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Abstract

• This paper offers a new multiple signal restoration tool to solve the inverse
problem, when signals are convoluted with a multiple impulse response and
then degraded by an additive noise signal with multiple components.

Inverse problems arise practically in all areas of science and engineering and
refers to as methods of estimating data/parameters, in our case of multiple signals

that cannot directly be observed.

• The presented tool is based on the mapping multiple signals into the
quaternion domain, and then solving the inverse problem.

• Due to the non-commutativity of quaternion arithmetic, it is difficult to find
the optimal filter in the frequency domain for degraded quaternion signals.
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Presented Work

• As an alternative, we introduce an optimal filter by using special 4×4 
matrices on the discrete Fourier transforms of signal components, at 
each frequency-point. 

The optimality of the solution is with respect to the mean-square-root 
error, as in the classical theory of the signal restoration by the Wiener 
filter. 

• The Illustrative example of optimal filtration of multiple degraded 
signals in the quaternion domain is given. The computer simulations 
validate the effectiveness of the proposed method.
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1. PROBLEM OF MULTIPLE SIGNAL RESTORATION

In the space of quaternion signals, in the model described the signal 𝑞(𝑡)

convoluted with the function ℎ(𝑡) plus a noise 𝑛(𝑡)

𝑖(𝑡) = 𝑞(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡), (1)

the signal 𝑞(𝑡) is restoring from the degraded signal 𝑖(𝑡).

The classic case: the inverse problem is solving by the optimal filter

𝑌 𝜔 =
𝐻(𝜔)

𝐻 𝜔 + 𝜙𝑁/𝑄(𝜔)
. (2)

Here, 𝐻(𝜔) is the Fourier transform of ℎ(𝑡), and 𝜙𝑁/𝑄(𝜔) is the noise-signal

ratio, and 𝜙𝑁 𝜔 =< 𝑁 𝜔 2 > and 𝜙𝑄 𝜔 =< 𝑄 𝜔 2 > are spatial spectral

densities of the signal 𝑞(𝑡) and noise 𝑛(𝑡), respectively.
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Inroduction to Quanterions

The quaternion number is composed by one real part and three-component

imaginary part,

𝑞 = 𝑎 + (𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘,

where 𝑎, 𝑏, 𝑐, and 𝑑 are real numbers. Together with unit 1, three imaginary

units 𝑖, 𝑗, and 𝑘 are used with the multiplication laws, which are following:

𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑘𝑖 = −𝑖𝑘 = 𝑗, 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖.

The quaternion conjugate and modulus of 𝑞 are defined as

𝑞 = 𝑎 − (𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) and 𝑞 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.

The multiplication of quaternions is not a commutative operation, i.e., 𝑞1𝑞2 ≠

𝑞2𝑞1 for many quaternions 𝑞2 ≠ 𝑞1.
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In the definition of the 𝑁-point quaternion DFT (QDFT), the exponential kernel

is used the exponential kernel is used

𝑊𝜇 = exp(−𝜇2𝜋/𝑁) = cos(2𝜋/𝑁) − 𝜇 sin(2𝜋/𝑁),

where 𝜇 is a pure unit quaternion, 𝜇 = 𝑚1𝑖 + 𝑚2𝑗 + 𝑚3𝑘. For a such number, 

|𝜇| = 1 and 𝜇2 = −1.

The 𝑁-point right-side QDFT

𝑄𝑝 = ෍

𝑛=0

𝑁−1

𝑞𝑛𝑊𝜇
𝑛𝑝
, 𝑝 = 0: 𝑁 − 1 .

The fast algorithms for the 𝑁-points QDFT exist [1]. 

Because of not commutativity of multiplication in quaternion arithmetic, the 

main operation of the cyclic convolution is not reduced to the multiplication of 

the QDFTs, as for the traditional 𝑁-point DFT.



