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1. Consider the discrete-time LTI dynamical system model

x(k + 1) = Ax(k) + Bu(k),

where

Ak =

[
kak−1 1

0 ak

]
, B =

[
1
0

]
, a 6= 0, a 6= 1.

(a) Given that x(2) =
[

1
1

]
and the control is equal to zero for all k, determine x(0).

(b) Find a general expression for x(n) if the control is given by u(k) = a−k1+(k) and x(0) = 0.

Solutions:

(a) Since u(k) = 0, then:

x(k + 1) = Ax(k)⇒ x(2) = A2x(0)⇒ x(2) =
[

2a2−1 1
0 a2

]
x(0)

⇒ x(0) =
[

2a 1
0 a2

]−1

x(2) =
1

2a3

[
a2 − 1

2a

]
=

 1
2a
− 1

2a3
1
a2


(b) From the module notes,

x(n) =
n−1

∑
k=0

An−1−kBu(k) =
n−1

∑
k=0

AkBu(n− 1− k) =
n−1

∑
k=0

AkBak−n+1 =
n−1

∑
k=0

[
kak−1ak−n+1

0

]
.

Hence,

x(n) =
[

x1(n)
x2(n)

]
=

a−n+2
n−1

∑
k=0

k(a2)k

0

 =

a−n+2 d
da

(
1− (a2)n

1− a2

)
0

 .

2. Consider the discrete-time LTI dynamical system model

x(k + 1) = Ax(k) + Bu(k),

where

A =

[
1 1
1 −1

] [
λ1 1
0 λ1

]
︸ ︷︷ ︸

D

[
0.5 0.5
0.5 −0.5

]
, B =

[
2
2

]
, x(0) =

[
2
−2

]
.

(a) Find a general expression for Dk.

(b) Find Ak.

(c) Compute x(k) if the control input is null.

(d) Computer x(k) if the initial conditions are null and the control input is u(k) = 2k1+(k) and
λ1 = 4.

Solutions:

(a) Dk =

[
λk

1 kλk−1
1

0 λk
1

]
1



(b) Ak =

[
1 1
1 −1

] [
λk

1 kλk−1
1

0 λk
1

] [
0.5 0.5
0.5 −0.5

]
(c) xzisr(k) = Akx(0) =

[
1 1
1 −1

] [
λk

1 kλk−1
1

0 λk
1

] [
0.5 0.5
0.5 −0.5

] [
2
−2

]
= 2

[
1 1
1 −1

] [
kλk−1

1
λk

1

]
(d) The zero-state state response can be written as:

xzssr(n) =
n−1

∑
k=0

An−1−kBu(k) =
n−1

∑
k=0

AkBu(n− 1− k)

=

[
1 1
1 −1

] n−1

∑
k=0

[
λk

1 kλk−1
1

0 λk
1

] [
0.5 0.5
0.5 −0.5

] [
2
2

]
u(n− 1− k)

= 2n
[

1 1
1 −1

] n−1

∑
k=0

[
2k

0

]
= (22n − 2n)

[
1
1

]
.

3. Consider the following system with two inputs
[

u1(k)
u2(k)

]
= u(k) and the following dynamics:

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
1 1
1 0

]
u(k), x(0) = 0.

(a) By setting u2(k) = 0∀k, and using u1(k) alone, can the state be steered from x0 = 0 to

x(3) =
[

1
−1

]
? If so, find the control u1(k) that would achieve that for k = 0, 1, 2.

(b) By setting u1(k) = 0∀k, and using u2(k) alone, can the state be steered from x0 = 0 to

x(3) =
[

1
−1

]
? If so, find the control u2(k) that would achieve that for k = 0, 1, 2.

(c) Assume at k = 0, 1, only u1 can be used and at k = 2, only u2 can be used. Find the input

u(k)∀k such that the state can be steered from x0 = 0 to x(3) =
[

1
−1

]
.

Solution:

(a) First, note that the system with state space matrices A, B(:, 1) (i.e., the system formed by A
and the first control u1(k) via the first column of matrix B) is full controllable as the rank of
controllability matrix is 2. Hence, there should be control actions that steer the system from

x0 to x f . Let b1 =

[
1
1

]
. We can compute this control via the derivation we discussed in class.

It’s easy to see that:

[
A2b1 Ab1 b1

] u(0)
u(1)
u(2)

 = x(3)− x(0) =
[

1
−1

]
.

