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. . .

A new technique for optimally encoding a given

source, statistical properties of which are de-

scribed by the first-order model is introduced.

The calculation of a minimum length of code-

words is based on the consecutive redistribu-

tion of the self-information of symbols in ac-

cordance with their probabilities at each stage

of the encoding.

The proposed method performs equally well for

an arbitrary order of symbol probabilities.

While codewords are generated by a separate

combinatorial procedure, the overall computa-

tional cost of the proposed method is lower

than that for the Huffman code.
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. . .

For a given alphabet Am = {a1, a2, ..., am} of

letters ai, i = 1,2, . . . , m > 1, which have prob-

abilities pi > 0, and for which p1+ . . .+pm = 1,

the entropy rate of Am is

ε =
m∑

i=1

εi =
m∑

i=1

pi log2
1

pi
, εi = pi log2

1

pi

where εi denotes the self-information of ai.

li = log
1

pi
bits must be assigned to ai.

Since only integer numbers of bits are taken,

a difference di may occur between the actual

number li and rounded integer value [li],

li = log2
1

pi
= [li] − di , [li] = 1, . . . , 0 ≤ di < 1.
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. . .

Letters of the alphabet Am are arranged in de-

scending order of their probabilities. Starting

with a letter a1, a length

[l1] = [ log
1

p1
]

of the codeword c(a1) for a1 is calculated.

The difference D1 of the self-information of

the codeword and letter a1

D1 = ε̃1 − ε1 = [l1]p1 − ε1

is distributed among the remaining letters a2, a3,
. . . , am in proportion to their probabilities.

If D1 = 0 (or l1 = [l1]), then a2 is processed.

If D1 6= 0, the self-information of the rest let-

ters are calculated as

ε′k+1 = εk+1 −
D1∑

n>1

pn
· pk+1, k = 1 : (m − 1)
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. . .

The self-information ε2 of a2 becomes

ε′2 = ε2 −
D1∑

n>1

pn
· p2

A new length l′2 of codeword c2 will be calcu-

lated as

l′2 =
ε′2
p2

and [l′2] bits will be assigned for the codeword

of letter a2.

The remainder of the self-information of the

letter a2

D2 = ε̃2 − ε′2 = p2[l
′
2]− ε′2

is distributed among the remaining (m−2) let-

ters a3, a4, . . . , am in proportion to their proba-

bilities.

At following steps, the letters a3, a4, . . . , am are

processed similarly.
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. . .

The algorithm results in the set of the numbers

of bits [l1], [l2], ..., [lm] which are supposed to

be used for encoding the corresponding letters

a1, a2, ..., am.

If the Kraft-McMillan condition holds

1

2[l1]
+

1

2[l2]
+ · · · +

1

2[lm]
> 1

there exists an uniquely decodable procedure

for encoding the alphabet Am, for which [li]

bits will be used to obtain codewords c(ai),

i = 1, . . . , m.
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Example: The alphabet A5 = {a1, a2, ..., a5}

whose elements have the probabilities p1 = 0.4,

p2 = p3 = 0.2, and p4 = p5 = 0.1.

The entropy rate of A5 is ε = 2.122bits/letter.

Step 1: Letter is a1, p1 = 0.4, l1 = − log p1 =

1.3219, ε1 = 0.52877, and [l1] = 2 bits are

assigned to encode a1.

The self information of the letter a1 increases

by the value

D1 = p1[l1]− ε1 = 0.4 · 2 − 0.52877 = 0.27123

This amount of the self-information is sub-

tracted from the self-information of the re-

maining letters ε2, ε3, ε4, and ε5, in accordance

with their probabilities, i.e. respectively in pro-

portions D1/3, D1/3, D1/6, and D1/6.
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The renewed values of the self-information of

letters are defined as follows:

ε
(2)
1 = ε̃1 = p1[l1] = 0.4 · 2 = 0.8

ε
(2)
2 = ε2 −

D1

0.6
· 0.2 = 0.46439− 0.09041

ε
(2)
3 = ε3 −

D1

0.6
· 0.2 = 0.46439− 0.09041

ε
(2)
4 = ε4 −

D1

0.6
· 0.1 = 0.33219− 0.04521

ε
(2)
5 = ε5 −

D1

0.6
· 0.1 = 0.33219− 0.04521

The initial and processed data at this step are

shown in the following table:

Table1 : Step 1.