7/8/2020 8

1-D CONVOLUTION IN QUATERNIOIN ALGEBRA

In this section, we show a new technique for calculating the quaternion

convolution by the Fourier transforms, which was developed by Grigoryan in

2015. The convolution will be transformed into the frequency domain and a new

operation of multiplication of transforms by 4×4 matrices will be performed,

instead of point-wise multiplication of the DFTs in the traditional method.

The quaternion signal 𝑓𝑛, 𝑛 = 0: (𝑁 − 1), of length 𝑁

𝑓𝑛 = (𝑓1)𝑛, (𝑓2)𝑛, (𝑓3)𝑛, (𝑓4)𝑛 = (𝑓1)𝑛+𝑖(𝑓2)𝑛+𝑗(𝑓3)𝑛+𝑘(𝑓4)𝑛

can be considered in the following matrix representation.
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We introduce the following 4 matrices with the multiplications shown in the table

𝐸 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 𝐼 =

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

, 𝐽 =

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

, 𝐸 =

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

, (4)

.

The quaternion signal at the point 𝑛 can be written as a matrix, (we use the

same notation 𝑓𝑛),

𝑓𝑛 = 𝑓1 𝑛𝐸 + 𝑓2 𝑛𝐼 + 𝑓3 𝑛𝐽 + 𝑓4 𝑛𝐾 =

𝑓1 𝑛 − 𝑓2 𝑛 − 𝑓3 𝑛 − 𝑓4 𝑛

𝑓2 𝑛 𝑓1 𝑛 𝑓4 𝑛 − 𝑓3 𝑛

𝑓3 𝑛 − 𝑓4 𝑛 𝑓1 𝑛 𝑓2 𝑛

𝑓4 𝑛 𝑓3 𝑛 − 𝑓2 𝑛 𝑓1 𝑛

, (5)
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Another quaternion sequence, which we call the impulse response characteristic

of a linear system, is denoted by ℎ𝑛 = ((ℎ1)𝑛, (ℎ2)𝑛, (ℎ3)𝑛, (ℎ4)𝑛) and can be

presented in matrix form as

ℎ𝑛 = ℎ1 𝑛𝐸 + ℎ2 𝑛𝐼 + ℎ3 𝑛𝐽 + ℎ4 𝑛𝐾. (6)

We define the circular linear convolution as

𝑔𝑛 = 𝑓 ∗ ℎ 𝑛 = ෍

𝑚=0

𝑁−1

𝑓𝑛−𝑚ℎ𝑚 ≜ ෍

𝑚=0

𝑁−1

𝑓(𝑛−𝑚)mod𝑁ℎ𝑚 . (7)

The following two sums are different: 𝑓 ∗ ℎ 𝑛 ≠ ℎ ∗ 𝑓 𝑛.
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To simplify calculations, we separate all 𝐸, 𝐼, 𝐽, 𝐾-components of the signals

𝑓𝐸 = 𝑓1 0, 𝑓1 1, 𝑓1 2, … , 𝑓1 𝑁−1 , 𝑓𝐼 = (𝑓2)0, (𝑓2)1, (𝑓2)2, … , (𝑓2)𝑁−1 ,

𝑓𝐽 = (𝑓3)0, (𝑓3)1, (𝑓3)2, … , (𝑓3)𝑁−1 , 𝑓𝐾 = (𝑓4)0, (𝑓4)1, (𝑓4)2, … , (𝑓4)𝑁−1 ,

ℎ𝐸 = ℎ1 0, ℎ1 1, ℎ1 2, … , ℎ1 𝑁−1 , ℎ𝐼= (ℎ2)0, (ℎ2)1, (ℎ2)2, … , (ℎ2)𝑁−1 ,

ℎ𝐽 = (ℎ3)0, (ℎ3)1, (ℎ3)2, … , (ℎ3)𝑁−1 , ℎ𝐾 = (ℎ4)0, (ℎ4)1, (ℎ4)2, … , (ℎ4)𝑁−1 .

