

Lecture Notes
in Control and Information Sciences 406

Editors: M. Thoma, F. Allgöwer, M. Morari

Alberto Bemporad, Maurice Heemels,
and Mikael Johansson

Networked Control Systems

ABC

Series Advisory Board
P. Fleming, P. Kokotovic,
A.B. Kurzhanski, H. Kwakernaak,
A. Rantzer, J.N. Tsitsiklis

Authors

Assoc.Prof. Alberto Bemporad
Università Siena
Fac. Ingegneria
Dipto. Ingegneria
dell’Informazione
Via Roma 56
53100 Siena
Italy

Assoc.Prof. Maurice Heemels
Eindhoven University of
Technology
Dept. Mechanical Engineering
Eindhoven
Netherlands

Prof. Mikael Johansson
Royal Institute of Technology (KTH)
School of Electrical Engineering
Automatic Control Lab.
Osquldas väg 10
100 44 Stockholm
Fl. 6
Sweden
E-mail: mikaelj@s3.kth.se

ISBN 978-0-85729-032-8 e-ISBN 978-0-85729-033-5

DOI 10.1007/978-0-85729-033-5

Lecture Notes in Control and Information Sciences ISSN 0170-8643

Library of Congress Control Number: 2010936459

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

5 4 3 2 1 0

springer.com

Foreword

This book finds its origin in the WIDE PhD School on Networked Control Systems,
which we organized in July 2009 in Siena, Italy. Having gathered experts on all the
aspects of networked control systems, it was a small step to go from the summer
school to the book, certainly given the enthusiasm of the lecturers at the school. We
felt that a book collecting overviews on the important developments and open prob-
lems in the field of networked control systems could stimulate and support future
research in this appealing area. Given the tremendous current interests in distributed
control exploiting wired and wireless communication networks, the time seemed to
be right for the book that lies now in front of you.

The goal of the book is to set out the core techniques and tools that are avail-
able for the modeling, analysis and design of networked control systems. Roughly
speaking, the book consists of three parts. The first part presents architectures for
distributed control systems and models of wired and wireless communication net-
works. In particular, in the first chapter important technological and architectural
aspects on distributed control systems are discussed. The second chapter provides
insight in the behavior of communication channels in terms of delays, packet loss
and information constraints leading to suitable modeling paradigms for communi-
cation networks.

The second part focuses on decentralized and distributed control, estimation and
optimization. The network aspect is here that not all information is available in
one central controller, estimator or optimizer, but local agents have only limited in-
formation of the overall control, estimation or optimization problem and still aim
at solving the central problem in an appropriate manner. Although the information
might be limited for each individual agent, it is assumed that communication is ideal
and imperfections such as communication delays, possible loss of information and
quantization effects are ignored. Chapter 3 discusses distributed estimation and con-
sensus problems and the fourth chapter surveys distributed optimization techniques.
Chapter 5 and 6 provide overviews on decentralized and distributed control. The
emphasis in chapter 5 is on decentralized and distributed model predictive control
techniques.

VI Foreword

While communication imperfections induced by the presence of a non-ideal and
uncertain network channel are ignored in the second part of the book, they form the
main topic of the third part. Methods for stability analysis and controller synthesis of
control loops closed over communication channels are treated in chapter 7. Using
appropriate models of networked control systems it is investigated how network-
induced phenomena such as varying delays, varying sampling intervals, data loss
and communication constraints influence the stability and performance of control
loops. Chapter 8 studies the effects of the limited capacity of channels, e.g. limited
bandwidth, on feedback control. Fundamental limitations in control using quantized
information are discussed in detail in this chapter. Finally, chapter 9 treats control
systems that do not use the conventional periodic sampling, but update their in-
formation based on specific discrete events. The resulting event-triggered feedback
controllers have the potential to reduce the amount of communication required in
networked systems while preserving the overall system’s stability and performance.
This last chapter provides in-depth analysis techniques for event-triggered control,
estimation and optimization.

In summary, this book provides overviews on many facets of networked control
systems. The writing of the book would have been impossible without the enormous
efforts of the lecturers of the school and we are certainly indebted to them. We are
also grateful to Davide Barcelli, who was responsible for the technical assembly
of the separate contributions of the authors into one book. Finally, the support by
the European Commission through the FP7-ICT-2007-2 thematic programme under
project WIDE “Decentralized and wireless control of large-scale systems” (project
no. 224168) for writing this book is greatly acknowledged.

We hope that you will enjoy reading this book and that it will be of assistance in
your own research endeavors in the area of networked control systems.

April 2010 Alberto Bemporad, Trento, Italy
Maurice Heemels, Eindhoven, The Netherlands

Mikael Johansson, Stockholm, Sweden

Contents

1 The Importance, Design and Implementation of a Middleware
for Networked Control Systems . 1
Kyoung-Dae Kim, P.R. Kumar
1.1 Introduction . 1
1.2 Networked Control Systems . 2

1.2.1 Domain Characteristics . 2
1.2.2 Domain Requirements . 4

1.3 Middleware for Networked Control Systems 5
1.3.1 Middleware Fundamentals . 5
1.3.2 Etherware . 7

1.4 Real-Time Operation of Networked Control Systems 10
1.4.1 Real-Time System Fundamentals . 10
1.4.2 Real-Time Support in Etherware . 14

1.5 Reliability for Networked Control Systems . 17
1.5.1 Fundamentals of Reliable System. 17
1.5.2 Reliability Support in Etherware . 20

1.6 Case Study: Networked Inverted Pendulum Control
System . 22
1.6.1 Inverted Pendulum Control System . 22
1.6.2 Periodic Control under Stress . 23
1.6.3 Runtime System Management . 25

1.7 Conclusion . 27
References . 28

2 Wireless Networking for Control: Technologies and Models 31
Mikael Johansson, Riku Jäntti
2.1 Introduction . 31
2.2 Understanding the Single Link . 32

