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Abstract

• This paper analyzes the method of the Fourier transforms-based alpha-rooting in
image enhancement and describes a new generalized method of alpha-rooting, by
using the autocorrelation function of the image.

• The alpha-rooting can be described by the Taylor series in the frequency-domain,
as well as in the spatial domain. In such a series, the alpha-rooting is the
convolution of the image with the series of the autocorrelation functions.

• The application of the Taylor series in alpha-rooting allows us to use the
parameterized filters even for alpha parameter in a much larger interval than [0,1].

• New correlation alpha-rooting filters are presented.

• Examples of application of these two filters for enhancement of the grayscale
‘jetplane’ image are given.

3/23/2022 3SPIE: Defense+Commercial Sensing - 2022



Alpha-rooting and approximation
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In the 𝛼-rooting method of image enhancement, the magnitude of the 2-D discrete Fourier transform (DFT) of the

discrete image of 𝑁 ×𝑀 pixel is modified as follows:

𝐹𝑝,𝑠 → 𝐹𝑝,𝑠
𝛼
, 𝑝 = 0: 𝑁 − 1 , 𝑠 = 0: 𝑀 − 1 , 1

where the parameter 𝛼 is from the interval (0,1). The phase 𝜑 𝑝, 𝑠 of the transform does not change. The coefficients

of the Fourier transform are multiplied by the coefficients 𝐹𝑝,𝑠
𝛼−1

,

𝐹𝑝,𝑠 = 𝐹𝑝,𝑠 𝑒
𝑖𝜑 𝑝,𝑠 → 𝑌𝑝,𝑠 = 𝐹𝑝,𝑠

𝛼
𝑒𝑖𝜑 𝑝,𝑠 = 𝐹𝑝,𝑠

𝛼−1
𝐹𝑝,𝑠 𝑒

𝑖𝜑 𝑝,𝑠 = 𝐹𝑝,𝑠
𝛼−1

𝐹𝑝,𝑠. 2

Here, 𝜑 𝑝, 𝑠 is the phase of the transform at frequency-point 𝑝, 𝑠 .

The enhanced image is the inverse 2-D DFT of the modified transform

𝑦𝑛,𝑚 =
1

𝑁𝑀


𝑝=0

𝑁−1



𝑠=0

𝑀−1

𝐹𝑝,𝑠 𝐹𝑝,𝑠
𝛼−1

𝑊𝑁
−𝑛𝑝

𝑊𝑀
−𝑚𝑠, 𝑛 = 0:𝑁 − 1),𝑚 = 0: 𝑀 − 1 . (3)

where the exponential coefficients are 𝑊𝑁
𝑡 = exp −

𝑖2𝜋𝑡

𝑁
and 𝑊𝑀

𝑡 = exp −
𝑖2𝜋𝑡

𝑀
.
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For simplicity of calculation, we consider the 1-D case of alpha-rooting of a signal 𝑓𝑛, whose 𝑁-point discrete Fourier

transform 𝐹𝑝 is modified as

𝐹𝑝 → 𝐹𝑝 𝐹𝑝
𝛼−1

, 𝑝 = 0: 𝑁 − 1 . 4

The inverse discrete Fourier transform of 𝐹𝑝
2

is equal to the autocorrelation function

𝐾 𝑛 = 

𝑘=0

𝑁−1

𝑓𝑛+𝑘 𝑓𝑘 , 𝑛 = 0: 𝑁 − 1 . 5

The signal is considered periodic and the subscripts in this sum are calculated by modulo 𝑁.

For this autocorrelation function, we will use the notation 𝐾 = 𝑓 ∘ 𝑓. Note that 𝐾 −𝑛 = 𝐾 𝑛 .

If we consider the inverse DFT of the spectrum 𝐹𝑝
4
, we obtain the second order correlation,

i.e., 𝐾 ∘ 𝐾 = 𝑓 ∘ 𝑓 ∘ 𝑓 ∘ 𝑓, or simply 𝐾 2 = 𝑓 4 .
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The Taylor series

(1 + 𝑥)𝑎 = 1 +

𝑛=1

∞
𝑎
𝑛

𝑥𝑛 , 𝑥 < 1,

can be written as

𝑥𝑎 = 

𝑛=0

∞
𝑎
𝑛

𝑥 − 1 𝑛 = 1 +

𝑛=1

∞
𝑎
𝑛

𝑥 − 1 𝑛 , 0 < 𝑥 < 2. 6

Here, the binomial coefficients are

𝑎
𝑛

=
𝑎 𝑎 − 1 ⋯ 𝑎 − 𝑛 + 1

𝑛!
.

