

Tools for Analysis of Dynamic Systems: Lyapunov's Methods

Stanisław H. Żak

School of Electrical and Computer Engineering **ECE 680** Fall 2013

A. M. Lyapunov's (1857--1918) Thesis

JNT. J. CONTROL, 1992, VOL. 55, NO. 3, 529

Lyapunov's Thesis

Издание Харьковскаго Математическаго Общества.

ХАРЬКОВЪ.

Типографія Зильберберга, Рыбнан ул., д. № 25-й

1892.

Lyapunov's Thesis Translated

INT. J. CONTI.OL, 1992, VOL. 55, NO. 3, 531-773

The general problem of the stability of motion

A. M. LYAPUNOV

Translated from Russian into French by Edouard Davaux, Marine Engineer at Toulon.[†]

Translated from French into English by A. T. Fuller.[‡]

Preface

In this work some methods are expounded for the resolution of questions concerning the properties of motion and, in particular, of equilibrium, which are known by the terms *stability* and *instability*.

The ordinary questions of this kind, those to which this work is devoted, lead to the study of differential equations of the form

$$\frac{dx_1}{dt} = X_1, \quad \frac{dx_2}{dt} = X_2, \quad \dots, \quad \frac{dx_n}{dt} = X_n,$$

Some Details About Translation

† Mr Lyapunov has very graciously authorized the publication in French of his memoir Obshchaya zadacha ob ustoichivosti dvizheniya printed in 1892 by the Mathematical Society of Kharkov. The [French] translation has been reviewed and corrected by the author [Lyapunov], who has added a note based on an article which appeared in 1893 in Communications de la Société mathématique de Kharkow.

[Comments in square brackets are by A.T.F.]

§ We have in mind the cases where there applies the known theorem of Lagrange on the maxima of the force-function [this is minus the potential energy function], relating to the stability of equilibrium; also, the cases where there applies a more general theorem of Routh on the maxima and minima of the integrals of the equations of motion, allowing the resolution of certain questions relative to the stability of motion (see *The advanced part of A Treatise on the Dynamics of a System of Rigid Bodies*, fourth edition, 1884, pp. 52, 53).

Outline

- Notation using simple examples of dynamical system models
- Objective of analysis of a nonlinear system
- Equilibrium points
- Lyapunov functions
- Stability
- Barbalat's lemma

A Spring-Mass Mechanical System

x---displacement of the mass from the rest position

Modeling the Mass-Spring System

- Assume a linear mass, where k is the linear spring constant
- Apply Newton's law to obtain

 $M\ddot{x} + kx = 0$ Define state variables: $x_1 = x$ and $x_2 = dx/dt$ The model in state-space format:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{k}{M}x_1 \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}$$

Analysis of the Spring-Mass System Model

- The spring-mass system model is linear time-invariant (LTI)
- Representing the LTI system in standard state-space format

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_2 \\ -\frac{k}{M}x_1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= Ax$$

Modeling of the Simple Pendulum

The simple pendulum

The Simple Pendulum Model

Apply Newton's second law

$$J\ddot{\theta} = -mgl\sin\theta$$

where J is the moment of inertia,

$$J = ml^2$$

Combining gives

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

State-Space Model of the Simple Pendulum

- Represent the second-order differential equation as an equivalent system of two first-order differential equations
- First define state variables,

 $x_1 = \theta$ and $x_2 = d\theta/dt$

Use the above to obtain state-space model (nonlinear, time invariant)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}$$

Objectives of Analysis of Nonlinear Systems

- Similar to the objectives pursued when investigating complex linear systems
- Not interested in detailed solutions, rather one seeks to characterize the system behavior---equilibrium points and their stability properties
 - \sim

A device needed for nonlinear system analysis summarizing the system behavior, suppressing detail Summarizing Function (D.G. Luenberger, 1979)

- A function of the system state vector
- As the system evolves in time, the summarizing function takes on various values conveying some information about the system