2.2.1 Wireless Propagation and Outage . 32

VIII Contents

2.2.2 Markov Models for the Wireless Channel 39
2.2.3 The ISM Band, Co-existence and Interference 40
2.2.4 Means for Increasing Reliability . 42

2.3 Multiple Links: Medium Access Control . 45
2.3.1 Scheduled Medium Access: TDMA and FDMA 47
2.3.2 Contention-Based Medium Access: Aloha, CSMA and

Beyond . 48
2.3.3 Dynamic Access Scheduling via Polling and

Reservation . 52
2.3.4 Energy-Efficient Medium Access Control 53

2.4 From Single Links to Network: The Upper Networking
Layers . 54
2.4.1 Topologies and Multi-hop Communications 54
2.4.2 Routing . 58
2.4.3 Transport Layer Protocols and Traffic Patterns 61
2.4.4 Standards and Specifications for Industrial Wireless

Networking . 62
2.5 Control Relevant Models of Latency and Loss 66
2.6 Conclusions . 69
References . 70

3 A Survey on Distributed Estimation and Control Applications
Using Linear Consensus Algorithms . 75
Federica Garin, Luca Schenato
3.1 Introduction . 75
3.2 Linear Consensus Algorithms: Definitions and Main

Results . 77
3.2.1 Analysis . 78
3.2.2 Design . 82

3.3 Estimation and Control Problems as Average Consensus 89
3.3.1 Parameter Estimation with Heterogeneous Sensors 89
3.3.2 Node Counting in a Network . 90
3.3.3 Generalized Averages . 90
3.3.4 Vehicle Rendezvous . 91
3.3.5 Least Squares Data Regression . 91
3.3.6 Sensor Calibration . 92
3.3.7 Kalman Filtering . 93

3.4 Control-Based Performance Metrics for Consensus
Algorithms . 95
3.4.1 Performance Indices . 95
3.4.2 Evaluation and Optimization of Performance

Indices . 100
3.5 Conclusion . 104
References . 104

Contents IX

4 Distributed Optimization and Games: A Tutorial Overview 109
Bo Yang, Mikael Johansson
4.1 Introduction . 109
4.2 Convex Optimization Using First-Order Methods 110

4.2.1 Gradient Methods for Smooth Problems 111
4.2.2 Subgradient Methods for Non-smooth Problems 114
4.2.3 Incremental Subgradient Methods . 115

4.3 Decomposition Techniques . 117
4.3.1 Dual Decomposition . 118
4.3.2 Augmented Lagrangian and Proximal Point

Methods . 122
4.3.3 Primal Decomposition . 124

4.4 Networked Optimization . 126
4.4.1 Networked Optimization via Dual Decomposition 127
4.4.2 Consensus-Subgradient Schemes . 129
4.4.3 Networked Incremental Subgradient Methods 132

4.5 Game Theory in Distributed Optimization . 133
4.5.1 Basics of Game Theory . 133
4.5.2 Properties of Nash Equilibria . 134

4.6 Dynamics of Gradient Algorithms. 139
4.6.1 Connection between Lyapunov Functions and Objective

Functions . 140
4.6.2 Krasovskii’s Method . 142
4.6.3 Non-strictly Convex Problem . 143

4.7 Conclusions . 144
References . 145

5 Decentralized Model Predictive Control . 149
Alberto Bemporad, Davide Barcelli
5.1 Introduction . 149
5.2 Model Predictive Control . 152
5.3 Existing Approaches to DMPC . 153

5.3.1 DMPC Approach of Alessio, Barcelli, and
Bemporad . 154

5.3.2 DMPC Approach of Jia and Krogh . 161
5.3.3 DMPC Approach of Venkat, Rawlings, and

Wright . 162
5.3.4 DMPC Approach of Dunbar and Murray 163
5.3.5 DMPC Approach of Keviczy, Borrelli, and Balas 164
5.3.6 DMPC Approach of Mercangöz and Doyle 165
5.3.7 DMPC Approach of Magni and Scattolini 166

5.4 Example of Decentralized Temperature Control in a
Railcar . 166
5.4.1 Example Description . 166
5.4.2 Simulation Results . 168

X Contents

5.5 Hierarchical MPC . 172
5.5.1 Problem Description . 172
5.5.2 Illustrative Example . 173

5.6 Conclusions . 175
References . 176

6 Decentralized Control . 179
John Swigart, Sanjay Lall
6.1 Motivating Examples . 179

6.1.1 Vehicle Spacing . 180
6.1.2 Witsenhausen’s Counterexample . 181

6.2 Static Problems . 182
6.2.1 Solution of the Multi-vehicle Problem 184
6.2.2 Nonlinear Policies . 185

6.3 Dynamic Problems . 188
6.3.1 Quadratic Invariance . 190
6.3.2 Skyline Information Structures . 191
6.3.3 Control of Networks . 193
6.3.4 Non-convex Systems . 195
6.3.5 Unstable Plants . 196

6.4 Solving the Optimization Problem . 196
6.4.1 Spectral Factorization . 197
6.4.2 Solution of the Two-Player Problem 198

6.5 Summary . 199
References . 200

7 Stability and Stabilization of Networked Control
Systems . 203
W.P.M.H. Heemels, N. van de Wouw
7.1 Introduction . 203
7.2 Overview of Existing Approaches . 205

7.2.1 The Types of Network-Induced Phenomena 205
7.2.2 Different Approaches in Modeling/Analysis of

NCS . 206
7.3 NCS with Delays, Varying Sampling Intervals and Packet Loss . . . 209

7.3.1 Description of the NCS . 209
7.3.2 Discrete-Time Modeling Approaches 211
7.3.3 Sampled-Data Modeling Approaches 223

7.4 NCS Including Communication Constraints 228
7.4.1 Continuous-Time (Emulation) Approaches 228
7.4.2 Discrete-Time Approach . 238
7.4.3 Comparison of Discrete-Time and Continuous-Time

