Alpha-rooting and Correlation Method of Image Enhancement

Artyom M. Grigoryan^a and Sos S. Agaian^b

^aDepartment of Electrical and Computer Engineering The University of Texas at San Antonio, San Antonio, Texas, USA and

^bComputer Science Department, College of Staten Island and the Graduate Center, Staten Island, NY, USA

amgrigoryan@utsa.edu, sos.agaian@csi.cuny.edu

OUTLINE

- Introduction
- Alpha Routing Method
- Alpha-rooting in Taylor series
- Correlation function in Alpha-rooting
- Parameterized Alpha-rooting with Correlation functions
- Examples
- Summary
- References

Abstract

- This paper analyzes the method of the Fourier transforms-based alpha-rooting in image enhancement and describes a new generalized method of alpha-rooting, by using the autocorrelation function of the image.
- The alpha-rooting can be described by the Taylor series in the frequency-domain, as well as in the spatial domain. In such a series, the alpha-rooting is the convolution of the image with the series of the autocorrelation functions.
- The application of the Taylor series in alpha-rooting allows us to use the parameterized filters even for alpha parameter in a much larger interval than [0,1].
- New correlation alpha-rooting filters are presented.
- Examples of application of these two filters for enhancement of the grayscale 'jetplane' image are given.

Alpha-rooting and approximation

In the α -rooting method of image enhancement, the magnitude of the 2-D discrete Fourier transform (DFT) of the discrete image of $N \times M$ pixel is modified as follows:

$$|F_{p,s}| \to |F_{p,s}|^{\alpha}$$
, $p = 0: (N-1)$, $s = 0: (M-1)$, (1)

where the parameter α is from the interval (0,1). The phase $\varphi(p,s)$ of the transform does not change. The coefficients of the Fourier transform are multiplied by the coefficients $|F_{p,s}|^{\alpha-1}$,

$$F_{p,s} = |F_{p,s}| e^{i\varphi(p,s)} \to Y_{p,s} = |F_{p,s}|^{\alpha} e^{i\varphi(p,s)} = |F_{p,s}|^{\alpha-1} |F_{p,s}| e^{i\varphi(p,s)} = |F_{p,s}|^{\alpha-1} F_{p,s}.$$
(2)

Here, $\varphi(p, s)$ is the phase of the transform at frequency-point (p, s). The enhanced image is the inverse 2-D DFT of the modified transform

$$y_{n,m} = \frac{1}{NM} \sum_{p=0}^{N-1} \sum_{s=0}^{M-1} F_{p,s} |F_{p,s}|^{\alpha-1} W_N^{-np} W_M^{-ms}, \qquad n = 0: N-1, m = 0: (M-1).$$
(3)

where the exponential coefficients are $W_N^t = \exp\left(-\frac{i2\pi t}{N}\right)$ and $W_M^t = \exp\left(-\frac{i2\pi t}{M}\right)$.

3/23/2022

For simplicity of calculation, we consider the 1-D case of alpha-rooting of a signal f_n , whose N-point discrete Fourier transform F_p is modified as

$$F_p \to F_p |F_p|^{\alpha - 1}, \qquad p = 0: (N - 1).$$
 (4)

The inverse discrete Fourier transform of $|F_p|^2$ is equal to the autocorrelation function

$$K(n) = \sum_{k=0}^{N-1} f_{n+k} f_k, \qquad n = 0: (N-1).$$
(5)

The signal is considered periodic and the subscripts in this sum are calculated by modulo N. For this autocorrelation function, we will use the notation $K = f \circ f$. Note that K(-n) = K(n).

If we consider the inverse DFT of the spectrum $|F_p|^4$, we obtain the second order correlation, i.e., $K \circ K = f \circ f \circ f \circ f$, or simply $K^{(2)} = f^{(4)}$.

