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From CT to DT Systems

In the previous module, we discussed the basic idea of discretization
Basically, how to obtain state-space matrices for discretized
representation of CT systems
This necessitates understanding the calculus of DT systems, starting
from the difference equation

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k)

Note: A,B,C ,D here are assumed to be discretized one (derived
from one the discretization methods in the previous module). In
other words, they’re Ã, B̃, . . .
In many situations, we arrive at a DT system after discretization
However, in many other situations, DT systems (difference
equations) depict the actual physics
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DT Systems: An Example

The problem of compound interest/loan payment is a DT control
system
Suppose you owe $1000 to a bank at t = k = 0, and your monthly
interest rate is 1.5%
Also, suppose that the minimum payment is $50 and you never pay
more than the minimum payment
Hence, we can write:

x(k + 1) = 1.015x(k) + u(k), x(0) = 1000

x(k) represents the amount of money you still owe; u(k) = −50 is
the constant monthly payment
Question 1: Compute your remaining debt after 10 payments
Question 2: How long it will take to pay it all off?
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Solution

x(k+1) = λx(k)+βu(k), x(0) = x0 = 1000, λ = 1.015, β = 1 are given

1 x(1) = λx(0) + βu(0), x(2) = λ2x(0) + λβu(0) + βu(1)
x(3) = λ3x(0) + λ2βu(0) + λβu(1) + βu(2)

2 Hence, one can write: x(k) = λkx(0) +
∑k−1

j=0 λ
jβu(k − 1− j)

3 For this particular problem, u(k) = u(j) = −50 = γ, therefore:

x(k) = λkx(0) + βγ

k−1∑
j=0

λj = λkx(0) + βγ

(
1− λk

1− λ

)
,∀k

4 Question 1 Solution:
x(10) = (1.015)10 · 1000 + (−50 · 1)

(
1− 1.01510

1− 1.015

)
=$625.40

5 Question 2 Solution: find k such that x(k) = 0

0 = (1.015)k1000− 50
(

1− 1.015k

1− 1.015

)
⇒ k ≈ 23.96 = 24 payments
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DT Systems: Why do we need it?

As we saw in the previous example, we were able to compute two
important quantities via the accurate model of loan payments
We computed how many monthly payments is needed to pay off the
debt
We can also easily obtain how much is left at any k < 24
This case that we discussed is for the scalar case, i.e.,

x(k + 1) = λx(k) + βu(k)

What if we have n-dimensional state-space, i.e.,

x(k + 1) = Ax(k) + Bu(k)

How can we find x(k) at any k? How can we find k that would yield
x(k) = 0-vector?
To do that, we need to have theory that supports DT system, in
contrast with CT LTI systems and matrix exponentials
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State Space of DT LTI Systems
x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k)

To find x(k), we need to find Ak (analogous to matrix exponentials
for the CT case)
Let’s consider that u(k) = 0, then it’s easy to see that:

x(1) = Ax(0), x(2) = Ax(1) = A2x(0), ⇒ x(k) = Akx(0)⇒ y(k) = CAkx(0)

How to find Ak? Can you simply raise the entries of A to the k-th
power?
No! You cannot! To find Ak , diagonalize A = TDT−1

Then1, we can write Ak = TDkT−1

If the matrix is not diagonalizable, find the Jordan form,
(Ak = TJkT−1)

In that case, Jk =
[
λk kλk−1

0 λk

]
for a Jordan block of λ with size 2

1We proved that in one of the homeworks.
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State Space of DT LTI Systems

So, what if we have a nonzero control u(k)?
We need to obtain an explicit solution x(k) given x(0) and u(k)
We can prove that for

x(k + 1) = Ax(k) + Bu(k)

the state solution is:

x(k) = Akx(0) +
k−1∑
j=0

Ak−1−jBu(j) = Akx(0) +
k−1∑
j=0

AjBu(k − 1− j) (∗)