Approaches . 245
7.5 Conclusions . 246
References . 248

Contents XI

8 Feedback Control over Limited Capacity Channels 255
Hideaki Ishii
8.1 Introduction . 255
8.2 Control under Capacity Constraints: System Setup and

Background . 258
8.3 The Minimum Data Rate for Stabilization . 261

8.3.1 Problem Formulation and Initial Results 261
8.3.2 Dynamic Quantizers . 263
8.3.3 The Solution to the Minimum Data Rate Problem 265

8.4 The Coarsest Quantization for Stabilization . 267
8.4.1 The Coarsest Quantizers . 268
8.4.2 The Coarsest Quantizer for Stabilization over Lossy

Channels . 272
8.4.3 Quantized Adaptive Control for Uncertain Systems 276

8.5 Information Theoretic Approach to Bode’s Integral
Formula . 282
8.5.1 Bode’s Integral Formula for Complementary Sensitivity

Functions . 283
8.5.2 Entropy and Mutual Information . 284
8.5.3 Characterization of Complementary Sensitivity

Properties . 285
8.6 Conclusion . 288
References . 289

9 Event-Triggered Feedback in Control, Estimation, and
Optimization . 293
Michael Lemmon
9.1 Introduction . 293
9.2 Mathematical Preliminaries . 297
9.3 Event-Triggered Feedback in Embedded Control Systems 302
9.4 Event-Triggered Feedback in Networked Control Systems 320
9.5 Event-Triggered Estimation . 330
9.6 Event-Triggered Approaches to Optimization 340
9.7 Research Issues . 350
References . 353

Index . 359

List of Contributors

Davide Barcelli
Department of Information
Engineering, University of Siena, Italy
barcelli@dii.unisi.it

Alberto Bemporad
Department of Mechanical and Struc-
tural Engineering,
University of Trento, Italy
bemporad@ing.unitn.it

Federica Garin
INRIA Grenoble Rhône-Alpes, France
federica.garin@inrialpes.fr

W.P.M.H. Heemels
Eindhoven University of Technology,
Department of Mechanical
Engineering, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands
M.Heemels@tue.nl

Hideaki Ishii
Department of Computational In-
telligence and Systems Science,
Tokyo Institute of Technology, 4259
Nagatsuta-cho, Midori-ku, Yokohama
226-8502, Japan
ishii@dis.titech.ac.jp

Riku Jäntti
Department of Communications and
Networking Comnet Helsinki University
of Technology TKK, Finland
riku.jantti@tkk.fi

Mikael Johansson
School of Electrical Engineering and
ACCESS Linnaeus Center, Sweden
mikaelj@ee.kth.se

Kyoung-Dae Kim
Department of Electrical and Computer
Engineering, University of Illinois at
Urbana-Champaign, USA
kkim50@illinois.edu

P. R. Kumar
Department of Electrical and Computer
Engineering, University of Illinois at
Urbana-Champaign, USA
prkumar@illinois.edu

Sanjay Lall
Department of Electrical Engineering
and Department of Aeronautics and
Astronautics, Stanford University,
Stanford, CA 94305, USA
lall@stanford.edu

XIV List of Contributors

Michael Lemmon
University of Notre Dame,
Notre Dame, Indiana, USA
lemmon@nd.edu

Luca Schenato
Department of Information
Engineering, University of Padova,
Italy
schenato@dei.unipd.it

John Swigart
Department of Aeronautics and Astro-
nautics, Stanford University, Stanford,
CA 94305, USA
jswigart@stanford.edu

Bo Yang
Department of Automation,
Shanghai Jiao Tong University,
China
bo.yang@sjtu.edu.cn

N. van de Wouw
Eindhoven University of Technology,
Department of Mechanical
Engineering,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands
N.v.d.Wouw@tue.nl

Chapter 1
The Importance, Design and Implementation of
a Middleware for Networked Control Systems

Kyoung-Dae Kim and P.R. Kumar

Abstract. Due to the advancement of computing and communication technology,
networked control systems may soon become prevalent in many control applica-
tions. While the capability of employing the communication network in the control
loop certainly provides many benefits, it also raises several challenges which need
to be overcome to utilize the benefits.

In this chapter, we focus on one major challenge: a middleware framework that
enables a networked control system to be implemented. Indeed our thesis is that a
middleware for networked control system is important for the future of networked
control systems.

We discuss the fundamental issues which need to be considered in the design
and development of an appropriate middleware for networked control systems. We
describe Etherware, a middleware for networked control system which has been de-
veloped at the University of Illinois, as an example of such a middleware framework,
to illustrate how these issues can be addressed in the design of a middleware. Using
a networked inverted pendulum control system as an example, we demonstrate the
powerful capabilities provided by Etherware for a networked control system.

1.1 Introduction

Over the past several decades, communication and computing technologies have
advanced tremendously. Consequently, the platform for the control system itself
also has changed with the emergence of networked control. In general, a networked
control system is a system whose constituents such as sensors, actuators, and con-
trollers are distributed over a network, and their corresponding control-loops are
formed through a network layer. Thus, the scale of the networked control system

Kyoung-Dae Kim · P.R. Kumar
Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, USA
e-mail: kkim50@illinois.edu,prkumar@illinois.edu

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 1–29.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

kkim50@illinois.edu, prkumar@illinois.edu

2 K.-D. Kim and P.R. Kumar

is typically much larger than that of classical control systems. An example of such
a system, an automatic traffic control system, established in the IT Convergence
Laboratory at the University of Illinois, is shown in Figure 1.1 (see [12]).

In addition to the scale of the system, the complexity of a networked control
system is also greater. Due to the existence of the networked communication and
computation system below the control application layer, several challenging issues
such as communication delay, the interface between a control application and the
network layer, platform heterogeneity, clock differences between the computers,
and others, arise. Clearly, all of these constitute an extraordinarily big burden on
control engineers if they have to address these issues too, while designing of the
control loops.