The Taylor series

$$(1+x)^a = 1 + \sum_{n=1}^{\infty} {a \choose n} x^n$$
, $|x| < 1$,

can be written as

$$x^{a} = \sum_{n=0}^{\infty} {a \choose n} (x-1)^{n} = 1 + \sum_{n=1}^{\infty} {a \choose n} (x-1)^{n}, \qquad 0 < x < 2.$$
(6)

Here, the binomial coefficients are

$$\binom{a}{n} = \frac{a(a-1)\cdots(a-n+1)}{n!}.$$

We consider the spectrum $|F_p|^{\alpha-1}$ in the form

$$F_p \Big|^{\alpha - 1} = \left(\Big| F_p \Big|^2 \right)^{\frac{\alpha - 1}{2}}, \qquad p = 0, 1, \dots, (N - 1).$$
 (7)

To use the Taylor series for this power, we perform the normalization by the constant A_0 , i.e.,

$$F_p = F_p / A, \quad p = 1, 2, ..., (N-1),$$
 (8)

such that $|F_p| < 1$. For instance, the normalization coefficient $A = N \times \max |F_p|$ can be used.

Denoting b = (a - 1)/2 and $G_p = |F_p|^2$, we write the following Taylor series:

$$|F_p|^{\alpha-1} = \sum_{n=0}^{\infty} {b \choose n} (G_p - 1)^n, \qquad 0 < G_p < 1.$$
 (9)

Here, the cases when $G_p = 0$ and 1 are not considered, since the alpha-rooting does not change the values of such components. The inverse DFT of this series can be written as

$$H(x) = \frac{1}{N} \sum_{p=0}^{N-1} |F_p|^{\alpha - 1} W_N^{-px} = \sum_{n=0}^{\infty} {b \choose n} (K - \delta)^n (x), \qquad x = 0, 1, \dots, (N - 1).$$
(10)

In this sum, $\delta(x)$ is the discrete unit sample function, and the polynomials are

$$(K - \delta)^{n}(x) = \sum_{m=0}^{n} {n \choose m} K^{(m)}(x) * (-\delta(x))^{n-m}, \qquad (11)$$

and
$$K^{(m)}(x) = \left(\underbrace{K \circ K \circ \cdots \circ K}_{m \text{ times}}\right)(x)$$
 and $\delta^{(k)}(x) = \left(\underbrace{\delta \circ \delta \circ \cdots \circ \delta}_{k \text{ times}}\right)(x) = \delta(x)$, when integer $k > 0$.

Thus, the function H(x), that represents the filter of the alpha-rooting in time domain, can be written in Eq. 10 as

$$H(x) = \delta(x) + b(K(x) - \delta(x)) + \frac{b(b-1)}{2} (K^{(2)}(x) - 2K(x) + \delta(x)) + \frac{b(b-1)(b-2)}{3!} (K^{(3)}(x) - 3K^{(2)}(x) + 3K(x) + \delta(x)) + \cdots$$
(12)

In the time-domain, the alpha-rooting $F_p \to F_p |F_p|^{\alpha-1}$ means the convolution of the signal f_n with the obtained filter H(x). This filter in the zeroth approximation is equal to

$$H_0(x) = \delta(x),$$

and in the first approximation, it is equal to

$$H_1(x) = \delta(x) + b(K(x) - \delta(x)) = (1 - b)\delta(x) + bK(x),$$
(13)

and in the 2nd approximation, it is equal to

$$H_{2}(x) = \delta(x) + b(K(x) - \delta(x)) + \frac{b(b-1)}{2} (K^{(2)}(x) - 2K(x) + \delta(x))$$
$$= \frac{(1-b)(2-b)}{2} \delta(x) + b(2-b)K(x) + \frac{b(b-1)}{2} K^{(2)}(x).$$
(14)

The results of the alpha-rooting of the signal f_n when using these approximations are

$$(y_0)_n = (f * H_0)_n = f_n,$$

$$(y_1)_n = (f * H_1)_n = (1 - b)f_n + bf_n * K(n),$$
(15)

$$(y_2)_n = (f * H_2)_n = \frac{(1-b)(2-b)}{2} f_n + b(2-b)f_n * K(n) + \frac{b(b-1)}{2} f_n * K^{(2)}(n).$$
(16)

In Eq. 15, the coefficient (1 - b) > 0 when 0 < a < 3. Using the coefficients

$$c_1 = \frac{(1-b)(2-b)}{2}$$
, $c_2 = b(2-b)$, and $c_3 = \frac{b(b-1)}{2}$,

The signal in the 2nd approximation can be written as

$$(y_2)_n = (f * H_2)_n = c_1 f_n + c_2 f_n * K(n) + c_3 f_n * K^{(2)}(n).$$

SPIE: Defense+Commercial Sensing - 2022

In the first approximation, the convolution is the mean of the signal and its convolution with autocorrelation function.

