## New Formula for Image

# Reconstruction from Projections <br> by the 2-D Paired Transformation 

Artyom Grigoryan and Nan Du EE Dept. UTSA, San Antonio

Presented by Nan Du
IEEE SMC 2009, San Antonio

## OUTLINE

- Introduction
- Discrete Model of Image Reconstruction
- 2-D Paired Transform
$>$ Concept of paired transformation
$>$ Image Reconstruction using Paired transform
(with and without calculating the 1-D and 2-D
Fourier transforms)
$>$ Examples and demonstration for image 6464.
- Conclusion
- References


## Introduction

Fourier transform-based methods are widely used for practical applications of image reconstruction from projections.

We present a new effective formula for the inverse 2-D paired transform, which can be used for image reconstruction without calculating the Fourier transforms. The image is reconstructed directly from the defined paired image-signals which can be calculated from projection data.


Fig. 1. Process of calculation of projection for parallel X-ray set

## Model of Reconstruction

## - Discrete Model:

Assuming:
$>$ The reconstructed image $f(x, y)$ occupies the quadratic domain of dimension $L$ by $L$, i.e., $x, y \in[0, L]$ on which the quadratic lattice $N \times N$ of image elements (IE) are marked.
$>$ The absorption function of the $(n, m)$ th image element, where $n$, $m=0$ : ( $N-1$ ), takes a constant value $f_{n, m}$.
$>$ The radiation source and detector represent the points, and that the rays spreading between them are straight.

Measured value of the total attenuation energy along the $l$ th ray, denoted by $y_{l}$ :

$$
y_{l}=\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} a_{n, m}^{l} f_{n, m}
$$

where $a_{n, m}^{l}$ is the length way of $l$ th ray along the $(n, m)$ th IE. The set of measurements $y_{l}$ taken at a fixed direction is called a projection. Assuming the size of the image elements is small. For all $l=1: M$ and $n, m=0:(N-1): \quad a_{n, m}^{l}= \begin{cases}1, & \text { if the } l \text { th ray intersects the }(n, m) \text { th IE } \\ 0, & \text { otherwise }\end{cases}$

(a)

(b)

Fig. 2: (a) Parallel scanning scheme. (b) Cartesian lattice on the image domain.

## 2-D Paired Transform

Let $f=\left\{f_{n, m}\right\}$ be an image of size $N N$, where $N=2^{r}$ and $r>1$ The $N N$-point 2-D DFT of the image:

$$
F_{p, s}=\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} f_{n, m} W^{n p+m s}, \quad W=\exp (-2 \pi j / N)
$$

Frequency points are from the square lattice

$$
X_{N, N}=\{(p, s) ; p, s=0: N-1\}
$$

This 2-D DFT of the image can be split in such a way, that the whole domain of frequency-points is divided by subsets, and at frequency-points of each subset the 2-D DFT is represented by the 1-D DFT of a corresponding 1-D signal, which is called the splitting-signal, or image-signal.

## Concept of the paired transform:

Given a triplet $(p, s, t)$, where $(p, s)$ is a frequency-point and $t$ is an integer time-point from the interval $[0, N-1]$. The set of points $(n, m)$ of the lattice in the image plane.
$V_{p, s, t}=\{(n, m) ; n, m=0:(N-1), n p+m s=t \bmod N\}$
and its characteristic function

$$
\chi_{p, s, t}(n, m)=\left\{\begin{array}{l}
1, \text { if } n p+m s=t \bmod N \\
0, \text { otherwise }
\end{array}\right.
$$

The sets $V_{p, s, t}$ consist of points ( $n, m$ )

 allocated along a maximum of $M=p+s$ parallel straight lines:

$$
x p+y s=t+k N, k=0:(p+s-1)
$$



Fig.3. Example of $V_{p, s, t}$

## Concept of the Paired transform

The following family of (3N-2) disjoint subsets is a partition of the lattice $X_{N, N}$,

$$
\sigma^{\prime}=\left(\left(\left(T_{2^{k} p, 2^{k} s}^{\prime}\right)_{(p, s) \in G_{r-k}}\right)_{k=0:(r-1),}\{(0,0)\}\right)
$$

The subsets equal

$$
T_{p, s}^{\prime}=\{(\overline{(2 m+1) p}, \overline{(2 m+1) s}) ; m=0:(N / 2-1)\}
$$