One solution to release these burdens from the control engineer is to interpose an
abstraction layer between the application layer and the underlying networked com-
munication and computation layer. Such an abstraction layer can encapsulate the
complexity of the underlying system so that the application layer can have a much
simpler view of the system. This can significantly simplify and shorten the devel-
opment of a networked control application. Typically, such an abstraction can be
realized as a software framework, called a middleware. When such a middleware is
designed and developed, it is important to consider the domain requirements which
capture all the characteristics of the application domain. Thus, as a first step toward
the development of the middleware for networked control systems, it is necessary to
understand the fundamental characteristics of networked control systems and then
establish corresponding requirements for the middleware framework.

Etherware is such a middleware for networked control systems which has been
developed at the University of Illinois [4, 13]. In the sequel, we extensively discuss
how Etherware is designed and how it works to support the domain requirements
established from the domain characteristics, since it can serve as an exemplar of
middleware for networked control systems. We also present a particularly demand-
ing application that we have implemented, a networked inverted pendulum control
system, as a case study of a particular networked control system which is imple-
mented on top of Etherware, in order to demonstrate the usefulness of a middleware
framework.

1.2 Networked Control Systems

1.2.1 Domain Characteristics

There are many potential examples of networked control systems in various applica-
tion areas, such as smart power grids, intelligent traffic control systems, automatic
warehouse management systems, and so forth. In this section, we investigate the
common characteristics which are shared by many networked control systems in
many application domains.

1 The Importance, Design and Implementation of a Middleware 3

Fig. 1.1 Traffic control Testbed in IT Convergence Laboratory at the University of Illinois

1.2.1.1 Large-Scale

In a networked control system, the control loop is typically formed through the un-
derlying communication network. Thus, the physical distance between the entities
in the loop is not an issue anymore. Also, the communication network allows us
to form multiple control loops through it so that multiple control objectives can be
achieved at the same time. The Testbed example shown in Figure 1.1 is a good ex-
ample which has such characteristics. In the testbed, a vision system is used to detect
the state of the moving vehicle, and a low-level controller controls the vehicle to fol-
low a given trajectory generated by a high-level controller. The inner control loop
for tracking the given reference trajectory is formed through a communication net-
work since all these elements are running at different computing nodes. Besides this
inner control loop, there is another control loop formed through the same communi-
cation network to achieve a different slightly higher level control objective, which is
collision avoidance between vehicles. In addition to all these, we also have another
control loop in the testbed for runtime system management, such as upgrading or
migrating some software modules to optimize the overall system performance.

1.2.1.2 Openness

In a classical control system, it is typically not allowed to change the running sys-
tem. However, networked control systems are open to runtime system reconfigura-
tion. While the system is running, new entities can join or leave the system, and also
an existing entity can be replaced or even migrated to other location in a networked
control system. Depending on the situation, the information flow which forms a
control loop can be dynamically changed at runtime as well. The testbed system
in Figure 1.1 can exhibit all of these dynamic reconfiguration features. Clearly, ve-
hicles can join or leave the traffic system dynamically. If a better traffic control

4 K.-D. Kim and P.R. Kumar

algorithm is developed, then the existing traffic controller can be replaced by the
new one with a better algorithm, so that the overall traffic control performance can
be improved. Also, depending on the network traffic, a traffic controller may need
to be migrated to another computing node to provide better traffic control perfor-
mance. Once a controller is migrated, then the corresponding control loop also has
to be reconfigured accordingly.

1.2.1.3 Time-Criticality

A delay in a control loop typically affects the performance and the stability of the
control system. Therefore, a control system is in fact a time-critical system in most
cases. In fact, time-criticality is one of the fundamental characteristics of any con-
trol system, not just for a networked control system. Considering the fact that the
computation and communication network are in the middle of control loop, the time-
criticality might an even be more challenging issue for a networked control system.

1.2.1.4 Safety-Criticality

In many cases, a control system is indeed a safety-critical system which can cause
severe consequences once the system fails. As shown in the testbed, a vehicle control
system can be an example of such a safety-critical control system. In a networked
control system, it becomes is harder to achieve the safety-guarantee due to the exis-
tence of the computation and communication network.

1.2.2 Domain Requirements

The following are some of the requirements for a middleware framework for net-
worked control systems.

1.2.2.1 Operational Requirements

As we discussed in Section 1.2.1, entities which constitute a networked control sys-
tem typically run on different computing nodes over the network. This distributed
nature of a control system in fact causes several issues which have to be resolved
for correct operation of a control system. The existence of the network itself can
cause several difficulties in the development of a networked control system. Among
them, the location difference and clock difference between entities in the control
loop are two essential issues caused by the distributed nature. Thus, as an underly-
ing platform of a networked control system, a middleware framework is necessary
to provide an abstraction about the networked system which hides all such issues,
so that a networked control system can be easily developed by the control designer.
Besides these two requirements, it is also required to provide a mechanism which
supports semantic addressing (or context-aware addressing) so that the portability
and reusability of the application code can be enhanced.

1 The Importance, Design and Implementation of a Middleware 5

1.2.2.2 Management Requirements

As explained in Section 1.2.1, a networked control system is typically subject to
runtime system reconfiguration since it is an open system. Even though it is still
possible to implement all such functionalities in an application layer, it becomes
much easier and more efficient to develop and manage a networked control system
if the underlying platform is equipped with some functionalities which can be used
for runtime reconfiguration. Thus, as a platform for a networked control system, a
middleware framework is required to provide some mechanisms for runtime system
management which enables continuous system evolution.

1.2.2.3 Non-functional Requirements

The non-functional requirements 1 for a middleware framework are induced from
both the time-critical and safety-critical characteristics of a networked control sys-
tem. The time-criticality requires a control system to behave in a predictably timely
manner so as to minimize the effect of delay. Thus, a middleware framework is re-
quired to provide some mechanisms which support the timeliness behavior of the
control system. Also, the safety-criticality of a control system requires that the mid-
dleware framework itself be error-free, and also provide some mechanisms to toler-
ate faults which can occur in the application layer, to achieve overall reliability.