The 𝐸, 𝐼, 𝐽-, and 𝐾-components of the quaternion convolution 𝑔𝑛 are denoted by

𝑔𝐸, 𝑔𝐼, 𝑔𝐽, and 𝑔𝐾, respectively. By using the table of multiplications for the

basic four quaternion matrices, we can open the convolution

𝑔𝑛 = 𝑓1 𝑛𝐸 + 𝑓2 𝑛𝐼 + 𝑓3 𝑛𝐽 + 𝑓4 𝑛𝐾 ∗ ℎ1 𝑛𝐸 + ℎ2 𝑛𝐼 + ℎ3 𝑛𝐽 + ℎ4 𝑛𝐾

and consider the following system of Eqs for the 𝐸, 𝐼, 𝐽,𝐾-components of 𝑔𝑛:

ቋ
𝑔𝐸 = 𝑓𝐸 ∗ ℎ𝐸 − 𝑓𝐼 ∗ ℎ𝐼 − 𝑓𝐽 ∗ ℎ𝐽 − 𝑓𝐾 ∗ ℎ𝐾 , 𝑔𝐼 = 𝑓𝐸 ∗ ℎ𝐼 + 𝑓𝐼 ∗ ℎ𝐸 − 𝑓𝐽 ∗ ℎ𝐾 + 𝑓𝐾 ∗ ℎ𝐽 ,

𝑔𝐽 = 𝑓𝐸 ∗ ℎ𝐽 + 𝑓𝐼 ∗ ℎ𝐾 + 𝑓𝐽 ∗ ℎ𝐸 − 𝑓𝐾 ∗ ℎ𝐼 , 𝑔𝐾 = 𝑓𝐸 ∗ ℎ𝐾 − 𝑓𝐼 ∗ ℎ𝐽 + 𝑓𝐽 ∗ ℎ𝐼 + 𝑓𝐾 ∗ ℎ𝐸 .
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For each real component of the signal 𝑓𝑛 and the impulse response sequence ℎ𝑛,

we will use the corresponding capital letters for the corresponding DFTs. In the

frequency domain, the system of Eq. 8 for frequency-point 𝑝 can be written as

𝐺𝐸
𝐺𝐼
𝐺𝐽
𝐺𝐾

=

𝐻𝐸 −𝐻𝐼 −𝐻𝐽 −𝐻𝐾
𝐻𝐼 𝐻𝐸 −𝐻𝐾 𝐻𝐽
𝐻𝐽 𝐻𝐾 𝐻𝐸 −𝐻𝐼
𝐻𝐾 −𝐻𝐽 𝐻𝐼 𝐻𝐸

𝐹𝐸
𝐹𝐼
𝐹𝐽
𝐹𝐾

.

This is a compact form of the equation 𝐺 = 𝑯𝐹 at one frequency-point 𝑝, which is 

omitted from the notation. For this point, the matrix 𝑯 is the 4×4 matrix

𝑯 =

𝐻𝐸 −𝐻𝐼 −𝐻𝐽 −𝐻𝐾
𝐻𝐼 𝐻𝐸 −𝐻𝐾 𝐻𝐽
𝐻𝐽 𝐻𝐾 𝐻𝐸 −𝐻𝐼
𝐻𝐾 −𝐻𝐽 𝐻𝐼 𝐻𝐸

.

This matrix is orthogonal.
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The convoluted quaternion signal

𝑔𝑛 = 𝑔1 𝑛𝐸 + 𝑔2 𝑛𝐼 + 𝑔3 𝑛𝐽 + 𝑔4 𝑛𝐾

can be calculated as

𝑔1 = 𝑭−1𝐺𝐸 , 𝑔2= 𝑭−1𝐺𝐼 , 𝑔3= 𝑭−1𝐺𝐽, 𝑔4= 𝑭−1𝐺𝐾 .