$\bar{l}=l \bmod N$, sets of generators:

$$
\begin{aligned}
& G_{k}=\left\{(p, 1), p=0:\left(2^{k}-1\right)\right\} \cup \\
& \left\{(1,2 s), s=0:\left(2^{k-1}-1\right)\right\}
\end{aligned}
$$

The subset $T_{p, s}^{\prime}$ associates with a $N / 2^{k+l}$-point signal which is called the paired image-signal,

$$
f_{T_{p, s}^{\prime}}=\left\{f_{p, s, 0}^{\prime}, f_{p, s, 2^{k}}^{\prime}, f_{p, s, 22^{2}}^{\prime}, \ldots, f_{p, s, N / 2-2^{k}}^{\prime}\right\}
$$



Fig. 4: All the generator for image (8x8)

## Concept of the paired transform

The component of the image-signal are calculated by

$$
f_{p, s, t}^{\prime}=\sum_{V_{p, s, t}} f_{n, m}-\sum_{V_{p, s, l+N / 2}} f_{n, m}=f_{p, s, t}-f_{p, s, t+N / 2}
$$

where $t=0,2^{k}, 2 \cdot 2^{k}, \ldots, N / 2-2^{k}$.
Tensor transformation:

$$
\chi_{N, N}:\left\{f_{n, m}\right\} \rightarrow\left\{f_{p, s, t} ;(p, s) \in G_{r}, t=0:(N-1)\right\}
$$

Given a frequency-point $(p, s)$, the following holds:

$$
F_{\overline{(2 m+1) p}, \overline{(2 m+1) s}}=\sum_{t=0}^{N / 2^{k+1}-1}\left(f_{p, s, 2^{k} t}^{\prime} W_{N / 2^{k}}^{t}\right) W_{N / 2^{k+1}}^{m t}, \quad m=0:\left(N / 2^{k+1}-1\right)
$$

The 2-D DFT at frequency-points of $T_{p, s}^{\prime}$ is defined by the $N / 2^{k+1}$-point DFT of the modified splitting-signal

$$
\left\{f_{p, s, 0,}^{\prime}, f_{p, s, 2^{k}}^{\prime} W^{2^{k}}, f_{p, s, 2 \cdot 2 \cdot k^{k^{2}}}^{\prime} W^{2 \cdot 2^{k}}, \ldots, f_{p, s, N / 2-2^{k}}^{\prime} W^{N / 2-2^{k}}\right\}
$$

Cexample 1: Tree Image


Fig. 5: (a) Original image 256 256, (b) the image-signal generated by frequency $(1,4)$, (c) the magnitude of the 1-D DFT of this signal, (d) the 2-D DFT of the image and marked locations of the frequency-points of $\mathrm{T}_{1,4}^{\prime}$, (e) the direction image, and (f) the tree image with the amplified direction image (DI).

## Example 2: Slena Image


(a) image

(d) 2-D DFT

(b)

(e) DI-(1,2)


(f) image $+5(\mathrm{DI})$

Fig. 6: (a) Original image 256 256, (b) the image-signal generated by frequency $(1,2)$, (c) the magnitude of the 1-D DFT of this signal, (d) the 2-D DFT of the image and marked locations of the frequency-points of $\mathrm{T}_{1,2}$, (e) the direction image, and (f) the Lena image with the amplified direction image.

## 2-D Paired transform

The transformation:

$$
\chi_{N, N}^{\prime}:\left\{f_{n, m}\right\} \rightarrow\left\{f_{p, s, t}^{\prime} ;(p, s, t) \in U\right\}
$$

is called the 2-ID paired transformation. $U$ is the set of $N^{2}$ number-triplets $\{p, s, t\}$ of components of ( $3 N-2$ ) image-signals.

The paired transform is defined by the system that is extracted from the mathematical structure of the 2-D DFT. The complete system of paired functions is defined as

$$
\chi_{p, s, t}^{\prime}(n, m)=\chi_{p, s, t}(n, m)-\chi_{p, s, t+N / 2}(n, m), \quad(p, s, t) \in U .
$$

Each paired function represents itself a 2-D plane wave, and the decomposition of the image by the paired functions is the decomposition of the image by the plane waves.