Hence, we can use the right inverse (see solutions of problem 5 for the right inverse deriva-

tion) and obtain u(k). Note that
[
A2b1 Ab1 b1

]
=

[
3 2 1
1 1 1

]
. Then:

u(0)
u(1)
u(2)

 =

[
3 2 1
1 1 1

]† [ 1
−1

]
=

[
3 2 1
1 1 1

]> ([3 2 1
1 1 1

] [
3 2 1
1 1 1

]>)−1 [
1
−1

]
=

 7/6
−1/3
−11/6

 .

(b) You cannot obtain solutions to this problem, since the pair A, b2 (b2 is the second column of
B) yields an inconsistent system of equations that cannot be solved for a control input. You
won’t be able to obtain a valid pseudo inverse for the rectangular matrix as it does not exist.
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(c) Notice that this problem is very similar to the problem in part (a). The only difference is that
initially, the system starts from a different B matrix. It is easy to see that:

[
A2b1 Ab1 b2

] u1(0)
u1(1)
u2(2)

 = x(3)− x(0) =
[

1
−1

]
.

Applying the right inverse (as in (a) above), the solution to the optimal control is:u1(0)
u1(1)
u2(2)

 =

 2/3
−5/3
7/3

 .

4. You are given this system:

x(k + 1) =
[

a 1
0 a

]
x(k) +

[
0
1

]
u(k), a 6= 0, b 6= 0.

(a) Prove that Ak =

[
ak kak−1

0 ak

]
.

(b) If x(2) =
[

1
1

]
and u(k) = 0, find x(0).

(c) Find x(k) if u(k) = ak and x(0) = 0.

Solutions:

(a) Prove by induction (assume true for k, and prove the result for Ak+1 by evaluating Ak+1 =
Ak A.)

(b) Similar to problem 1, x(0) =

[
1
a2 − 2

a3
1
a2

]
.

(c)

x(k) = kak−1
[ k−1

2a
1

]
5. You’re given the following DT LTV system:

x(k + 1) = A(k)x(k) + B(k)u(k).

(a) Derive a system of equations whose solution gives the two inputs u(0), u(1) that would
drive the system from state x(0) to x(2).

(b) Now assume that

A(k) =
[

0 2− k
0 0

]
, B(k) =

[
2− k 0

0 2− k

]
, x(0) =

[
1
1

]
, x(2) =

[
1
2

]
.

Find the input sequence u(0), u(1) that would steer the system from x(0) to x(2).

Solutions:

(a) The set of equations can be written as:

x(2)− A(1)A(0)x(0) =
[
B(1) A(1)B(0)

] [u(1)
u(0)

]
(b) Given the SS matrices, the above equation can be written as:

x(2)− A(1)A(0)x(0) =
[
B(1) A(1)B(0)

] [u(1)
u(0)

]
⇒
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[
1
2

]
−
[

0 1
0 0

] [
0 2
0 0

] [
1
1

]
=

[
1
2

]
=

[
1 0 0 2
0 1 0 0

] [
u(1)
u(0)

]
Hence, [

1 0 0 2
0 1 0 0

] [
u(1)
u(0)

]
=

[
1
2

]
In the class, we discussed the left pseudo-inverse for matrices that are rectangular, where
we have more rows than columns (i.e., tall, skinny matrices). In this example, we have a
rectangular matrix which is short and fat (i.e., more columns than rows). Note the following:
If the matrix A has dimensions n×m and is full rank then use the left inverse if n > m and
the right inverse if n < m.
• Left inverse is given by

A†
left =

(
AT A

)−1
AT

where Im is the m×m identity matrix
• Right inverse is given by

A†
right = AT

(
AAT

)−1

where In is the n× n identity matrix.
Hence, in this problem, to find the control inputs, we need to use the right inverse, as fol-
lows: [

u(1)
u(0)

]
=


u1(1)
u2(1)
u1(0)
u2(0)

 = A†
right

[
1
2

]
[

u(1)
u(0)

]
= A†

right

[
1
2

]
= AT

(
AAT

)−1
[

1
2

]

=

[
1 0 0 2
0 1 0 0

]T
([

1 0 0 2
0 1 0 0

] [
1 0 0 2
0 1 0 0

]T
)−1 [

1
2

]
=


0.2
2
0

0.4


6. Consider the following nonlinear system:

ẋ1(t) = x2(t)(x2
1(t)− 1)

ẋ2(t) = x2
2(t) + x1(t)− 3

(a) Find all the equilibrium points of the nonlinear system.
(b) Determine the stability of the system around each equilibrium point, if possible.