Summarizing Function as a First-Order Differential Equation

The behavior of the summarizing function describes a first-order differential equation
Analysis of this first-order

differential equation in some sense a summary analysis of the underlying system

Dynamical System Models

Linear time-invariant (LTI) system model

$$\dot{x} = Ax, \quad A \in \Re^{n \times n}$$

Nonlinear system model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} f_1(t, x_1, \dots, x_n) \\ f_2(t, x_1, \dots, x_n) \\ \vdots \\ f_n(t, x_1, \dots, x_n) \end{bmatrix}$$

Shorthand notation of the above model

$$\dot{x} = f(t, x), \quad x \in \Re^n$$

More Notation

System model

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$$

Solution

$$x(t) = x(t;t_0,x_0)$$

Example: LTI model,

$$\dot{x} = Ax$$
, $x(0) = x_0$

Solution of the LTI modeling equation

$$x(t) = e^{At} x_0$$

Equilibrium Point

A vector x_e is an equilibrium point for a dynamical system model

$$\dot{x}(t) = f(t, x(t))$$

if once the state vector equals to x_e it remains equal to x_e for all future time. The equilibrium point satisfies

$$f(t, x(t)) = 0$$

Formal Definition of Equilibrium

■ A point \mathbf{x}_e is called an equilibrium point of $d\mathbf{x}/dt = \mathbf{f}(t, \mathbf{x})$, or simply an equilibrium, at time t_0 if for all $t \ge t_{0,}$

$f(t, x_e) = 0$

■Note that if \mathbf{x}_e is an equilibrium of our system at t_0 , then it is also an equilibrium for all $\tau \ge t_0$

Equilibrium Points for LTI Systems

For the time invariant system $d\mathbf{x}/dt = \mathbf{f}(\mathbf{x})$

a point is an equilibrium at some time τ if and only if it is an equilibrium at all times

Equilibrium State for LTI Systems

LTI model

$$\dot{x} = f(t, x) = Ax$$

\square Any equilibrium state X_e must satisfy

$$Ax_e = 0$$

If A^{-1} exist, then we have unique equilibrium state

$$x_e = 0$$

Equilibrium States of Nonlinear Systems

A nonlinear system may have a number of equilibrium states

The origin, x=0, may or may not be an equilibrium state of a nonlinear system

Translating the Equilibrium of Interest to the Origin

If the origin is not the equilibrium state, it is always possible to translate the origin of the coordinate system to that state

So, no loss of generality is lost in assuming that the origin is the equilibrium state of interest Example of a Nonlinear System with Multiple Equilibrium Points

Nonlinear system model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 - x_2 - x_1^2 \end{bmatrix}$$

Two isolated equilibrium states

$$x_e^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad x_e^{(2)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Isolated Equilibrium

An equilibrium point \mathbf{x}_e in \mathbb{R}^n is an isolated equilibrium point if there is an r>0 such that the rneighborhood of \mathbf{x}_e contains no equilibrium points other than \mathbf{x}_e Neighborhood of \boldsymbol{x}_{e}

The *r*-neighborhood of \mathbf{x}_e can be a set of points of the form

$$B_r(x_e) = \{x : \|x - x_e\| < r\}$$

where ||.|| can be any *p*-norm
on R^n

Remarks on Stability

Stability properties characterize the system behavior if its initial state is close but not at the equilibrium point of interest When an initial state is close to the equilibrium pt., the state may remain close, or it may move away from the equilibrium

point

An Informal Definition of Stability

An equilibrium state is stable if whenever the initial state is near that point, the state remains near it, perhaps even tending toward the equilibrium point as time increases