A pi εi Di ε
(2)
i l′i [l′i]

1 .4 .52877 .27123 .8 1.3219 2

2 .2 .46439 −1/3· .37398

3 .2 .46439 −1/3· .37398

4 .1 .33219 −1/6· .28698

5 .1 .33219 −1/6· .28698
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Step 2: Letter is a2, p2 = 0.2, and the self-

information of a2 becomes ε
(2)
2 = 0.37398.

l′2 = ε
(2)
2 /p2 = 1.86985, and [l′2] = 2 bits are

assigned for the letter a2.

The difference of the self-information

D2 = p2[l
′
2]−ε

(2)
2 = 0.2 ·2−0.37398 = 0.02602

is subtracted from the self-inf. of letters

ε
(3)
3 = ε

(2)
3 −

D2

0.4
· 0.2 = 0.37398− 0.01302

ε
(3)
4 = ε

(2)
4 −

D2

0.4
· 0.1 = 0.28698− 0.00651

ε
(3)
5 = ε

(2)
5 −

D2

0.4
· 0.1 = 0.28698− 0.00651

and the new data table takes the form

Table 2 : Step 2.

A pi ε
()
i Di ε

(3)
i l′i [l′i]

1 .4 .52877 .27123 .8 1.3219 2

2 .2 .37398 .02602 .4 1.8698 2

3 .2 .37398 −1/2· .36096

4 .1 .28698 −1/4· .28047

5 .1 .28698 −1/4· .28047
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Tables : Steps 3,4, and 5.

A pi ε
()
i Di ε

(4)
i l′i [l′i]

1 .4 .52877 .27123 .8 1.3219 2

2 .2 .37398 .02602 .4 1.8698 2

3 .2 .36096 .03904 .4 1.8048 2

4 .1 .28047 −1/2· .26096

5 .1 .28047 −1/2· .26096

A pi ε
()
i Di ε

(5)
i l′i [l′i]

1 .4 .52877 .27123 .8 1.3219 2

2 .2 .37398 .02602 .4 1.8698 2

3 .2 .36096 .03904 .4 1.8048 2

4 .1 .26096 .03904 .3 2.6096 3

5 .1 .26096 −1· .22192

A pi ε
()
i Di ε̃i l′i [l′i]

1 .4 .52877 .27123 0.8 1.3219 2

2 .2 .37398 .02602 0.4 1.8698 2

3 .2 .36096 .03904 0.4 1.8047 2

4 .1 .26096 .03904 0.3 2.6096 3

5 .1 .22192 .07808 0.3 2.2192 3
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. . .

The last remainder D5 of the self-information

of a5 is equal to the redundancy of the code

R =
5∑

k=1

pk[l
′
k]− ε = D5 = 0.07808 bits/letter

The lengths of the codewords are {2,2,2,3,3}.

Therefore 12 bits are required for encoding the

alphabet A5 by using the proposed method.

Indeed, the Kraft-McMillan inequality is ful-

filled and the following code can be consid-

ered: c(a1) = 00, c(a2) = 01, c(a3) = 10,
c(a4) = 110, c(a5) = 111. Other codes are

{11,00,01,100,101}, {10,11,00,010,011}, and

{01,10,11,000,001}.

The variance of the length for this codes is

0.23664 and the average length for codeword

is 2.20 bits/letter. That is, the encoding pro-

cedure is optimal.
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. . .

The letter probabilities are in increasing order:

Table 6.