We consider the spectrum 𝐹𝑝
𝛼−1

in the form

𝐹𝑝
𝛼−1

= 𝐹𝑝
2

𝛼−1
2
, 𝑝 = 0,1, … , 𝑁 − 1 . 7
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To use the Taylor series for this power, we perform the normalization by the constant 𝐴0, i.e.,

𝐹𝑝 = 𝐹𝑝/𝐴, 𝑝 = 1, 2, … , 𝑁 − 1 , (8) 

such that |𝐹𝑝| < 1. For instance, the normalization coefficient A = 𝑁 ×max 𝐹𝑝 can be used.

Denoting 𝑏 = (𝑎 − 1)/2 and 𝐺𝑝 = 𝐹𝑝
2
, we write the following Taylor series:

𝐹𝑝
𝛼−1

= 

𝑛=0

∞

𝑏
𝑛

𝐺𝑝 − 1
𝑛
, 0 < 𝐺𝑝 < 1. 9
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Here, the cases when 𝐺𝑝 = 0 and 1 are not considered, since the alpha-rooting does not change the values of such

components. The inverse DFT of this series can be written as

𝐻 𝑥 =
1

𝑁


𝑝=0

𝑁−1

𝐹𝑝
𝛼−1

𝑊𝑁
−𝑝𝑥

= 

𝑛=0

∞

𝑏
𝑛

𝐾 − 𝛿 𝑛 𝑥 , 𝑥 = 0,1, … , 𝑁 − 1 . 10

In this sum, 𝛿(𝑥) is the discrete unit sample function, and the polynomials are

𝐾 − 𝛿 𝑛 𝑥 = 

𝑚=0

𝑛
𝑛
𝑚

𝐾 𝑚 𝑥 ∗ −𝛿 𝑥
𝑛−𝑚

, 11

and 𝐾 𝑚 𝑥 = 𝐾 ∘ 𝐾 ∘ ⋯∘ 𝐾
𝑚 times

𝑥 and 𝛿 𝑘 𝑥 = 𝛿 ∘ 𝛿 ∘ ⋯ ∘ 𝛿
𝑘 times

𝑥 = 𝛿 𝑥 , when integer 𝑘 > 0.

Thus, the function 𝐻 𝑥 , that represents the filter of the alpha-rooting in time domain, can be written in Eq. 10 as

𝐻 𝑥 = 𝛿 𝑥 + 𝑏 𝐾 𝑥 − 𝛿 𝑥 +
𝑏 𝑏 − 1

2
𝐾 2 𝑥 − 2𝐾 𝑥 + 𝛿 𝑥 +

+
𝑏 𝑏 − 1 𝑏 − 2

3!
𝐾 3 𝑥 − 3𝐾 2 𝑥 + 3𝐾 𝑥 + 𝛿 𝑥 +⋯ . 12
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In the time-domain, the alpha-rooting 𝐹𝑝 → 𝐹𝑝 𝐹𝑝
𝛼−1

means the convolution of the signal 𝑓𝑛 with the obtained filter

𝐻 𝑥 . This filter in the zeroth approximation is equal to

𝐻0 𝑥 = 𝛿 𝑥 ,

and in the first approximation, it is equal to

𝐻1 𝑥 = 𝛿 𝑥 + 𝑏 𝐾 𝑥 − 𝛿 𝑥 = 1 − 𝑏 𝛿 𝑥 + 𝑏𝐾 𝑥 , 13

and in the 2nd approximation, it is equal to

𝐻2 𝑥 = 𝛿 𝑥 + 𝑏 𝐾 𝑥 − 𝛿 𝑥 +
𝑏 𝑏 − 1

2
𝐾 2 𝑥 − 2𝐾 𝑥 + 𝛿 𝑥

=
1 − 𝑏 2 − 𝑏

2
𝛿 𝑥 + 𝑏 2 − 𝑏 𝐾 𝑥 +

𝑏 𝑏 − 1

2
𝐾 2 𝑥 . 14
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The results of the alpha-rooting of the signal 𝑓𝑛 when using these approximations are

𝑦0 𝑛 = 𝑓 ∗ 𝐻0 𝑛 = 𝑓𝑛,

𝑦1 𝑛 = 𝑓 ∗ 𝐻1 𝑛 = 1 − 𝑏 𝑓𝑛 + 𝑏𝑓𝑛 ∗ 𝐾 𝑛 , (15)

𝑦2 𝑛 = 𝑓 ∗ 𝐻2 𝑛 =
1 − 𝑏 2 − 𝑏

2
𝑓𝑛 + 𝑏 2 − 𝑏 𝑓𝑛 ∗ 𝐾 𝑛 +

𝑏 𝑏 − 1

2
𝑓𝑛 ∗ 𝐾

2 𝑛 . 16

In Eq. 15, the coefficient (1 − 𝑏) > 0 when 0 < 𝑎 < 3. Using the coefficients

𝑐1 =
1 − 𝑏 2 − 𝑏

2
, 𝑐2 = 𝑏 2 − 𝑏 , and 𝑐3 =

𝑏 𝑏 − 1

2
,

The signal in the 2nd approximation can be written as

𝑦2 𝑛 = 𝑓 ∗ 𝐻2 𝑛 = 𝑐1𝑓𝑛 + 𝑐2𝑓𝑛 ∗ 𝐾 𝑛 + 𝑐3𝑓𝑛 ∗ 𝐾
2 𝑛 .
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In the first approximation, the convolution is the mean of the signal and its convolution with autocorrelation function.