Solutions:

(a) Setting the state-dynamics to zero, we can find the equilibrium points. There are 5 equilib-
rium points for the given system, listed as follows:

xe =

[
xe1
xe2

]
=

[
1 1 −1 −1 3√
2 −

√
2 2 −2 0

]
.

(b) The stability of the system around an equilibrium point is determined by evaluating the
Jacobian matrix D f (x) around each equilibrium point and finding its eigenvalues:

D f (x) =
[

2x1x2 x2
1 − 1

1 2x2

]
.

The only equilibrium point that yields a stable D f (xe) matrix is x(2)e =

[
1
−
√

2

]
, giving

λ1 = λ2 = −2
√

2 as the two stable eigenvalues.
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(c) Solve the same problem if the system is in discrete time:

x1(k + 1) = x2(k)(x2
1(k)− 1)

x2(k + 1) = x2
2(k) + x1(k)− 3.

To obtain the equilibrium points of this system, Matlab’s fsolve function will be used:

0 = x2(k)x2
1(k)− x2(k)− x1(k)

0 = x2
2(k) + x1(k)− 3− x2(k)

A script named ”root2d.m” will be created, and the previously mentioned functions will be
represented there:

function F = root2d(x)

F(1) = x(2)*(x(1))^2-x(2)-x(1);

F(2) = (x(2))^2+x(1)-3-x(2);

From here, the following commands will be executed:

>> fun = @root2d;

>> x0 = [1, 1];

>> x = fsolve(fun,x0)

For initialization x1 = 1, x2 = 1 the points of equilibrium are:

x =

1.2977 1.8973

For initialization x1 = 100, x2 = 100 the points of equilibrium are:

x =

0.6471 -1.1133

For initialization x1 = 1000, x2 = 1000 the points of equilibrium are:

x =

3.2254 0.3430

For initialization x1 = −1, x2 = −1 the points of equilibrium are:

x =

-1.3492 -1.6446

To confirm that these results are valid, the following operations will be made to use Matlab’s
function root:

x2(x2
1 − 1) = x1

x2 =
x1

(x2
1 − 1)(

x1

(x2
1 − 1)

)2

+ x1 − 3 +
x1

(x2
1 − 1)

= 0

x2
1 + x1(x2

1 − 1)− 3(x2
1 − 1)2 − x1(x2

1 − 1) = 0

x5
1 − 3x4

1 − 3x3
1 + 7x2

1 + 2x1 − 3 = 0

8
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>> x1 = roots([1 -3 -3 7 2 -3])

x1 =

3.2254

-1.3492

-0.8209

1.2977

0.6471

>> func = @(x1) (x1)/((x1^2)-1);

>> x2 = arrayfun(func,x1)

x2 =

0.3430

-1.6446

2.5177

1.8973

-1.1133

To determine the stability of the system, A is obtained as follows:

∂

∂x
x(k + 1) =

[
2x2(k)x1(k) x2

1(k)− 1
1 2x2(k)

]
= A

For x(k) =
[
1.2977 1.8973

]T , the eigenvalues are 5.3609 and 3.3579, thus the system is
unstable: [

2(1.8973)(1.2977) (1.2977)2 − 1
1 2(1.8973)

]
=

[
4.9242 0.6840

1 3.7946

]
For x(k) =

[
0.6471 −1.1133

]T , the eigenvalues are -1.0767 and -2.5907, for that, the system
is unstable: [

2(−1.1133)(0.6471) (0.6471)2 − 1
1 2(−1.1133)

]
=

[
−1.4408 0.4187

1 −2.2266

]
For x(k) =

[
3.2254 0.3430

]T , the eigenvalues are 4.7638 and -1.8652, which means that the
system is unstable:[

2(0.3430)(3.2254) (3.2254)2 − 1
1 2(0.3430)

]
=

[
2.2126 10.4032

1 0.6860

]
For x(k) =

[
−1.3492 −1.6446

]T , the eigenvalues are 4.0536 and -2.9051, which means that
the system is unstable:[

2(−1.6446)(−1.3492) (−1.3492)2 − 1
1 2(−1.6446)

]
=

[
4.4377 −2.8203

1 −3.2892

]
For the last pair, obtained by using roots x(k) =

[
−0.8209 2.5177

]T , the eigenvalues are
-3.9472 and 4.8491, meaning that the system is unstable:[

2(2.5177)(−0.8209) (−0.8209)2 − 1
1 2(2.5177)

]
=

[
−4.1335 −1.6738

1 5.0354

]
All the eigenvalues were obtained using Matlab, none of the equilibrium points are stable
in discrete time because all the eigenvalues pair are greater than 1 or less than -1.
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