## Statement 1

Given a frequency-point $(p, s)$, components $f_{p, s, t}, t=0: N-1$, of the image-signal of a discrete image $f_{n, m}$ in tensor representation can be calculated directly from the projection data,

$$
f_{p, s, t}=y(p, s, t)_{1}+y(p, s, t)_{2}+\ldots+y(p, s, t)_{M}
$$

where $M=(p+s)$ and $y(p, s, t)_{k}=\sum_{(n, m) \in r(p, s, t)_{k}} f_{n, m}, \quad k=1: M$.

## Statement 2

Given a frequency-point $(p, s)$, the components $f_{p, s, t}^{\prime}$ of the corresponding image-signal $f_{T_{p, s}^{\prime}}$ of a discrete image $f_{n, m}$ can be calculated from projection data,

$$
\begin{aligned}
& f_{p, s, t}^{\prime}=y(p, s, t)_{1}+y(p, s, t)_{2}+\ldots+y(p, s, t)_{M} \\
& -y\left(p, s, t+\frac{N}{2}\right)_{1}-y\left(p, s, t+\frac{N}{2}\right)_{2}-\ldots-y\left(p, s, t+\frac{N}{2}\right)_{M}
\end{aligned}
$$

where $t=0,2^{k}, 2 \cdot 2^{k}, \ldots, N / 2-2^{k}, 2^{k}=g . c . d(p, s)$, and $M=(p+s)$.

Cexample 3: Mhash of OAired Trunctions $(Y y=16)$


Fig. 7: Masks of the paired-functions.
All ' 1 's and ' -1 's in the masks of paired functions $\chi_{p, s, t}^{\prime}(n, m)$ lie on the parallel lines.

## Algorithm of Image Reconstruction using Paired Transform (with calculating 2D-DFT.)

* Calculate all the generators $(p, s) \in G_{k}, k=0: r$;
* For each generator, calculate paired image-signal;
- Modify the paired image-signal with twiddle coefficients;
: Perform 1-D DFT over the modified paired image-signal;
* Allocate $F_{\overline{(2 m+1) p},(2 m+1) s}$ to fill 2-D DPT;
- Calculate 2-D inverse Fourier transform over $X_{N, N}$.

The reconstruction is complete, the result is original image $f=\left\{f_{n, m}\right\}$

## Direction Image

The paired representation allows for inverting directly the projection data from frequency and time domain, without calculating both 1-D DFT and 2-D DFT. Let $D_{p_{1}, s_{1}}$ be the following 2-D DFT composed only from the components of the 2-D DFT which lie on the given subset $T_{p, s}^{\prime}$ :

$$
D_{p_{1}, s_{1}}= \begin{cases}F_{p_{1}, s_{1}} ; & \text { if }\left(p_{1}, s_{1}\right) \in T_{p, s}^{\prime} \\ 0 ; & \text { otherwise. }\end{cases}
$$

Case 1: g.c. $d(p, s)=1$, i.e. $(p, s) \in G_{r}$. The direction image of the $1^{\text {st }}$ series is defined as:

$$
d_{n, m}=d_{n, m ; p, s}=\frac{1}{2 N} f_{p, s,(n p+m s) \bmod N}^{\prime}, \quad(n, m) \in \mathrm{X}_{N, N}
$$

The direction of these lines, or the projection is defined by coordinates of the frequency-point $(p, s)$.

Cexample 4: Tree image of size $256 \times 256$

(a) image

(e) DI- $(3,1)$

(i) DI-(7,1)

(m) DI-(1,0)

(b) DI-(0,1)

(f) DI-(4,1)

(j) DI- $(8,1)$

(n) DI-( 1,2 )

(c) DI-( 1,1 )

(g) DI- $(5,1)$

(k) DI-(9,1)

(o) DI-( 1,4 )

(d) DI-(2,1)

(h) DI-(6,1)

(l) DI-(10,1)

(p) DI-(1,6)

Fig. 8: (a) original image and (b)-(p) 15 direction image components of the image, generator $(p, s)=(0,1),(1,1), \ldots,(10,1),(1,0),(1,2),(1,4),(1,6)$. (All images have been scaled)

Cexample 5: Phantam image of orize $256 \times 256$

(a) image

(d) DI- $(3,1)$

(h) DI-(7,1)

(1) DI-( 1,2 )

(a) DI-(0,1)