Stability Intuitive Interpretation

Formal Definition of Stability

An equilibrium state x_{eq} is stable, in the sense of Lyapunov, if for any given t_0 and any positive scalar \mathcal{E} there exist a positive scalar

$$\delta = \delta(t_0, \varepsilon)$$

such that if

$$\|x(t_0) - x_e\| < \delta$$

then

$$\left\|x(t;t_0,x_0)-x_e\right\| < \varepsilon$$

for all $t \ge t_0$

Stability Concept in 1D

Stability Concepts in 2D

Further Discussion of Lyapunov Stability

Think of a contest between you, the control system designer, and an adversary (nature?)---B. Friedland (ACSD, p. 43, Prentice-Hall, 1996) Lyapunov Stability Game

The adversary picks a region in the state space of radius ε You are challenged to find a region of radius δ such that if the initial state starts out inside your region, it remains in his region--if you can do this, your system is stable, in the sense of Lyapunov

Lyapunov Stability---Is It Any Good?

- Lyapunov stability is weak---it does not even imply that x(t) converges to x_e as t approaches infinity
- The states are only required to hover around the equilibrium state

The stability condition bounds the amount of wiggling room for $\mathbf{x}(t)_{\mathbf{x}}$

Asymptotic Stability i.s.L

The property of an equilibrium state of a differential equation that satisfies two conditions:

In the initial condition produce small perturbations in the solution;
Second Condition for Asymptotic Stability of an Equilibrium

(attractivity of the equilibrium) point) there is a domain of attraction such that whenever the initial condition belongs to this domain the solution approaches the equilibrium state at large times

Asymptotic Stability in the sense of Lyapunov (i.s.L.)

 The equilibrium state is asymptotically stable if
 it is stable, and

• convergent, that is, $x(t;t_0,x_0) \rightarrow x_e \text{ as } t \rightarrow \infty$ Convergence Alone Does Not Guarantee Asymptotic Stability

Note: it is not sufficient that just

 $x(t;t_0,x_0) \rightarrow x_{\rho} as t \rightarrow \infty$

for asymptotic stability. We need stability too! Why?

How Long to the Equilibrium?

Asymptotic stability does not imply anything about how long it takes to converge to a prescribed neighborhood of \mathbf{x}_{e} Exponential stability provides a way to express the rate of convergence

Asymptotic Stability of Linear Systems

An LTI system is asymptotically stable, meaning, the equilibrium state at the origin is asymptotically stable, if and only if the eigenvalues of **A** have negative real parts

For LTI systems asymptotic stability is equivalent with convergence (stability condition automatically satisfied) Asymptotic Stability of Nonlinear Systems

For LTI systems asymptotic stability is equivalent with convergence (stability condition automatically satisfied)

For nonlinear systems the state may initially tend away from the equilibrium state of interest but subsequently may return to it

Asymptotic Stability in 1D

Convergence Does Not Mean Asymptotic Stability (W. Hahn, 1967)

Hahn's 1967 Example---A system whose all solutions are approaching the equilibrium, $\mathbf{x}_{e} = \mathbf{0}$, without this equilibrium being asymptotically stable (Antsaklis and Michel, Linear Systems, 1997, p. 451)

Convergence Does Not Mean Asymptotic Stability (W. Hahn, 1967)

Nonlinear system of Hahn where the origin is attractive but not a.s.

Phase Portrait of Hahn's 1967 Example

46

Instability in 1D

Lyapunov Functions---Basic Idea

Seek an aggregate summarizing function that continually decreases toward a minimum

For mechanical systems--energy of a free mechanical system with friction always decreases unless the system is at rest, equilibrium Lyapunov Function Definition

A function that allows one to deduce stability is termed a Lyapunov function

Lyapunov Function Properties for Continuous Time Systems

Continuous-time system

$$\dot{x}(t) = f(x(t))$$

Equilibrium state of interest

 X_{ρ}

Three Properties of a Lyapunov Function

We seek an aggregate summarizing function V

- V is continuous
- V has a unique minimum with respect to all other points in some neighborhood of the equilibrium of interest
- Along any trajectory of the system, the value of V never increases