1.3 Middleware for Networked Control Systems

1.3.1 Middleware Fundamentals

A middleware is a software framework running in between an application and the
underlying platform such as an operating system. Even a control system application
running on a single computer can benefit from a middleware framework. However,
the true value of a middleware is for a system which involves the features of both
heterogeneity and distributed operation. Since these two fundamental features of
distributed systems add a lot more complexity to the application, it is much harder
to develop an application in general. Therefore, it is important to have a simpler
abstract model of the system which hides all the complex details of the underlying
system from an application developer. A middleware framework can provide such
an abstraction of the system to the application developer so that she can develop
an application easily on top of the abstraction. In this way, a distributed application
can be developed more rapidly and reliably. In addition to rapid application devel-
opment, an application can also be made more reliable since many of the commonly

1 It should be noted that the phrase “non-functional requirements” can be used in dramat-
ically opposite ways in different communities: with respect to the middleware designer,
both a naming service or communication mechanism are both functional requirements, but
achieving control loop stability is a non-functional requirement. From the viewpoint of the
control designer, the reverse is true. In this paper, the viewpoint is that of the middleware
designer.

6 K.-D. Kim and P.R. Kumar

used functionalities which usually require expertise to handle low level complexi-
ties can be developed and provided to the application developer by a middleware as
a form of middleware service. An example is component reuse which can lead to a
component economy.

1.3.1.1 Communication Mechanisms

In a networked control application, the distribution of the control system applica-
tion over different nodes requires the interaction among components to occur over
a network. For network programming, application programming interfaces such as
sockets are provided by an operating system. But these are usually low level and
require some expertise to use. Also, they are tightly coupled to the underlying com-
puter platform. Thus, they are not appropriate to be used in a platform independent
way for developing a distributed application in general.

In contrast, a middleware framework can provide simpler inter-application com-
munication mechanisms to the application layer by encapsulating these low level
network programming interfaces. A distributed application can then easily be de-
veloped using the inter-application communication mechanisms provided by the
middleware, which allows components to interact with each other over a network
without worrying about the low level network programming which is typically te-
dious and error prone.

In provisioning such communication mechanisms, there are roughly two forms
of mechanisms which can be provided by a middleware, message-oriented commu-
nication and request-oriented communication [18]. In message-oriented communi-
cation, the message sender transmits a message to the receiver but the receiver does
not respond to the sender. In contrast, the receiver replies with a response message
when it receives a message from the sender in the request-oriented communication.
Thus, the message-oriented communication can be considered as a one-directional
communication model while the request-oriented communication can be considered
as bi-directional communication. Each of these communication mechanisms can be
further classified as synchronous communication or asynchronous communication.
The sender is passive (i.e., its execution is blocked) in synchronous communica-
tion, while it is active during the communication process in asynchronous commu-
nication. Considering the characteristics of a distributed system, the communication
mechanism provided by a middleware is most fundamental to providing an abstrac-
tion of the original distributed system that eliminates several issues related to its
distributed nature.

1.3.1.2 Naming Service

The other useful functionality which can be provided by a middleware framework
is a naming service which allows an application to easily find or communicate with
other applications in a distributed system. It is still possible to develop a distributed
application without having such a naming service; however it would require the
explicit specification of the physical network address in the source code of the

1 The Importance, Design and Implementation of a Middleware 7

applications. A naming service provided by a middleware can eliminate this oth-
erwise undesirable necessity. In fact, from the software engineering point of view, a
middleware’s naming service improves significantly the portability and reusability
of the source code by breaking the connection between the application code and the
underlying platform.

1.3.1.3 Other Domain Specific Services

Besides the above inter-application communication mechanisms and naming ser-
vice, there are many other functionalities which can be provided as middleware
services, such as security service, transaction service, event service, and so on [27].

1.3.2 Etherware

In this section, we continue our discussion about the middleware framework for
networked control systems in the context of a specific middleware framework, called
Etherware [4], which has been developed at the University of Illinois.

1.3.2.1 Domainware for Networked Control Systems

Etherware is a middleware framework developed specifically for the networked con-
trol application domain. The main objective of Etherware is to provide a software
framework which enables a rapid, reliable, and evolvable networked control appli-
cation development. A networked control application can be easily developed in
Etherware since it supports component-based application development. A software
component is a software module which provides a set of functionalities through a
set of pre-defined interfaces. In Etherware-based applications, the pre-defined inter-
face is used for interaction between a component and Etherware, and components
interact with each other through Etherware. Thus, Etherware itself provides a virtual
communication layer to the application layer. Etherware uses the message exchange
mechanism for component interaction. More specifically, a component needs to cre-
ate a message and sends it to Etherware. Then Etherware delivers the sent message
to the receiver though its message delivering mechanisms. In Etherware, every mes-
sage is an instance of Message class which is a well-defined XML document object
[29]. Listing 1.1 shows the XML structure of the Message class.

<EtherMsg type=... rel=... >
<profile name=... ></profile>
<content> ... </content>
<ts value=... ></ts>

</EtherMsg>

Listing 1.1 XML structure of an Etherware Message

The type attribute of the EtherMsg element is used to specify the name of the
message. The name of the receiver component can be specified in the name attribute

8 K.-D. Kim and P.R. Kumar

of profile element. In the content element, any information concerning the
interaction semantics can be specified. The clock time when the message is created
is specified in the value attribute of ts element.

1.3.2.2 Architecture

The concept of microkernel architecture in an operating system [25] is used in the
design of Etherware architecture. Therefore, only the minimal invariant function-
alities are implemented in the core module of Etherware, called Etherware Ker-
nel, while all the other functionalities are implemented as Etherware Components.
As shown in Figure 1.2, Etherware components can be classified further into two
different layers. The top layer contains components which implement the applica-
tion logic, called application components, while the bottom layer is for components
which provide functionalities to support several fundamental domain requirements,
called service components. The details of these components are explained in the
following sections.