It also can be written as the signal plus a gradient,

𝑦1 𝑛 = 𝑓𝑛 − 𝑏 𝑓𝑛 − 𝑓𝑛 ∗ 𝐾 𝑛 , −𝑏 > 0 .

Thus, the correlation function is used to calculate a gradient of the signal (image).

It is interesting to note that the sum of the coefficients in Eq. 16 is equals to 1, too. Indeed,

𝑐1 + 𝑐2 + 𝑐3 =
1 − 𝑏 2 − 𝑏

2
+ 𝑏 2 − 𝑏 +

𝑏 𝑏 − 1

2
=
2 − 3𝑏 + 𝑏2 + 4𝑏 − 2𝑏2 + 𝑏2 − 𝑏

2
= 1.

The same is for the higher than the 2nd order approximation of the alpha-rooting filter 𝐻 𝑥 in Eq. 12.
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Example 1:

Consider the 𝛼 =
3

4
case, for which 𝑏 =

𝛼−1

2
= −

1

8
.

Then, the 1st and 2nd approximations of the alpha-rooting are the signals

𝑦1 𝑛 = 𝑓 ∗ 𝐻1 𝑛 =
9

8
𝑓𝑛 −

1

8
𝑓𝑛 ∗ 𝐾 𝑛 = 𝑦1 𝑛 = 𝑓𝑛 +

1

8
𝑓𝑛 − 𝑓𝑛 ∗ 𝐾 𝑛 , (18)

and

𝑦2 𝑛 = 𝑓 ∗ 𝐻2 𝑛 =
1

64
76.5𝑓𝑛 − 17𝑓𝑛 ∗ 𝐾 𝑛 + 4.5𝑓𝑛 ∗ 𝐾

2 𝑛 . 19

= 1.1953𝑓
𝑛
− 0.2656𝑓𝑛 ∗ 𝐾 𝑛 + 0.0703𝑓𝑛 ∗ 𝐾

2 𝑛 .

For the 0.9-rooting approximations, we obtain the signals

𝑦1 𝑛 = 𝑓 ∗ 𝐻1 𝑛 =
21

20
𝑓𝑛 −

1

20
𝑓𝑛 ∗ 𝐾 𝑛 = 𝑦1 𝑛 = 𝑓𝑛 +

1

20
𝑓𝑛 − 𝑓𝑛 ∗ 𝐾 𝑛 , (20)

and

𝑦2 𝑛 = 𝑓 ∗ 𝐻2 𝑛 = 1.0762𝑓𝑛 − 0.1025𝑓𝑛 ∗ 𝐾 𝑛 + 0.0262𝑓𝑛 ∗ 𝐾
2 𝑛 . 21
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One can see form these two examples that the coefficients 𝑐1, 𝑐2, and 𝑐3 for the 0.9–rooting became smaller, when

comparing with the 𝛼 = 0.75 case.

The graphs of these coefficients as functions of 𝛼, i.e., 𝑐1(𝛼), 𝑐2(𝛼), and 𝑐3(𝛼) are shown in Fig. 1, when 𝛼 runs the

interval [0.2,1]. A significant contribution of the correlation function in alpha-rooting is when the parameter 𝛼 takes

small values. When 𝛼 is close to 1, the coefficients 𝑐2(𝛼) and 𝑐3(𝛼) are very small.

(a)                                  (b)                                (c)

Figure 1. (a) The coefficients of the 2nd approximation of the alpha-rooting. 
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The filter 𝐻 𝑥 in Eq. 12 was derived for the normalized signal ሙ𝑓𝑛 = 𝑓𝑛/𝐴 and not for 𝑓𝑛. For instance, in the first

approximation

𝑦1 𝑛 =
𝑓𝑛
𝐴
∗ 𝐻1 𝑛 , or 𝑦1 𝑛𝐴 = 𝑓𝑛 ∗ 𝐻1 𝑛 .