This is very similar to x(t) = eAtx(0) +
∫ t

0 eA(t−τ)Bu(τ)dτ which
we derived before
Equation (∗) can be proved via induction, or even by intuition
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Solutions of DT LTI Systems

x(k) = Akx(0) +
k−1∑
j=0

Ak−1−jBu(j) = Akx(0) +
k−1∑
j=0

AjBu(k − 1− j) (∗)

The above equation entails: (a) finding closed form solution to Ak

and (b) being clever with summations (instead of integrals)
Again, as mentioned earlier, to find Ak : either find the diagonal or
Jordan canonical forms
The complexity remains if the summation is difficult to analytically
compute
Let’s do two examples to demonstrate that
Notice that there’s two ways to compute x(k)—look at (∗)
This means that you should pick the equation which is easy to
analytically evaluate
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DT LTI Systems — Example 2

x(k) = Akx(0) +
k−1∑
j=0

Ak−1−jBu(j) = Akx(0) +
k−1∑
j=0

AjBu(k − 1− j) (∗)

Consider this system:

x(k + 1) =
[
λ1 0
0 λ2

]
x(k) +

[
1
1

]
u(k)

u(k) = λk
1 , x(0) = 0, λ1,2 6= 1, 0, λ1 6= λ2

Important summation rule 1:
∑k−1

j=0 α
j = 1− αk

1− α assuming that
α 6= 1
Find x(k). Solution:

x(k) =

 kλ
k−1
1

λ
k−1
2

1 −
(

λ1
λ2

)k

1 − λ1
λ2


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DT LTI Systems — Example 3

Consider this system:

x(k + 1) =
[

1 −0.5
0.5 0

]
x(k) +

[
2
−2

]
u(k)

u(k) = 1, x(0) =
[

2
−2

]
, λ1,2 6= 1, 0, λ1 6= λ2

Important summation rule 2:

k−1∑
j=0

jαj−1 = d
dα

k−1∑
j=0

αj = d
dα

[
1− αk

1− α

]
= 1− kαk−1 + (k − 1)αk

(1− α)2

Find x(k)
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Solution to Example 3

x(k) = Akx(0) +
k−1∑
j=0

Ak−1−jBu(j) = Akx(0) +
k−1∑
j=0

AjBu(k − 1− j) (∗)

1 First, we can write A as:

A =
[

1 1
1 −1

] [
0.5 1
0 0.5

] [
0.5 0.5
0.5 −0.5

]
= TJT−1

2 Find Ak = TJkT−1, with Jk =
[

0.5k k0.5k−1

0 0.5k

]
, then:

x(k) = TJkT−1x(0) + T
k−1∑
j=0

J jT−1Bu(k − 1− j)

3 T−1Bu(k − 1− j) = T−1B = v =
[
0 2

]> constant, hence:

x(k) = TJkT−1x(0) + T
(k−1∑

j=0
J j

)
v
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Solution to Example 3 — 2

x(k) = TJkT−1x(0) + T
(k−1∑

j=0
J j

)
v

The only difficult term to evaluate in the above equation is the
summation
Everything else is given
Recall that

Jk =
[

0.5k k0.5k−1

0 0.5k

]
⇒

k−1∑
j=0

J j =
k−1∑
j=0

[
0.5j j0.5j−1

0 0.5j

]
=
[∑k−1

j=0 0.5j ∑k−1
j=0 j0.5j−1

0
∑k−1

j=0 0.5j

]
This matrix has three summations, that can be immediately
evaluated via summation rules 1 and 2, then:

x(k) = TJkT−1x(0) + T


1− 0.5k

1− 0.5
1− k0.5k−1 + (k − 1)0.5k

(1− 0.5)2

0 1− 0.5k

1− 0.5

 v
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Final Solution to Example 3

x(k) =
[

1 1
1 −1

] [
0.5k k0.5k−1

0 0.5k

] [
0.5 0.5
0.5 −0.5

] [
2
−2

]