In this section, we discuss the Etherware Kernel which is a runtime platform for
Etherware components. As a platform for component execution, Etherware Kernel
is responsible for both component life-cycle management and message delivery be-
tween components. To deliver a message from one component to another, Kernel
uses an object, called job, as its scheduling entity. When a new message arrives in
the Kernel, Kernel creates a new job which contains the sent message itself and the
address of the recipient component. Then the Etherware Scheduler enqueues the job
into a job queue. The enqueued jobs are processed one by one by a job process-
ing software module, called Dispatcher. When a Dispatcher processes a job, it first
extracts the address information from the job and then it delivers the encapsulated
message to the receiver component. During this delivery process, some of the ser-
vice components can be called by Dispatcher depending on the delivery information
specified in the message.

Fig. 1.2 Etherware architecture

1 The Importance, Design and Implementation of a Middleware 9

1.3.2.3 Component Model

Etherware’s component model shown in Figure 1.3 provides the framework in which
an application component can easily be developed. In designing the component
model, several software design patterns [7] were used. Shell plays a central role
in the component model. First, it manages the life cycle of a component which is
encapsulated by it. Shell creates or destroys an instance of component as needed.
Second, Shell in a component model provides a channel which allows a component
to interact with other components.

Basic design to implement Shell is based on the Facade design pattern. The
Strategy design pattern was used to design the component interface which defines a
uniform interface between Shell and all components. Due to this Strategy design pat-
tern, Shell can do runtime component upgrade since every component implements
the same interface called Component Interface. To support runtime component mi-
gration, another design pattern called Memento was used in the component model.
For component migration, it is not enough to move a component by stopping at one
place and by restarting at other place. To reduce the performance degradation due
to component migration, the execution state of a component should be continued
smoothly before and after the migration. The Memento design pattern was adopted
to support this feature.

Fig. 1.3 Etherware component model

1.3.2.4 Services

Etherware supports several fundamental functionalities which are commonly re-
quired for networked control system applications as Etherware services. ProfileReg-
istry is a naming service which is implemented in Etherware to support the semantic
addressing requirement. It maintains information about the profile of a component
and its network address. NetworkMessenger provides the service of message de-
livery over the network. It encapsulates all the details about network information
such as protocol and network address. So, NetworkMessenger is the Etherware ser-
vice which supports the domain requirement of hiding location discrepancy. Net-
workMessenger is called only when a message is destined for a remote component
since Etherware Kernel delivers the message directly if it is for local component.

10 K.-D. Kim and P.R. Kumar

Etherware resolves the time discrepancy issue of distributed systems by implement-
ing the NetworkTime service. NetworkTime service translates a time stamp from
the clock of a remote computing node to that of a local machine for every message
which is received by NetworkMessenger. For this purpose, NetworkTime service
maintains the clock offset and skew for every other computing node where an other
NetworkTime service is running, by periodically exchanging Ping and Response
messages. The Notifier service provides a time-triggered message service to Ether-
ware. Basically, Etherware is an event-driven system such that a component gets
executed only when it receives a message. However, in many cases, control actions
need to be performed based on the time. In such situations, the Notifier service en-
ables a component to execute at the time that it has to, by sending a notification
message to that component.

1.4 Real-Time Operation of Networked Control Systems

Now we turn to the issues raised by the real-time operation that is necessary for
control systems.

1.4.1 Real-Time System Fundamentals

A real-time system is a system whose correctness depends not only on the logical
result of the computation but also on the time at which the results are produced
[23]. Thus, timeliness is a critical attribute of any real-time task. More specifically,
the main objective of a real-time system is to meet the timing requirements of each
real-time task. However, this does not necessarily mean that a real-time system is a
fast system. Fast computing may help in meeting timing requirements. However, fast
computing alone does not guarantee meeting timing requirements. In fact, a real-
time system is more precisely a system which is predictable, whether fast or slow
[23, 6]. In general, predictability is considered to be one of the most fundamental
attributes of any real-time system. What one basically requires is that the system
should behave in such a way that the execution behavior of the running task set can
be precisely described from the information about both the system itself and the
task set.

Once a system becomes predictable, then it is possible to address the issue of
schedulability of a given real-time task set. Each task in the task set can be re-
garded as a collection of jobs. Each job may have a deadline (also called absolute
deadline), which is the time by which the job must be completed. A task is said to
have met its timing requirements if all the jobs in the task are completed by their
deadlines. In a real-time system, a set of real-time tasks is said to be schedulable
if all tasks in the set can complete their execution, while satisfying all their timing
requirements, under some task scheduling algorithm (or scheduling policy). Other-
wise, the task set is said to be unschedulable. A scheduling policy is a set of rules
which determine the execution order, called schedule, among the tasks in a given
task set. However, determining schedules in a scheduling problem consisting of a

1 The Importance, Design and Implementation of a Middleware 11

set of n jobs J = {J1,J2, ...,Jn}, a set of m processors P = {P1,P2, ...,Pm}, and a set
of r types of resources R = {R1,R2, ...,Rr}, is known to be NP-complete [6]. There-
fore, it is important to consider a scheduling problem under additional assumption
so that the problem becomes simple enough with respect to computational tractabil-
ity while still preserving its practicality. Later, in this section, we introduce some
of these fundamental real-time scheduling theories2. Before discussing real-time
scheduling, we first highlight the difference between a hard real-time system and a
soft real-time system.

1.4.1.1 Hard Real-Time vs. Soft Real-Time

A real-time task has timing constraints which have to be met for its correctness.
As noted earlier, one important time constraint is the deadline by which a job in
a real-time task has to complete its execution. Depending on the severity of the
consequences which could occur by failure to meet the deadline constraints, real-
time tasks are usually classified into two groups, hard real-time tasks and soft real-
time tasks. A hard real-time task is a real-time task whose deadline constraints are
very strict. The consequence of a deadline miss of a job in a hard real-time task
could be catastrophic. In fact, many control tasks have the characteristics of a hard
real-time task. One can easily imagine that an aircraft flight control task which has
the highest priority among the tasks in any avionics system is indeed a hard real-
time task. In contrast, the deadline constraints of a soft real-time task are not as
strict as that of a hard real-time task. In a soft real-time system, an occasional miss
of a deadline does not cause a catastrophic situation. However, the performance
of the task might be affected by the rate or frequency of deadline misses. On-line
multimedia streaming is a typical example of a soft real-time task.