(e) DI-(4,1)

(i) DI-( 8,1$)$

(m) DI- $(1,4)$

(b) DI-( 1,1 )

(f) DI-(5,1)

(j) DI-(9,1)

(n) DI-(1,6)

(c) DI-(2,1)

(g) DI-(6,1)

(k) DI-(1,0)

(o) DI-(1,8)

Fig. 9: (a) Original image and (b)-(p) 15 direction image components of the image, generator $(p, s)=(0,1),(1,1), \ldots,(9,1),(1,0),(1,2),(1,4),(1,6),(1,8)$. (All images have been scaled)

## Case 2: g.c.d $(p, s)=2^{k},(p, s) \in G_{k}, k \geq 1$.

The direction image of the $k$ th series is defined as:

$$
d_{n, m} \doteq d_{n, m ; p, s}=\frac{1}{2^{k+1} N} f_{p, s,(n p+m s) \bmod N}^{\prime}, \quad(n, m) \in \mathrm{X}_{N, N}
$$

All (3N-2) subsets $T_{p, s}^{\prime}$, with generators ( $p, s$ ) from the set compose the partition of the grid $X_{N, N}$. The sum of all direction image $d_{n, m}$ equals the original image $f_{n, m}$.

## Decomposition of the image :

$$
\begin{aligned}
f_{n, m} & =\sum_{(p, s) \in J_{N, N}^{\prime}} d_{n, m ; p, s} \\
& =\frac{1}{2 N}\left(\sum_{k=0}^{r-1} \frac{1}{2^{k}} \sum_{(p, s) \in 2^{k}} f_{p, s,(n p+m s) \bmod N}^{\prime}+\frac{1}{2^{r-1}} \sum_{(p, s) \in 2^{r} G_{0}} f_{p, s,(n p+m s) \bmod N}^{\prime}\right)
\end{aligned}
$$

This is the formula of reconstruction of the image by its paired transform using operations of addition/subtraction and division

## Formula of Image Reconstruction

$$
\begin{aligned}
f_{n, m} & =\frac{1}{2 N} \sum_{k=0}^{r} \sum_{(p, s) \in 2^{k} G_{r-k}}\left[y(p, s, \overline{n p+m s})_{1}+y(p, s, \overline{n p+m s})_{2}\right. \\
& +\ldots+y(p, s, \overline{n p+m s})_{M}-y\left(p, s, \overline{n p+m s}+\frac{N}{2}\right)_{1} \\
& \left.-y\left(p, s, \overline{n p+m s}+\frac{N}{2}\right)_{2}-\ldots-y\left(p, s, \overline{n p+m s}+\frac{N}{2}\right)_{M}\right]
\end{aligned}
$$

where $M=p+s$.
The problem of the image reconstruction from the projection by using the inverse 2-D paired transform has been solved.

## Demo of Image Reconstruction (Phantom image of $64 \times 64$ )



## Conclusion

Based on the paired representation of the image, the problem of image reconstruction from its projections in the framework of the discrete model has been solved.

A new formula has been presented for the inverse 2-D paired transform, which can be used for solving the algebraic system described the measurement data of image reconstruction without using the 2-D Fourier transform technique. The image can be reconstructed directly from the image-signals which are calculated from projection data.

## References

- R. Gordon, "A tutorial on ART (Algebraic reconstruction techniques)," IEEE Trans. Nuclear Science, vol. 21, pp. 78-93, 1974.
- A.M. Grigoryan and M.M. Grigoryan, "A new method of image reconstruction from projections," Electronnoe Modelirovanie, AS USSR, Kiev, 1986, vol. 8, no 6, pp. 74-77.
- A.M. Grigoryan, "2-D and 1-D multi-paired transforms: Frequency-time type wavelets," IEEE Trans. on Signal Processing, vol. 49, no. 2, pp. 344-353, Feb. 2001.
- A.M. Grigoryan, "Method of paired transforms for reconstruction of images from projections: Discrete model," IEEE Trans. on Image Processing, vol. 12, no. 9, pp. 985-994, Sep. 2003.
- A.M. Grigoryan and S.S. Agaian, Multidimensional Discrete Unitary Transforms: Representation, Partitioning, and Algorithms, Marcel Dekker, Inc., August 2003.


# Thank you 

## Questions?