It also can be written as the signal plus a gradient,

$$(y_1)_n = f_n - b[f_n - f_n * K(n)], \qquad (-b > 0).$$

Thus, the correlation function is used to calculate a gradient of the signal (image).

It is interesting to note that the sum of the coefficients in Eq. 16 is equals to 1, too. Indeed,

$$c_1 + c_2 + c_3 = \frac{(1-b)(2-b)}{2} + b(2-b) + \frac{b(b-1)}{2} = \frac{2-3b+b^2+4b-2b^2+b^2-b}{2} = 1.$$

The same is for the higher than the 2nd order approximation of the alpha-rooting filter H(x) in Eq. 12.

Example 1:

Consider the $\alpha = \frac{3}{4}$ case, for which $b = \frac{\alpha - 1}{2} = -\frac{1}{8}$. Then, the 1st and 2nd approximations of the alpha-rooting are the signals

$$(y_1)_n = (f * H_1)_n = \frac{9}{8}f_n - \frac{1}{8}f_n * K(n) = (y_1)_n = f_n + \frac{1}{8}[f_n - f_n * K(n)],$$
(18)

and

$$(y_2)_n = (f * H_2)_n = \frac{1}{64} [76.5f_n - 17f_n * K(n) + 4.5f_n * K^{(2)}(n)].$$

$$= 1.1953f_n - 0.2656f_n * K(n) + 0.0703f_n * K^{(2)}(n).$$
(19)

For the 0.9-rooting approximations, we obtain the signals

$$(y_1)_n = (f * H_1)_n = \frac{21}{20} f_n - \frac{1}{20} f_n * K(n) = (y_1)_n = f_n + \frac{1}{20} [f_n - f_n * K(n)],$$
(20)

and

$$(y_2)_n = (f * H_2)_n = 1.0762f_n - 0.1025f_n * K(n) + 0.0262f_n * K^{(2)}(n).$$
(21)

3/23/2022

12

One can see form these two examples that the coefficients c_1, c_2 , and c_3 for the 0.9–rooting became smaller, when comparing with the $\alpha = 0.75$ case.

The graphs of these coefficients as functions of α , i.e., $c_1(\alpha)$, $c_2(\alpha)$, and $c_3(\alpha)$ are shown in Fig. 1, when α runs the interval [0.2,1]. A significant contribution of the correlation function in alpha-rooting is when the parameter α takes small values. When α is close to 1, the coefficients $c_2(\alpha)$ and $c_3(\alpha)$ are very small.

Figure 1. (a) The coefficients of the 2nd approximation of the alpha-rooting.

The filter H(x) in Eq. 12 was derived for the normalized signal $\check{f}_n = f_n/A$ and not for f_n . For instance, in the first approximation

$$(y_1)_n = \frac{f_n}{A} * H_1(n),$$
 or $(y_1)_n A = f_n * H_1(n).$

Here, the filter $H_1(n) = (1 - b)\delta(n) + bK(n)$ is defined by the autocorrelation function K(n) of \check{f}_n , i.e., up to the constant $1/A^2$, it is the autocorrelation function R(n) of the original signal. Thus,

$$A(y_1)_n = (1-b)f_n + b\frac{1}{A^2}f_n * R(n).$$
(22)

Similarly, the 2nd approximation of the alpha-rooting can be written as

$$A(y_2)_n = c_1 f_n + c_2 \frac{1}{A^2} f_n * R(n) + c_3 \frac{1}{A^4} f_n * R^{(2)}(n).$$
(23)

The output of the alpha-rooting will be scaled to the original range, let say [1,255]. Therefore, the constant A in the left parts of Eqs. 22 and 23, can be omitted. The alpha-rooting is not linear transformation.