1.4.1.2 Processor Utilization Bound

In many control systems, the sensing and control actions are typically periodic ac-
tions. Thus, a periodic task model in real-time scheduling theory can be used to
capture the fundamental behavioral characteristics of control systems. In real-time
scheduling theory, a periodic task can be described by several parameters such as
the execution time (C), the period (T), and the relative deadline (D). The period is
that length of the time interval between successive arrivals of jobs in the task. The
relative deadline is the time interval from the arrival of a job to its deadline, which is
the latest time by which jobs must be completed. The execution time is the amount
of the processor’s time that the job needs in order to be completed. For simplicity in
schedulability analysis, it is usually assumed that the relative deadline of a job is the
same as the period. With this assumption, the demand for the processor’s time of a
task set consisting of n periodic tasks can be characterized by a parameter U , called
processor utilization factor, which is defined as follows:

2 For more details and comprehensive coverage of real-time scheduling, we refer the reader
to [6, 22].

12 K.-D. Kim and P.R. Kumar

U =
n

∑
i=1

Ci

Ti
. (1.1)

For a given scheduling policy and a given periodic task set, there exists a number
Uub, such that the schedulability of the task set is guaranteed if the process utilization
factor of the task set is below Uub. Above this upper bound, the given task set maybe
unschedulable. Note that the value of Uub depends not only on the scheduling policy
but also on the task set. A critical quantity is the least upper bound Ulub, defined as
the minimum among all Uub over all task sets. Ulub can be used the threshold so that
it provides a sufficiency condition to test the schedulability of any task set under a
specific scheduling policy.

1.4.1.3 Rate Monotonic Scheduling

Rate monotonic (RM) scheduling is central to several fundamental results in real-
time scheduling. The rate of a task is defined as the reciprocal of its period. In RM
scheduling, the execution priorities are statically assigned to tasks based on the rate
of each task in a given set of periodic tasks. The higher the rate (i.e., the shorter the
period), the higher the priority. RM scheduling is known to be optimal among all
fixed-priority (or static) scheduling policies for periodic task sets [15]. It is optimal
in the sense that if any other fixed-priority scheduling policy can schedule a given
periodic task set, then the RM scheduling can also schedule the task set. In other
words, there is no other fixed-priority scheduling policy which can schedule a given
task set that is not schedulable under RM scheduling. In [15], the least upper bound
of the processor utilization which guarantees schedulability of a periodic task set
consisting of n tasks is shown to be.

Ulub = n(21/n−1). (1.2)

If we take the limit as n→ +∞ in (1.3), we obtain Ulub of RM scheduling for any
periodic task set with any number of tasks in it:

lim
n→∞Ulub = ln2� 0.69. (1.3)

By using this condition, it is very easy to check the schedulability of a given task
set under RM scheduling. If the processor utilization demand is below Ulub, then
the task set is schedulable. Otherwise, there is no guarantee for a given task set to
be schedulable. In this case, the task set can be either schedulable or unschedulable.
To determine the schedulability of such task sets, it is necessary to employ itera-
tive response time analysis which is a task set dependent, schedulability analysis
technique [6].

1.4.1.4 Earliest Deadline First Scheduling

While RM scheduling is an optimal static real-time scheduling policy, the earli-
est deadline first (EDF) is an optimal dynamic real-time scheduling policy. In RM

1 The Importance, Design and Implementation of a Middleware 13

scheduling, a priority is assigned to a task and the assigned priority is never changed
during the task’s periodic execution. However, in EDF scheduling, a priority is as-
signed to each instance of a task, i.e., to each job, based on the current job’s abso-
lute deadline. Therefore, a priority assigned to a task keeps changing depending on
its current execution state. In [15], the necessary and sufficient conditions for the
schedulability of a set of periodic tasks under the EDF scheduling is shown to be:

U =
n

∑
i=1

Ci

Ti
≤ 1 = Ulub. (1.4)

where Ci is the processor time necessary for executing the task i without interruption
and Ti is the period of task i. Note that the optimality of EDF is immediate from (1.4)
since the least utilization upper bound it provides for EDF scheduling is 100 percent
of the processor time.

1.4.1.5 Resource Sharing Protocol

During its execution, a real-time task may access many resources such as data struc-
tures, files, memory areas, peripheral devices, a set of variables and so on. Also, in
any real-time computing system, multiple tasks running concurrently may access
the same resource. In some cases, accesses of the resource have to be mutually ex-
clusive for the integrity of the sate of the shared resource at the same time. For this
purpose, operating systems which manage the resources provide synchronization
mechanisms to allow mutually exclusive access to the shared resource. To synchro-
nize concurrent access from multiple tasks, the synchronization mechanism blocks a
task when it tries to access a resource which is already occupied by another task, un-
til it is released by the latter task. However, synchronized resource sharing causes an
undesirable phenomenon in real-time systems. In real-time systems, a task with the
highest priority should be able to continue its execution under any circumstances.
However, this may not be true any more under synchronized resource sharing. A
higher priority task can be blocked by a lower priority task. This is called a priority
inversion. Figure 1.4 illustrates an example of priority inversion [6]. In this exam-
ple, J1 has the highest priority, while J2 and J3 have intermediate and lowest priority,
respectively.