Lyapunov Theorem for Continuous Systems

Continuous-time system

 $\dot{x}(t) = f(x(t))$

Equilibrium state of interest

$$x_e = 0$$

Lyapunov Theorem---Negative Rate of Increase of V

 If x(t) is a trajectory, then V(x(t)) represents the corresponding values of V along the trajectory
 In order for V(x(t)) not to

increase, we require

 $\dot{V}(x(t)) \leq 0$

The Lyapunov Derivative

Use the chain rule to compute the derivative of V(x(t))

$$\dot{V}(x(t)) = \nabla V(x)^T \dot{x}$$

Use the plant model to obtain

$$\dot{V}(x(t)) = \nabla V(x)^T f(x)$$

Recall

$$\nabla V(x) = \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} & \cdots & \frac{\partial V}{\partial x_2} \end{bmatrix}^T$$

Lyapunov Theorem for LTI Systems

The system dx/dt = Ax is asymptotically stable, that is, the equilibrium state $\mathbf{x}_{e} = \mathbf{0}$ is asymptotically stable (a.s), if and only if any solution converges to $\mathbf{x}_{e} = \mathbf{0}$ as t tends to infinity for any initial \boldsymbol{x}_{0}

Lyapunov Theorem Interpretation

View the vector x(t) as defining the coordinates of a point in an *n*-dimensional state space

In an a.s. system the point $\mathbf{x}(t)$ converges to $\mathbf{x}_e = \mathbf{0}$

Lyapunov Theorem for *n*=2

If a trajectory is converging to $\mathbf{x}_{e} = \mathbf{0}$, it should be possible to find a nested set of closed curves $V(x_1,x_2)=c, c\geq 0$, such that decreasing values of c yield level curves shrinking in on the equilibrium state $x_e = 0$

Lyapunov Theorem and Level Curves

The limiting level curve $V(x_1,x_2)=V(\mathbf{0})=0$ is 0 at the equilibrium state $\mathbf{x}_e=\mathbf{0}$

The trajectory moves through the level curves by cutting them in the inward direction ultimately ending at x_e=0 The trajectory is moving in the direction of decreasing V

Note that $\dot{V} = \|\nabla V\| \|\dot{x}\| \cos \theta < 0$

Level Sets

The level curves can be thought of as contours of a cup-shaped surface

For an a.s. system, that is, for an a.s. equilibrium state x_e=0, each trajectory falls to the bottom of the cup Positive Definite Function---General Definition

The function V is positive definite in S, with respect to \mathbf{x}_e , if V has continuous partials, $V(\mathbf{x}_e)=0$, and $V(\mathbf{x})>0$ for all \mathbf{x} in S, where $\mathbf{x}\neq\mathbf{x}_e$ Positive Definite Function With Respect to the Origin

Assume, for simplicity, $\mathbf{x}_e = \mathbf{0}$, then the function V is positive definite in S if V has continuous partials, $V(\mathbf{0})=0$, and $V(\mathbf{x})>0$ for all \mathbf{x} in S, where $\mathbf{x}\neq \mathbf{0}$

Example: Positive Definite Function

Positive definite function of two variables

 $V(x_1, x_2) = 2x_1^2 + 3x_2^2$ = $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ = $x^T P x$ > 0 for all $x \neq 0$ Positive Semi-Definite Function---General Definition

The function V is positive semidefinite in S, with respect to \mathbf{x}_{e} , if V has continuous partials, $V(\mathbf{x}_{e})=0$, and $V(\mathbf{x})\geq 0$ for all \mathbf{x} in S Positive Semi-Definite Function With Respect to the Origin

Assume, for simplicity, $\mathbf{x}_e = \mathbf{0}$, then the function V is positive semi-definite in S if V has continuous partials, $V(\mathbf{0})=0$, and $V(\mathbf{x}) \ge 0$ for all \mathbf{x} in S