1. The first modification of the alpha-rooting of the signal is defined as

$$(y_1)_n = (1-b)f_n + (bA_1)f_n * K(n).$$
(24)

2. The 2nd modification of the alpha-rooting of the original signal is defined as

$$(y_2)_n = c_1 f_n + (c_2 A_2) f_n * K(n) + (c_3 B_2) f_n * K^{(2)}(n).$$
(25)

We will call the corresponding filters

$$H_1(n) = (1-b)\delta(n) + (bA_1)K(n)$$
(26)

and

$$H_2(n) = c_1 \delta(n) + (c_2 A_2) K(n) + (c_3 B_2) K^{(2)}(n)$$
(27)

the 1st and 2nd order correlation alpha-rooting filters, respectively.

The coefficients c_2 , and c_3 at the autocorrelation function in the above approximations are small. Therefore, in these new filters, the parameters A_1 , A_2 , and B_2 will be chosen with large values.

Figure 2 show the "jetplane" image of 256×256 pixels in part (a), the first and second approximation of the 0.75-rooting in parts (b) and (c), respectively. The parameters of the filters are $A_1 = 10$, and $A_2 = 5$, $B_2 = 10$. In part d, the result of the traditional 0.75-rooting. The last image is shown with twice large amplitude (i.e., $2y_2$); otherwise, the displayed image will be very dark.

Figure 2. (a) The original image, (b) the 1st and (c) 2nd approximations, and (d) the alpha-rooting with $\alpha = 0.75$.

Figure 3 shows the same image in part (a) and the first and second approximations of the 0.90-rooting in parts (b) and (c), respectively. The parameters of the filters are $A_1 = 10$ and $A_2 = 10$, $B_2 = 20$.

Figure 3. (a) The "jetplane" image, and (b) the 1st and (c) 2nd approximations of the alpha-rooting with $\alpha = 0.90$.

The traditional alpha-rooting works for the parameter alpha from the interval (0,1). The above Eqs. 12-27 can be used for the values of alpha parameter outside this interval, too. Figure 4 shows the 1st and 2nd approximations, when $\alpha = 1.5$. The parameters of the filters are $A_1 = -2$ and $A_2 = 1, B_2 = 20.$

(b)

Figure 4. (a) The 1st and (b) 2nd approximations of the image when $\alpha = 1.5$.

Figure 5 shows the 1st approximation of the alpha-rooting, when $\alpha = -0.75$. The parameters of the filter $A_1 = -2$.

Figure 5. The 1st approximations of the image when $\alpha = -0.75$.

The best parameter of alpha for the proposed method can be found, by using a measure of enhancement. For instance, the EME enhancement measure can be used, as in the traditional method of alpha-rooting

(a)

SUMMARY

This paper analyzes the traditional method of the Fourier transforms-based alpha-rooting in image enhancement and presents the approximations of the alpha-rooting, by using the autocorrelation function of the image. In the spatial domain, the alpha-rooting can be described by the Taylor series. For this, the inverse 2-D DFT is used. In such a series, the alpha-rooting is the convolution of the image with the series of the autocorrelation functions. The application of the Taylor series in the method of alpha-rooting allows to use the new correlation alpha-rooting filters even for values of alpha in an interval larger than [0,1]. Examples of application of correlation alpharooting filters for enhancement of the grayscale image 'jetplane' are given. We believe that the proposed methods can also be used to enhance color images.

REFERENCES

- 1. A.M. Grigoryan, S.S. Agaian, "Image processing contrast enhancement," 22p, *Wiley Encyclopedia of Electrical and Electronics Engineering*, (2017). doi: 10.1002/047134608X.W5525.pub2
- 2. A.M. Grigoryan, S.S. Agaian, "Transform-based image enhancement algorithms with performance measure," Advances in Imaging and Electron Physics, Academic Press, vol. 130, 165–242, (May 2004).
- 3. A.M. Grigoryan, S.S. Agaian, Quaternion and Octonion Color Image Processing with MATLAB, SPIE PRESS, vol. PM279 (2018). https://doi.org/10.1117/3.2278810
- 4. A.M. Grigoryan, J. Jenkinson, S.S. Agaian, "Quaternion Fourier transform based alpha-rooting method for color image measurement and enhancement," SIGPRO-D-14-01083R1, Signal Processing, vol. 109, 269-289, April (2015). doi: 10.1016/j.sigpro.2014.11.019