+
[

1 1
1 −1

] 1−0.5k

1−0.5
1− k0.5k−1 + (k − 1)0.5k

(1− 0.5)2

0 1−0.5k

1−0.5

[0
2

]

=
[

1 1
1 −1

][0.5k k0.5k−1

0 0.5k

]
+

 1−0.5k

1−0.5
1− k0.5k−1 + (k − 1)0.5k

(1− 0.5)2

0 1−0.5k

1−0.5

[0
2

]

=
[

1 1
1 −1

] [
2− 0.5k 4− 3k0.5k−1 + 4(k − 1)0.5k

0 2− 0.5k

] [
0
2

]
=
[

1 1
1 −1

] [
8− 6k0.5k−1 + 8(k − 1)0.5k

4− 2 · 0.5k

]
=
[

12− 6k0.5k−1 + (8k − 10)0.5k

4− 6k0.5k−1 + (8k − 6)0.5k

]
=
[
x1(k)
x2(k)

]
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Remarks

What we’ve done so far is analyze state solutions (and you can easily
obtain output solutions) for DT systems
DT systems emerge naturally from systems where time is discrete
DT systems also emerge from discretization of CT systems
If a discretization is computed, and it’s very accurate, then
x(k) ≈ x(t) between two sampling instances
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Intro to TV DT Linear Systems

Previously, we assumed that the system is time invariant

x(k + 1) = Ax(k) + Bu(k)

x(k) = Akx(0) +
k−1∑
j=0

Ak−1−jBu(j) = Akx(0) +
k−1∑
j=0

AjBu(k − 1− j) (∗)

A,B,C ,D were all constant matrices for the LTI DT systems
What if we have the following:

x(k + 1) = A(k)x(k) + B(k)u(k)

What will the state solution be?
To do that, let’s get some help from the STM for DT systems
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STM of DT Systems with no Inputs

STM of DT Autonomous Systems

The STM for DT systems x(k + 1) = A(k)x(k) is defined as φ(n, k)
such that for any x(k), we have

x(n) = φ(n, k)x(k)

So what is φ(n, k) in this case? We can easily derive it:
x(k+1) = A(k)x(k); x(k+2) = A(k+1)x(k+1) = A(k+1)A(k)x(k), . . .
Hence:

x(n) = A(n − 1)A(n − 2) · · ·A(k + 1)A(k)x(k) =

n−1∏
j=k

A(j)

 x(k)

STM of DT Autonomous Systems—2
For the above system, the STM is φ(n, k) =

∏n−1
j=k A(j)
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Properties of STM of DT Systems

x(k) = φ(k, 0)x(0) +
k−1∑
j=0

φ(k, j + 1)B(j)u(j)

φ(n, k) =
n−1∏
j=k

A(j) = A(n − 1)A(n − 2) · · ·A(k + 1)A(k)

1 For DT LTI systems, φ(n, k) = An−k

2 For DT LTI systems, if k = 0 (i.e., zero ICs), φ(n) = An

3 The STM φ(n, k) can be singular. If A(k),∀k is nonsingular, then
φ(n, k) is nonsingular

4 φ(n, n) = I, ∀n
5 φ(k3, k2)φ(k2, k1) = φ(k3, k1), ∀k3 ≥ k2 ≥ k1

6 STM satisfy the difference equation:
φ(k + 1, j) = A(k)φ(k, j)
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TV DT Systems

State Solution of TVDT Systems
The state solution for time-varying DT systems

x(k + 1) = A(k)x(k) + B(k)u(k)

is defined as

x(k) = φ(k, 0)x(0) +
k−1∑
j=0

φ(k, j + 1)B(j)u(j)

where φ(n, k) =
∏n−1

j=k A(j).