Example: Positive Semi-Definite Function

An example of positive semi-definite function of two variables

$$V(x_1, x_2) = x_1^2$$

= $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
= $x^T P x$
> 0 in R^2

Quadratic Forms

$\Box V = \mathbf{x}^{\mathsf{T}} \mathbf{P} \mathbf{x}$, where $\mathbf{P} = \mathbf{P}^{\mathsf{T}}$

If *P* not symmetric, need to symmetrize it

First observe that because the transposition of a scalar equals itself, we have

$$\left(\boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x} \right)^T = \boldsymbol{x}^T \boldsymbol{P}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x}$$

Symmetrizing Quadratic Form

Perform manipulations

$$x^{T}Px = \frac{1}{2}x^{T}Px + \frac{1}{2}x^{T}Px$$
$$= \frac{1}{2}x^{T}Px + \frac{1}{2}x^{T}P^{T}x$$
$$= x^{T}\left(\frac{P+P^{T}}{2}\right)x$$

Note that

$$\left(\frac{\boldsymbol{P}+\boldsymbol{P}^T}{2}\right)^T = \frac{\boldsymbol{P}+\boldsymbol{P}^T}{2}$$

Tests for Positive and Positive Semi-Definiteness of Quadratic Form

- $\Box V = \mathbf{x}^{\mathsf{T}} \mathbf{P} \mathbf{x}$, where $\mathbf{P} = \mathbf{P}^{\mathsf{T}}$, is positive definite if and only if all eigenvalues of \mathbf{P} are positive
- ■V=x^TPx, where P=P^T, is positive semi-definite if and only if all eigenvalues of P are non-negative

Comments on the Eigenvalue Tests

■These tests are only good for the case when P=P^T. You must symmetrize P before applying the above tests

Other tests, the Sylvester's criteria, involve checking the signs of principal minors of *P*

Negative Definite Quadratic Form

$V = x^T P x$ is negative definite if and only if $-x^T P x^T x^T (-P) x$

is positive definite

Negative Semi-Definite Quadratic Form

V=x^TPx is negative semi-definite if and only if -x^TPx=x^T(-P)x is positive semi-definite
Example: Checking the Sign Definiteness of a Quadratic Form

Is P, equivalently, is the associated quadratic form, V=x^TPx, pd, psd, nd, nsd, or neither?

$$P = \left[\begin{array}{cc} 2 & -6 \\ 0 & 2 \end{array} \right]$$

The associated quadratic form

$$V = x^T P x = 2x_1^2 - 6x_1 x_2 + 2x^2$$

Example: Symmetrizing the Underlying Matrix of the Quadratic Form

Applying the eigenvalue test to the given quadratic form would seem to indicate that the quadratic form is pd, which turns out to be false

Need to symmetrize the underlying matrix first and then can apply the eigenvalue test Example: Symetrized Matrix

Symmetrizing manipulations

$$\frac{1}{2} \begin{pmatrix} \mathbf{P} + \mathbf{P}^T \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \begin{bmatrix} 2 & -6 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ -6 & 2 \end{bmatrix} \end{pmatrix}$$
$$= \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$$

The eigenvalues of the symmetrized matrix are: 5 and -1

The quadratic form is indefinite!

Example: Further Analysis Direct check that the quadratic form is indefinite **Take** $\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$. Then $x^T P x = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -6 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2 > 0$ **Take** $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Then $x^T P x = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -6 \\ 0 & 2 \end{bmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = -2 < 0$

Stability Test for $x_e = 0$ of dx/dt = AxLet $V = x^T P x$ where $P = P^T > 0$ For V to be a Lyapunov function, that is, for $x_e = 0$ to be a.s.,

$\dot{V}(x(t)) < 0$

Evaluate the time derivative of V on the solution of the system dx/dt=Ax---Lyapunov derivative