Here, 𝑭−1 is the matrix of the inverse 𝑁-point DFT. Together with the unite matrix

𝐸, we consider the following three new quaternion matrices:

𝐼∗ =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

, 𝐽∗ =

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

, 𝐾∗=

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

.
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Statement 1. Given a frequency-point 𝑝, the inverse matrix 𝑯−1 at this point is

𝑯−1 =
1

det𝑯
𝑯𝑇 =

1

det𝑯
𝐸𝐻𝐸 − 𝐼∗𝐻𝐼 − 𝐽∗𝐻𝐽 − 𝐾∗𝐻𝐾 , (13)

where the square root of the determinant of the matrix is calculated by det𝑯 = 𝐻𝐸
2 + 𝐻𝐼

2 +

𝐻𝐽
2 + 𝐻𝐾

2 . The operation 𝑯𝑇 denotes the transposition of the complex matrix 𝑯.

The reconstruction of the frequency-vector 𝐹 at the frequency-point 𝑝 is the inverse transform

𝐹𝐸
𝐹𝐼
𝐹𝐽
𝐹𝐾

=
1

det𝑯

𝐻𝐸 𝐻𝐼 𝐻𝐽 𝐻𝐾
−𝐻𝐼 𝐻𝐸 𝐻𝐾 −𝐻𝐽
−𝐻𝐽 −𝐻𝐾 𝐻𝐸 𝐻𝐼
−𝐻𝐾 𝐻𝐽 −𝐻𝐼 𝐻𝐸

𝐺𝐸
𝐺𝐼
𝐺𝐽
𝐺𝐾

. (14)

The original quaternion signal 𝑓𝑛 = 𝑓1 𝑛𝐸 + 𝑓2 𝑛𝐼 + 𝑓3 𝑛𝐽 + 𝑓4 𝑛𝐾 is reconstructed from the

components of the inverse transform by

𝑓1 = 𝑭−1𝐹𝐸 , 𝑓2 = 𝑭−1𝐹𝐼 , 𝑓3= 𝑭−1𝐹𝐽, 𝑓4= 𝑭−1𝐹𝐾 . (15)
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     Algorithm 1. Inverse problem: 1-D Quaternion convolution 

1. Input signal 𝑓𝑛 = ((𝑓1)𝑛 , (𝑓2)𝑛 , (𝑓3)𝑛 , (𝑓4)𝑛), and the impulse response ℎ𝑛 = ((ℎ1)𝑛 , (ℎ2)𝑛 , (ℎ3)𝑛 , (ℎ4)𝑛). 

2. Calculate four 1-D DFTs 𝐹𝐸, 𝐹𝐼, 𝐹𝐽 , and 𝐹𝐾 of (𝑓1)𝑛 , (𝑓2)𝑛 , (𝑓3)𝑛 , and (𝑓4)𝑛 , respectively. 

3. Calculate 1-D DFTs 𝐻𝐸 , 𝐻𝐼, 𝐻𝐽 , and 𝐻𝐾  of (ℎ1)𝑛 , (ℎ2)𝑛 , (ℎ3)𝑛 , and (ℎ4)𝑛 , respectively. 

4. Compose the convoluted quaternion signal 𝑔𝑛  from the inverse 𝑁-point DFTs by Eq. 11. 

a. For each frequency-point 𝑝 ∈ {0,1,2, . . . , (𝑁 − 1)}, calculate the 4×4 matrix 𝑯 by Eq. 10. 

b. Calculate the data 𝐺𝐸 ,𝐺𝐼 ,𝐺𝐽 , and 𝐺𝐾 by Eq. 9. 

c. Calculate four inverse 𝑁-point DFTs of 𝐺𝐸 , 𝐺𝐼, 𝐺𝐽 , and 𝐺𝐾. 