Can you prove the above theorem? You can do that by induction
First, show that the formula is true for k = 0. Then, assume it’s
true for k, and prove it for k + 1
You should use the fact that DT systems satisfy the difference
equation: φ(k + 1, j) = A(k)φ(k, j)
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Example 4

Consider this dynamical system

x(k + 1) = Ax(k) + Bu(k), y(k) = C(k)x(k) + Du(k)

For this system, only the C(k) matrix is time-varying
Question: Given that you have three sets of input-output data:

(y(k), u(k)), (y(k + 1), u(k + 1)), (y(k + 2), u(k + 2))

and x(k) is unknown, derive an equation that would allow you to
obtain x(k)
Solution: y(k)

y(k + 1)
y(k + 2)

 =

 C(k)
C(k + 1)A
C(k + 2)A2

 x(k)+

 D 0 0
C(k + 1)B D 0

C(k + 2)AB C(k + 2)B D

 u(k)
u(k + 1)
u(k + 2)


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Example 4 (Cont’d)

 y(k)
y(k + 1)
y(k + 2)

 =

 C(k)
C(k + 1)A
C(k + 2)A2

 x(k)+

 D 0 0
C(k + 1)B D 0

C(k + 2)AB C(k + 2)B D

 u(k)
u(k + 1)
u(k + 2)


Given the above equation, and since the input-output data is given,
we can write the following:

Y = Āx(k) + B̄U ⇒ (Y − B̄U) = Āx(k)

The LHS of the boxed equation is constant, and the only unknown
in this equation is x(k)
How to find x(k)?
This is similar to solving a linear systems of equations: Ax = b
When is this linear system solved for a unique x(k)?
Answer: if Ā is full row rank, then x(k) can be obtained
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Solution to Rectangular Ax = b

(Y − B̄U) = Āx(k) ≡ b = Ax

Matrix Ā is a tall-skinny, rectangular matrix
This equation is similar to solving Ax = b for rectangular
A ∈ Rm×n,m > n
How to solve this equation? When is there a solution?
Ax = b has a consistent solution when rank[A , b] = rank(A)
Or whenever b ∈ column-space(A)
The solution is unique if and only if rank(A) = n, i.e., A has full
column rank
The unique solution is given by: x = A−Lb, where A−L is called the
left inverse of A
A left inverse of A is one that satisfies A−LA = I
Moore-Penrose pseudo left inverse is equal to: A−L = (A>A)−1A>
(Matlab’s pinv command computes that)
How did we obtain this?
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What if A is not full column rank

(Y − B̄U) = Āx(k) ≡ b = Ax

This method can be also generalized for fat matrices with more
columns than rows (the left inverse then becomes a right inverse)
So, after obtaining x = A−Lb = (A>A)−1A>b, we get the initial
conditions or the needed x(k) given the input-output measurements
What if the A-matrix (Ā) is not full column rank and there’s no
solution to Ax = b?
Well, we’ll have to settle for a least-squares solution
A least squares solution is a one that minimizes the error b − Ax
It solve this problem:

minimize
x

‖b − Ax‖2,

i.e., find x that minimize the error—a simple optimization problem
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Example

Solve Ax = b for A =


1 0
1 0
1 0
1 0

 , b =


1
0
1
1

 , x ∈ R2

Clearly, A is not full column rank

Solve on Matlab: x=pinvA*b =
[

0.75
0

]
—this is a least squares

solution, a solution that minimizes the error b − Ax

Now, let’s set A =


1 0
1 1
1 0
1 1

 , b =


1
−1
1
−1

—full rank A

x=pinvA*b = (A>A)−1A>b =
[

0.99
−1.99

]
pinv and the left-inverse yielded the same solution as the equations
are consistent and A is full column rank
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Linearization of Nonlinear Systems — Unrelated Topic