Lyapunov Derivative for dx/dt = Ax

■Note that $V(\mathbf{x}(t)) = \mathbf{x}(t)^{\mathsf{T}} \mathbf{P} \mathbf{x}(t)$ ■Use the chain rule

$$\begin{split} \dot{V}(x(t)) &= \dot{x}^T P x + x^T P \dot{x} \\ &= x^T A^T P x + x^T P A x \\ &= x^T \left(A^T P + P A \right) x \end{split}$$

$$lacksquare$$
 We used $\dot{x}^T = x^T A^T$

Lyapunov Matrix Equation

Denote

$A^T P + P A = -Q$

Then the Lyapunov derivative can be represented as

$$\dot{V} = \frac{d}{dt}V = -x^T Q x$$

where $Q = Q^T > 0$

Terms to Our Vocabulary

- Theorem---a major result of independent interest
- Lemma---an auxiliary result that is used as a stepping stone toward a theorem
- Corollary---a direct consequence of a theorem, or even a lemma

Lyapunov Theorem

The real matrix **A** is a.s., that is, all eigenvalues of **A** have negative real parts if and only if for any $Q = Q^T > 0$ the solution **P** of the continuous matrix Lyapunov equation

$$A^T P + P A = -Q$$

is (symmetric) positive definite

How Do We Use the Lyapunov Theorem?

Select an arbitrary symmetric positive definite *Q*, for example, an identity matrix, *I*_n

Solve the Lyapunov equation for $P = P^T$

If P is positive definite, the matrix A is a.s. If P is not p.d. then A is not a.s.

How NOT to Use the Lyapunov Theorem

It would be no use choosing P to be positive definite and then calculating Q For unless Q turns out to be positive definite, nothing can be said about a.s. of **A** from the Lyapunov equation

Example: How NOT to Use the Lyapunov Theorem

Consider an a.s. matrix

$$A = \begin{bmatrix} -1 & 3 \\ 0 & -1 \end{bmatrix}$$

Try $P = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

Compute $Q = -(A^T P + P A)$

Example: Computing Q

$Q = -(A^{T}P + PA)$ = $-(\begin{bmatrix} -1 & 0 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 3 \\ 0 & -1 \end{bmatrix})$ = $\begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$

The matrix **Q** is indefinite!--recall the previous example

Solving the Continuous Matrix Lyapunov Equation Using MATLAB Use the MATLAB's command lyap **Example:** $A = \left[\begin{array}{cc} -1 & 3 \\ 0 & -1 \end{array} \right]$ $\Box Q = I_2$ $\square P = Iyap(A,Q)$ $P = \begin{bmatrix} 2.75 & 0.75 \\ 0.75 & 0.50 \end{bmatrix}$

Eigenvalues of *P* are positive: 0.2729 and 2.9771; *P* is positive definite Limitations of the Lyapunov Method

Usually, it is challenging to analyze the asymptotic stability of timevarying systems because it is very difficult to find Lyapunov functions with negative definite derivatives

When can one conclude asymptotic stability when the Lyapunov derivative is only negative semidefinite? Some Properties of Time-Varying Functions

□ $\dot{f}(t) \rightarrow 0$ does not imply that f(t)has a limit as $t \rightarrow \infty$

 \Box f(t) has a limit as $t \to \infty$ does not

imply that $\dot{f}(t) \rightarrow 0$

More Properties of Time-Varying Functions

□ If f(t) is lower bounded and decreasing ($\dot{f}(t) \le 0$), then it converges to a limit. (A well-known result from calculus.)