5. Compose the quaternion signal 𝑓𝑛  from the inverse 𝑁-point DFTs by Eq. 15. 

a. Calculate the inverse 4×4 matrix 𝑯−1 by Eq. 13. 

b. Apply the inverse matrix on the vector (𝐺𝐸 ,𝐺𝐼 ,𝐺𝐽 ,𝐺𝐾). 

c. Calculate four inverse 𝑁-point DFTs of 𝐹𝐸, 𝐹𝐼, 𝐹𝐽 , and 𝐹𝐾. 
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Figure 2: Four components of the original quaternion signal 𝑓𝑛.
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Figure 3: Four components of the convoluted quaternion signal 𝑔𝑛.
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We consider the corresponding binary matrix 𝑨 of signs of elements of 𝑯,

𝑨 =

1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

, 𝑲 =

−2
2
2
2

. (16)

Here, the vector 𝑲 is the sum of elements of the matrix 𝑨 by rows. Therefore, the components of

the convolution are plotted after the following amplitude transformation:

𝑔1 𝑛, 𝑔2 𝑛, 𝑔3 𝑛, 𝑔4 𝑛 → − 𝑔1 𝑛/2, 𝑔2 𝑛/2, 𝑔3 𝑛/2, 𝑔4 𝑛/2

The means-square-root error therefore is calculated as

𝑒 𝑓, 𝑔 =
1

𝑁
෍

𝑛=0

𝑁−1

𝑓1 𝑛 +
1

2
𝑔1 𝑛

2

+෍

𝑘=2

4

𝑓𝑘 𝑛 −
1

2
𝑔𝑘 𝑛

2

. (17)
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Quaternion Convolution and Noise

The frequency characteristics of the input and output signals are considered in forms of

quaternion matrices in the (𝐸, 𝐼∗, 𝐽∗, 𝐾∗)-basis, i.e., at each frequency-points 𝑝, we consider that

𝐹 = 𝐸𝐹𝐸 + 𝐼∗𝐹𝐼 + 𝐽∗𝐹𝐽 + 𝐾∗𝐹𝐾 and 𝐺 = 𝐸𝐺𝐸 + 𝐼∗𝐺𝐼 + 𝐽∗𝐺𝐽 + 𝐾∗𝐺𝐾.

It is important to note and not difficult to verify that equation (9) can be written as

𝐺𝐸 −𝐺𝐼 −𝐺𝐽 −𝐺𝐾
𝐺𝐼 𝐺𝐸 −𝐺𝐾 𝐺𝐽
𝐺𝐽 𝐺𝐾 𝐺𝐸 −𝐺𝐼
𝐺𝐾 −𝐺𝐽 𝐺𝐼 𝐺𝐸

=

𝐻𝐸 −𝐻𝐼 −𝐻𝐽 −𝐻𝐾
𝐻𝐼 𝐻𝐸 −𝐻𝐾 𝐻𝐽
𝐻𝐽 𝐻𝐾 𝐻𝐸 −𝐻𝐼
𝐻𝐾 −𝐻𝐽 𝐻𝐼 𝐻𝐸

𝐹𝐸 −𝐹𝐼 −𝐹𝐽 −𝐹𝐾
𝐹𝐼 𝐹𝐸 −𝐹𝐾 𝐹𝐽
𝐹𝐽 𝐹𝐾 𝐹𝐸 −𝐹𝐼
𝐹𝐾 −𝐹𝐽 𝐹𝐼 𝐹𝐸

.

Thus, we obtain the equation 𝐺 = 𝑯𝐹, which means that at the frequency-point 𝑝, 𝐺𝑝 = 𝑯𝑝𝐹𝑝
where all components of this equation are 4×4 matrices.

