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Introduction

Representations of signals help us to solve many problems in 

signal processing, image encryption, linear systems theory, etc.    

Understanding them is easy in the light of their interpretation as 

rotations which makes possible to define new transformations. 

In this paper, we focus on a general concept of the mixed Fourier 

transformations (MxFT), when signals are transformed to the 

time-frequency domain, where the difference between of time and 

frequency is disappeared. 

Mixed transformations allow for effective calculation of different 

roots of the Fourier and identity transformations, which can be 

used in signal processing, image filtration and encryption.
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Interpretation of the CTFT as a rotation 

x(t)

F[x(t)]=X(ω)

F2[x(t)]=x(-t)

F3[x(t)]=X(-ω)

F4[x(t)]=x(t)

 By transformation, a point in 

time domain space gets 

transformed to a point in 

frequency domain space 

whose spaces are “uncoupled”, 

represented as “perpendicular” 

axes. 

time

frequency
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Fractional FT

 Arbitrarily rotate time-frequency axes through a predefined 

angle „alpha‟ in L2 space 

 Time-frequency are coupled generally.

 CTFT is a special case of FRFT where α=90o .

 FRFT has the following closed form expression:
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Mixed FTs

 Transform  f(t) mf(t) followed by  Mf(t)=F[mf(t)],

e.g. simply  f(t)f(t)+F(t)

gives  Mf(t)=m*
f(t/2π).

 in Space M1,1

 Rotation by 180o → time and frequency axis are the same.

 Generally, transform   f(t) a·f(t)+b·F(t)

 in Space Ma,b
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Properties

 FT of the mixed transformed signal is time-scaled by 1/(2π)

 conjugate of the mixed transformed signal itself in M1,1

 linear convolution between signals in M1,1
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Discrete mixed Transformation 

 MxDFT is defined as a linear combination of the real signal 

f(n), its DFT, and its DFT2.

 Transform matrix:

 Inverse Transform matrix:
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512-point mxDFT
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Fig.1: (a) Original signal of length 512, and (b) the real part 

and  (c) imaginary part.



Applications

 Image encryption
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Fig. 2: Amplitude spectrums of the MxDFT, when (a) a = 0.2 and 

b = 0.8, (b) a = 0.75 and b = 0.25, (c)a = 0.25 and b = 0.25, 

and (d) a = 0.75 and b = −0.5.



Applications (contd…)
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Fig.3.(a) The tree image f and 2-D mixed Fourier transforms (b) S1(f), 

(c) S2(S1(f)), and (d) S3(S2(S1(f))).

Fig.4.(a) Lena image f and 2-D mixed Fourier transforms (b)S1(f), 

(c) S2(S1(f)), and (d) S3(S2(S1(f))).



General Concept of the MxDFT
The mixed transformation with respect to the discrete Fourier 

transformation is defined by 

where a, b, c and d are coefficients, I is the identity matrix, F is the 

matrix of the discrete Fourier transformation. 

*dFcFbEaIS 
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Square roots of the Fourier transform:             . 

The coefficients a, b, c and d are calculated by
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The solution is not unique because of ambiguity of the square roots.
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Case 1: [+,+,+,+]

Consider the following values of the square roots:

1s  w j
1

2

j
p j


 

1

2

j
t j


  

Coefficients are obtained:

Transformation defined by this set of coefficients is called

1st square root discrete Fourier transformation (1-SQ DFT)
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Case 2: [-,+,+,+]
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the coefficients of the transform S are calculated by

The corresponding transformation is called the 2nd square root 

discrete Fourier transformation (2-SQ DFT)
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Replacing the coefficients c and d in the square root           [1/ 2]F
* 1/ 2 *( )F aI bE dF cF   

[1/ 2] [1/8]F I
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Fig. 6.

Original signal of length 512
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The Fourier Transform

The square root Fourier    

transform.

4F I

Square root of the inverse Fourier matrix
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Original signal of length 512 

Phase of the (a) DFT 

1-SQ DFT

2-SQ DFT.
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real part of the DFT 

1-SQ DFT

2-SQ DFT



Series of Fourier matrixes

A matrix S is represented by

2 3

0 1 2 3S a I a F a F a F   

with real or complex coefficients      , k=0,1,2,3.

The square of this matrix can be written as      
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The above cyclic convolution is written as

3

mod 4 ;1
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where                and                   if n=0,2,3. In the frequency domain, 
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Images and their 2-D SQ-DFT

(a) (b)

Fig.7. (a) The tree image   (b) 2-D SQ-DFT of the image

(a) (b)

Fig. 8: (a) The Lena image  and (b) 2-D SQ-DFT of the image
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where            if n=0, and            if n=1,2,3. In the frequency domain, 
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S= I,   S= E,  

?
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Fig.9.: The basis functions of the square root of the 4-point identity 

transformation S. 
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Basic functions: N=4 case
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Basic functions: N=8 case

Fig.10.: The basis 

functions of the 

square root of the 8-

point identity 

transformation S. 
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The discrete transform defined by      is called the square root of 

discrete identity transformation (SR-DIT). The transform 

is a square root of I , because the Fourier transform is the 4th degree 

root of the identity transform.       contains the cosine transform                         

and the difference of transform equals
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There are six square roots of the identity matrix.
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Square roots of the identity matrix
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Fig. 11: (a) The original signal of length 512, (b) the square root

of discrete identity transform, and (c) the real part of the square

of the Fourier transform of this signal.
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(a) (b) (c)

2-D SR-DIP

Fig. 12: (a) tree image in part, (b) 2-D SR-DIP of the image

(c) second application of the square root over the image in b.
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The second square root is the inverse to itself !



Conclusion

In this paper, the concept of the mixed Fourier transform in the 

continuous and discrete time cases have been considered. The 

mixed transform represents the signals and images in the time-

frequency domain,  where the concepts of time and frequency 

are united. 

Mixed Fourier transformations can be used for calculating 

different roots of the Fourier and identity transformations, as 

well as other transformations, such as the Hadamard and cosine 

transformations. 

Our preliminary experimental examples show that the described 

mixed and root transformations can be used for signal and 

image processing, especially for image encryption.
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Questions?
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