We learned previously how to compute equilibrium points for
nonlinear system
Precisely, if ẋ(t) = f (x , u), we learned how to obtain the equilibrium
solution to this system xe , ue such that f (xe , ue) = 0
From this equilibrium point, how do we obtain a linearized state
space?
First, recall that The equation for the linearization of a function
f (x , y) at a point (xe , ue) is:

f (x , u) ≈ f (xe , ue) + ∂f (x , u)
∂x

∣∣∣∣
xe ,ue

(x − xe) + ∂f (x , u)
∂y

∣∣∣∣
xe ,ue

(u − ue)

Now, define

x̃ = x − xe , ũ = u − ue
∂f (x , u)
∂x

∣∣∣∣
xe ,ue

= A, ∂f (x , u)
∂y

∣∣∣∣
xe ,ue

= B

Then: ˙̃x(t) = f (x , u)− f (xe , ue) ≈ Ax̃(t) + Bũ(t)

©Ahmad F. Taha Module 05 — Discrete Time Systems 24 / 30



Intro to DT Systems State Solutions of DT Systems Time Varying DT Systems Linearization of NL Systems

Few Notes on Linearization

f (x , u) is not scalar–it’s a vector of potentially nonlinear functions to
be linearized
(xe , ue) are constant and precomputed
A = ∂f (x ,u)

∂x

∣∣∣
xe ,ue

: is the Jacobian matrix of partial derivatives of the
function f (x , u) w.r.t. x . This Jacobian matrix is then evaluated at
xe , ue (i.e., it’s a constant matrix)
B = ∂f (x ,u)

∂u

∣∣∣
xe ,ue

: is the Jacobian matrix of partial derivatives of the
function f (x , u) w.r.t. u, evaluated at (xe , ue)
Similar linearization procedure for output equation y(t) = h(x , u)
Stability of the linearized system depends on the choice of the
equilibrium points (there are stable equilibrium points and unstable
ones)
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Linearization Example 1
A model for cubic leaf spring is given as follows:

mz̈(t) = −k1z(t)− k2z3(t)

Question 1: Assume m = 1, find the state-space representation of
this nonlinear system

– Solution: ẋ(t) = f (x) =
[

x2(t)
−k1x1(t)− k2x3

1 (t)

]
Question 2: Find the equilibrium of this nonlinear system

– Solution: Two points: x (1)
e = [0, 0], x (2)

e = [±
√
−k1
k2
, 0]

Question 3: Linearize the system around the equilibrium points
– Solution:

˙̃x(t) =
[

0 1
−k1 − 3k2x2

e1 0

]
x̃(t)

For x (1)
e : A(1) =

[
0 1
−k1 0

]
. For x (2)

e : A(2) =
[

0 1
2k1 0

]
Question 4: Determine the stability of the linearized system for
different values of k1, k2
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Linearization Example 2

A pendulum model with friction is given as follows:

ẋ1(t) = x2(t), ẋ2(t) = −10sin(x1(t))− x2(t) + u(t)

Question 1: Find the state-space representation of this nonlinear
system

– Solution:

ẋ(t) = f (x , u) =
[

x2(t)
−10sin(x1(t))− x2(t)

]
+
[

0
1

]
u(t)

Question 2: Find the equilibrium of this nonlinear system given that
ue = 0

– Solution:
Question 3: Linearize the system around the equilibrium points

– Solution:
Question 4: Determine the stability of the linearized system
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Linearization Example 3

Another Example:

ẋ(t) =
[
ẋ1(t)
ẋ2(t)

] [
x2

−2(1 + x1)x2 − 4x3
1 + 2u

]
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Linearization of DT Nonlinear systems

We studied linearization of nonlinear CT dynamic systems
What about the linearization of nonlinear discrete time systems?

x(k + 1) = f (x , u)

How do we linearize? Exactly the same procedure as before
Example:

x(k + 1) =
[
x1(k + 1)
x2(k + 1)

]
=
[
ax1(k) + bx1(k)x2(k) + cx1(k)u1(k)

dx2(k)

]
Solution:
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/ataha
IFF you want to know more ,
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