

for j=2:N

if ceil(log2(w(j))) == L(j)

C{j} = dec2bin(w(j),L(j));

else

C{j} = strcat(dec2bin(w(j),2),...

dec2bin(0,L(j)-...

length(dec2bin(w(j),2))));

end;

end;

end;

% Example:

% L=[1 2 3 4 4];

% C=gen_code(L)’

% ’0’ ’10’ ’110’ ’1110’ ’1111’