Here, the filter 𝐻1 𝑛 = (1 − 𝑏)𝛿 𝑛 + 𝑏𝐾 𝑛 is defined by the autocorrelation function 𝐾 𝑛 of ሙ𝑓𝑛, i.e., up to the

constant 1/𝐴2, it is the autocorrelation function 𝑅 𝑛 of the original signal. Thus,

𝐴 𝑦1 𝑛 = 1 − 𝑏 𝑓𝑛 + 𝑏
1

𝐴2
𝑓𝑛 ∗ 𝑅 𝑛 . (22)

Similarly, the 2nd approximation of the alpha-rooting can be written as

𝐴 𝑦2 𝑛 = 𝑐1𝑓𝑛 + 𝑐2
1

𝐴2
𝑓𝑛 ∗ 𝑅 𝑛 + 𝑐3

1

𝐴4
𝑓𝑛 ∗ 𝑅

2 𝑛 . 23

The output of the alpha-rooting will be scaled to the original range, let say [1,255]. Therefore, the constant A in the

left parts of Eqs. 22 and 23, can be omitted. The alpha-rooting is not linear transformation.
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1. The first modification of the alpha-rooting of the signal is defined as

𝑦1 𝑛 = 1 − 𝑏 𝑓𝑛 + (𝑏𝐴1)𝑓𝑛 ∗ 𝐾 𝑛 . (24)

2. The 2nd modification of the alpha-rooting of the original signal is defined as

𝑦2 𝑛 = 𝑐1𝑓𝑛 + (𝑐2𝐴2)𝑓𝑛 ∗ 𝐾 𝑛 + (𝑐3𝐵2)𝑓𝑛 ∗ 𝐾
2 𝑛 . 25

We will call the corresponding filters

𝐻1 𝑛 = 1 − 𝑏 𝛿 𝑛 + (𝑏𝐴1)𝐾 𝑛 26

and

𝐻2 𝑛 = 𝑐1𝛿 𝑛 + (𝑐2𝐴2)𝐾 𝑛 + (𝑐3𝐵2)𝐾
2 𝑛 27

the 1st and 2nd order correlation alpha-rooting filters, respectively.

The coefficients 𝑐2, and 𝑐3 at the autocorrelation function in the above approximations are small. Therefore, in these

new filters, the parameters 𝐴1, 𝐴2, and 𝐵2 will be chosen with large values.
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Figure 2 show the “jetplane” image of 256×256 pixels in part (a), the first and second approximation of the 0.75-

rooting in parts (b) and (c), respectively. The parameters of the filters are 𝐴1 = 10, and 𝐴2 = 5, 𝐵2 = 10. In part d,

the result of the traditional 0.75-rooting. The last image is shown with twice large amplitude (i.e., 2𝑦2); otherwise,

the displayed image will be very dark.

(a)                                   (b)                                      (c)                                  (d)

Figure 2. (a) The original image, (b) the 1st and (c) 2nd approximations, and (d) the alpha-rooting with 𝛼 = 0.75.
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Figure 3 shows the same image in part (a) and the first and second approximations of the 0.90-rooting in parts (b) and

(c), respectively. The parameters of the filters are 𝐴1 = 10 and 𝐴2 = 10, 𝐵2 = 20.

(a) (b)                                                   (c)

Figure 3. (a) The “jetplane” image, and (b) the 1st and (c) 2nd approximations of the alpha-rooting with 𝛼 = 0.90.
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The traditional alpha-rooting works for the

parameter alpha from the interval (0,1). The above

Eqs. 12-27 can be used for the values of alpha

parameter outside this interval, too. Figure 4 shows

the 1st and 2nd approximations, when 𝛼 =1.5. The

parameters of the filters are 𝐴1 = −2 and

𝐴2 = 1, 𝐵2 = 20.

(a) (b)

Figure 4. (a) The 1st and (b) 2nd approximations 

of the image when 𝛼 = 1.5.

Figure 5 shows the 1st approximation of the

alpha-rooting, when 𝛼 = −0.75. The parameters

of the filter 𝐴1 = −2.

Figure 5. The 1st approximations of the image when 𝛼 = −0.75.

The best parameter of alpha for the proposed method can be 

found, by using a measure of enhancement. For instance, the 

EME enhancement measure can be used, as in the traditional 

method of alpha-rooting 
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SUMMARY

This paper analyzes the traditional method of the Fourier transforms-based alpha-rooting in image

enhancement and presents the approximations of the alpha-rooting, by using the autocorrelation

function of the image. In the spatial domain, the alpha-rooting can be described by the Taylor

series. For this, the inverse 2-D DFT is used. In such a series, the alpha-rooting is the convolution

of the image with the series of the autocorrelation functions. The application of the Taylor series

in the method of alpha-rooting allows to use the new correlation alpha-rooting filters even for

values of alpha in an interval larger than [0,1]. Examples of application of correlation alpha-

rooting filters for enhancement of the grayscale image ‘jetplane’ are given. We believe that the

proposed methods can also be used to enhance color images.
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