We consider the model with the noise, when 𝑔𝑛 = 𝑓𝑛 ∗ ℎ𝑛 + 𝑛𝑛 and 𝑛𝑛 is a noise. The

transformation of this equation into the frequency-domain results in the similar equation

𝐺𝑝 = 𝑯𝑝𝐹𝑝 + 𝑁𝑝, 𝑝 = 0: (𝑁 − 1). (18)

Here 𝑁 = 𝐸𝑁𝐸 + 𝐼∗𝑁𝐼 + 𝐽∗𝑁𝐽 + 𝐾∗𝑁𝐾 and 𝑁 = (𝑁)𝑝.
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Consider a quaternion signal 𝑂 = 𝐸𝑂𝐸 + 𝐼∗𝑂𝐼 + 𝐽∗𝑂𝐽 + 𝐾∗𝑂𝐾 which is a filtered signal 𝑂 =

𝑌𝐺, i.e., at the frequency 𝑝, we have 𝑂𝑝 = 𝑌𝑝𝐺𝑝 = 𝑌𝑝(𝑯𝑝𝐹𝑝 + 𝑁𝑝). The filter, or the frequency

characteristics Y is defined as the filter that minimizes the RMS error between 𝑂 and 𝐹. To

derive such an optimal filter, we consider the Lagrangian

ℒ 𝑌𝑝 = 𝐹𝑝 − 𝑌𝑝(𝑯𝑝𝐹𝑝 + 𝑁𝑝)
2
= min.

Therefore, the optimal filter is

𝑌 =
𝑯′𝜙𝐹

𝑯 2𝜙𝐹 + 𝜙𝑁
=

ഥ𝑯𝑇𝜙𝐹
𝑯 2𝜙𝐹 + 𝜙𝑁

=
ഥ𝑯𝑇

𝑯 2 + 𝜙𝑁/𝐹
. (21)

Here, the noise to signal ratio 𝜙𝑁/𝐹 = 𝜙𝑁/𝜙𝐹 . In the given (𝐸, 𝐼∗, 𝐽∗, 𝐾∗)-basis, the matrix-

filter 𝑌 = 𝑌𝑝 can be written as

𝑌 =
𝜙𝐹

𝑯 2𝜙𝐹 + 𝜙𝑁
ഥ𝑯𝐸 − 𝐼∗ഥ𝑯𝐼 − 𝐽∗ഥ𝑯𝐽 − 𝐾∗ഥ𝑯𝐾 . (22)
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Thus, the inverse problem of restoration has been solved. The result of

optimal filtration is 𝑂 = 𝑌𝐺 at the frequency-point 𝑝. The filtered quaternion

signal መ𝑓 = ( መ𝑓𝐸 , መ𝑓𝐼 , መ𝑓𝐽, መ𝑓𝐾) is calculated as

መ𝑓𝐸 = 𝑭−1𝑂𝐸 , መ𝑓𝐼 = 𝑭−1𝑂𝐼 , መ𝑓𝐽 = 𝑭−1𝑂𝐽, መ𝑓𝐾 = 𝑭−1𝑂𝐾 .

The optimality is with respect to the MSR error. In the case when there is no

noise, 𝜙𝑁 = 0, we obtain the inverse quaternion filter described above.
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Figure 4: The 𝑒-, 𝑖-, 𝑗-, and 𝑘 components of the noisy quaternion signal.
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Figure 5: The 𝑒-, 𝑖-, 𝑗-, and 𝑘 components of the filtered quaternion signal  𝑜𝑛 .
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Figure 6: The 𝑒-, 𝑖-, 𝑗-, and 𝑘 components of the filtered quaternion signal 𝑜𝑛 are plotted

together with the corresponding components of the original signal 𝑓𝑛 .
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SUMMARY

• The multiple signals were considered in the quaternion space and the cyclic quaternion

convolution was described and calculated in the frequency domain, by using the right-side

quaternion discrete Fourier transform (QDFT).

• The traditional approach of multiplication QDFTs does not work in quaternion algebra,

because of non-commutativity of quaternion multiplication.

• The components of the convolution were processed in the frequency domain by special 4×4

matrices that allows us to solve the inverse problem, namely, to restore the degraded

quaternion signal in a linear system with the convolution plus a noise.

• The characteristic of the quaternion optimal filter was found.
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