A pi ε
()
i Di ε̃i l′i [l′i]

5 .1 .33219 .06781 .4 3.32193 4

4 .1 .32466 .07534 .4 3.24659 4

3 .2 .43048 .16952 .6 2.15241 3

2 .2 .37398 .02602 .4 1.86988 2

1 .4 .32192 .07808 .4 0.80480 1

The sequence of lengths for codewords is {4,4,

3,2,1} which requires 14 bits for encoding the

alphabet A5.

The variance of the codeword length is 0.58652

which is greater than the variance obtained in

the previous example, but the average code-

word length is the same, 2.20 bits/letter.
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The order of letters a1, a2, ..., a5 is not essential

for the proposed procedure. For instance, by

processing letters in the sequences a1, a2, a4, a3,

a5 and a1, a4, a5, a2, a3, respectively the follow-

ing data tables are obtained:

Table 7.

A pi ε
()
i Di ε̃i l′i [l′i]

1 .4 .52877 .27123 .8 1.32193 2

2 .2 .37398 .02602 .4 1.86988 2

4 .1 .28048 .01952 .3 2.80482 3

3 .2 .34795 .05205 .4 1.73976 2

5 .1 .22192 .07808 .3 2.21928 3

Table 8.

A pi ε
()
i Di ε̃i l′i [l′i]

1 .4 .52877 .27123 .8 1.32193 2

4 .1 .28699 .01301 .3 2.86988 3

5 .1 .28439 .01561 .3 2.84386 3

2 .2 .36096 .03904 .4 1.80482 2

3 .2 .32192 .07808 .4 1.60964 2

The lengths for codewords are {2,2,2,3,3}.
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Let us consider another example, when letters

are taken in the order a2, a1, a4, a3, a5.

Table 9.

A pi εi ε
()
i Di ε̃i

2 .2 .46439 .46439 .13561 .6
1 .4 .52877 .46096 .33904 .8
4 .1 .33219 .23048 .06952 .3
3 .2 .46439 .21462 .18538 .4
5 .1 .33219 .02192 .07808 .3

l′i [l′i]
2.32193 3

1.15241 2

2.30482 3

1.07309 2

0.21928 1

The sequence of lengths 2,3,2,3,1 for code-

words c(a1), ..., c(a5), for which no decodable

code exists. The Kraft-McMillan inequality

does not hold

5∑

i=1

1

2[l′i]
=

1

23
+

1

22
+

1

23
+

1

22
+

1

2
=

5

4
> 1.
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Since, p2 < p1, ε2 < ε1, and l′2 = 2.32193,

we have to assign only two bits for the code-

word c(a2) and add the remainder of its self-

information, −D2 = ε2 − 2 · 0.2 = 0.06439, to

the letters a1, a4, a3, a5 in accordance with their

probabilities. In other words, we consider that

l2 = [l2] + m2, where 0 ≤ m2 < 1.

Table 10.

A pi εi ε
()
i Di ε̃i

2 .2 .46439 .46439 −.06439 .4
1 .4 .52877 .56097 .23904 .8
4 .1 .33219 .28048 .01952 .3
3 .2 .46439 .34795 .05205 .4
5 .1 .33219 .22192 .07808 .3

l′i [l′i]
2.32193 2

1.15241 2

2.84383 3

1.07309 2

2.21920 3

The codeable sequence of lengths is 2,2,2,3,3.



. . . Conclusions

A new approach was presented for computing

the optimal lengths for codewords of a given

source which has the first-order model.

The main idea of this approach is based on

transferring and redistributing the self-informa-

tions of encoded symbols to the remaining sym-

bols to be encoded, at each stage of the cal-

culation.

The algorithm is simple in comparison with the

Huffman code and provides the optimal encod-

ing of the source irrespective of the ordering

of symbol probabilities. Due to the simplic-

ity of the proposed method, it can be used in

real-time applications, as well as in applications

that demand fixed transmission rates.
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