But we do not know whether $\dot{f}(t) \rightarrow 0$ or not as $t \rightarrow \infty$

Preparation for Barbalat's Lemma

Under what conditions

$$\dot{f}(t)
ightarrow 0$$
 as $t
ightarrow \infty$

■ We already know that the existence of the limit of f(t) as $t \to \infty$ is not enough for

$$\dot{f}(t)
ightarrow 0$$
 as $t
ightarrow \infty$

Continuous Function

- A function f(t) is continuous if small changes in t result in small changes in f(t)
- Intuitively, a continuous function is a function whose graph can be drawn without lifting the pencil from the paper

Continuity on an Interval

- Continuity is a *local* property of a function—that is, a function *f* is continuous, or not, at a particular point
- A function being continuous on an interval means only that it is continuous at each point of the interval

Uniform Continuity

A function f(t) is uniformly continuous if it is continuous and, in addition, the size of the changes in f(t) depends only on the size of the changes in t but not on t itself

- The slope of an uniformly continuous function slope is bounded, that is, *f* is bounded
- Uniform continuity is a global property of a function

Properties of Uniformly Continuous Function

- Every uniformly continuous function is continuous, but the converse is not true
- A function is uniformly continuous, or not, on an entire interval
- A function may be continuous at each point of an interval without being uniformly continuous on the entire interval

Examples

Uniformly continuous: $f(t) = \sin(t)$ Note that the slope of the above function is bounded Continuous, but not uniformly continuous on positive real numbers: f(t) = 1/tNote that as t approaches 0, the changes in f(t) grow beyond any bound

95

State of an a.s. System With Bounded Input is Bounded

- Example of Slotine and Li, "Applied Nonlinear Control," p. 124, Prentice Hall, 1991
- Consider an a.s. stable LTI system with bounded input

$$\dot{x} = Ax + Bu$$

y = Cx

Output of a.s. System With Bounded Input is Uniformly Continuous

Because x is bounded and u is bounded, x is bounded
 Derivative of the output equation is

$$\dot{y} = C\dot{x}$$

The time derivative of the output is bounded

Hence, y is uniformly continuous

Barbalat's Lemma

If f(t) has a finite limit as $t \to \infty$ and if $\dot{f}(t)$ is uniformly continuous (or \ddot{f} is bounded), then $f(t) \rightarrow 0$ as $t \to \infty$

Lyapunov-Like Lemma

Given a real-valued function $W(t, \mathbf{x})$ such that

■ W(t,**x**) is bounded below

W(t,x) is negative semi-definite
 W(t,x) is uniformly continuous in t (or W bounded) then

 $\dot{W}(t,x)
ightarrow 0$ as $t
ightarrow \infty$

Lyapunov-Like Lemma---Example; see p. 211 of the Text

Interested in the stability of the origin of the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2x_1 + x_2u \\ -x_1u \end{bmatrix}$$

where *u* is bounded

Consider the Lyapunov function candidate

$$V = \|x\|^2 = x_1^2 + x_2^2$$

Stability Analysis of the System in the Example

The Lyapunov derivative of V is

- $\dot{V} = 2x_1 \dot{x}_1 + 2x_2 \dot{x}_2$ $= 2x_1 (-2x_1 + x_2 u) - 2x_2 x_1 u$ $= -4x_1^2$ < 0
- The origin is stable; cannot say anything about asymptotic stability
- Stability implies that x₁ and x₂ are bounded

Example: Using the Lyapunov-Like Lemma

We now show that

$$x_1(t)
ightarrow 0$$
 as $t
ightarrow \infty$

Note that V=x₁²+x₂² is bounded from below and non-increasing as t→∞
 Thus V has a limit as t→∞
 Need to show that V is uniformly continuous

Example: Uniform Continuity of \dot{V}

 $\hfill\square$ Compute the derivative of V and check if it is bounded

$$\ddot{V} = -8x_1\dot{x}_1 = -8x_1\left(-2x_1 + x_2u\right)$$

The function V is uniformly continuous because V is bounded
Hence $\dot{V} \to 0$ as $t \to \infty$ Therefore $x_1(t) \to 0$ as $t \to \infty$

Benefits of the Lyapunov Theory

Solution to differential equation are not needed to infer about stability properties of equilibrium state of interest

Barbalat's lemma complements the Lyapunov Theorem

Lyapunov functions are useful in designing robust and adaptive controllers