In general, the duration of priority inversion can be potentially unbounded since
any intermediate priority task such as J2 in Figure 1.4 could indirectly block the
highest priority. This in turn means that a real-time task can fail to meet its timing
constraints due to priority inversion. To overcome this issue, a real-time resource
sharing protocol, called priority inheritance protocol (PIP), was proposed in [21].
The basic idea of the PIP is that a task which currently holds the shared resource
inherits temporarily the highest priority among the blocked tasks, until it releases
the resource. After releasing the resource, it recovers its original priority. In this
manner, the blocking task will never be preempted by any intermediate priority task
while it is accessing a resource. By adding PIP for resource sharing among real-time

14 K.-D. Kim and P.R. Kumar

Fig. 1.4 An example of priority inversion

tasks in a given task set, the original RM schedulability test was extended in [21].
Any set of n periodic tasks using the priority inheritance Protocol can be scheduled
by the rate monotonic algorithm if the following conditions are satisfied:

∀i, 1≤ i≤ n,
i

∑
k=1

Ck

Tk
+

Bi

Ti
≤ i(21/i−1). (1.5)

where Bi is the maximum blocking time, due to lower-priority tasks, that a task Ji

may experience. C and T are the execution time and period of a task, as explained
above.

1.4.2 Real-Time Support in Etherware

In this section, we describe how Etherware supports the real-time requirements of a
middleware for networked control systems.

1.4.2.1 Quality of Service (QoS) of Message Delivery

In Etherware, each Etherware component can be considered as a task in a real-
time scheduling model. Also, each message sent by a component can be thought
of as an instance of the task, a job in the real-time scheduling model. As men-
tioned in Section 1.4.1, each real-time task has a set of timing constraints such as
period and relative deadline which are required to be met. In Etherware, these tim-
ing constraints can be specified as a QoS specification in each message sent by a
component [13]. Such information is encoded as a QoS element in the Message
class object which itself is an well-defined XML document, as explained in Sec-
tion 1.3.2.1. Basically, Etherware defines QoS as a collection of attributes of an ap-
plication which are used in scheduling for execution. Hence, any information which

1 The Importance, Design and Implementation of a Middleware 15

affects the scheduling can be specified as a constraint in QoS specification. In our
current implementation of Etherware, the period (period), the relative deadline
(simply called deadline), the worst case execution time (wcet), and the im-
portance of a message (crit), are defined for QoS specification of a message, as
illustrated in Listing 1.2.

<EtherMsg type=... rel=... >
<profile name=... ></profile>
<content> ... </content>
<ts value=... ></ts>
<QoS crit=... period=... deadline=... wcet=...>
</QoS>

</EtherMsg>

Listing 1.2 QoS specification in Etherware Message

1.4.2.2 Priority and Concurrent Processing

Concurrency is a fundamental feature of any real system. Multiple tasks may be
released concurrently, and a real-time scheduling policy prioritizes the execution
order based on some rules, while satisfying their timing constraints. Thus, concur-
rency and priority are two key aspects of any real-time system.

As explained in Section 1.3.2.2, Dispatcher is a software module inside the Ether-
ware Kernel, for processing a job (a scheduling entity in Etherware Kernel). For con-
current message processing, multiple Dispatchers can be used to form a dispatching
module as shown in Figure 1.5. For real-time message processing, Etherware uses
a hierarchical prioritization mechanism [8]. First, each Dispatcher in a dispatching
module is assigned a fixed priority3 so that each message enqueued in a Dispatcher is
processed at the fixed priority. The specific number of Dispatchers in a dispatching
module and their corresponding priority levels are determined by a user-provided
specification, called a Thread Scheduling Rule (TSR). Second, the job queue of a
Dispatcher is a prioritized queue which orders jobs in the queue based on some in-
formation specified for a job. Owing to this hierarchical mechanism, Etherware can
support various types of real-time scheduling policies, such as RM scheduling and
non-preemptive EDF. An example of the implementation of a RM scheduling policy
implementation is shown in Listing. 1.3.

For predictable behavior, Etherware utilizes the priority-based scheduling mech-
anism of the underlying platform upon which Etherware is executed. This means
that the execution order among Dispatchers is determined by the underlying oper-
ating system platform based on the fixed priorities assigned to each of them. Thus,
Etherware Scheduler does not need to handle such priority-based scheduling. It is
automatically taken care of by the platform. Instead, Etherware Scheduler performs
the scheduling action at a higher level. Specifically, it determines the right place
where a job should be put in the dispatching module. Due to the hierarchical nature

3 The specific priority set is given by the underlying software platform.

16 K.-D. Kim and P.R. Kumar

Fig. 1.5 Real-time scheduling mechanism with three Dispatchers

of the prioritization in message processing, Etherware Scheduler uses two pieces
of information, one to select a Dispatcher in dispatching module, and the other to
find the right position in the job queue of the selected Dispatcher. This information
is provided to Etherware Scheduler at runtime by a software module which imple-
ments a user defined scheduling rule, called the Job Placement Rule (JPR), which
maps the QoS information specified in a message contained in a job to the position
in the Etherware’s dispatching module. Listing 1.3 is an example of the JPR imple-
mentation which utilizes the period information in a message to implement the RM
scheduling policy. The corresponding experimental results are shown in Table 1.1.

/* QoS : period(P) in millisecond */
JPR queryJPR(Job job) {
JPR jpr;
if(job.P=80) jpr=(Disp#1, NULL);
else if(job.P=200) jpr=(Disp#2, NULL);
else if(job.P=350) jpr=(Disp#3, NULL);
return jpr;

}

Listing 1.3 A pseudo-code example of JPR which implements the RM scheduling policy

To test the real-time performance of Etherware, experiments were performed un-
der several different conditions, depending on the execution time of a task with 200
(ms) period. In each of these different conditions, the activation periods and the exe-
cution times per activation of each task are measured to see how much these changes
affect the execution behaviors of two other periodic tasks. As shown in Table 1.1,
the task with the shortest period is not affected at all by the execution time changes
of the task with the second shortest period. In contrast, the third task, which has the
longest period, is affected a lot in its execution behavior by these changes.

Thus, this result shows that the periodic tasks are in fact correctly scheduled
under the RM scheduling policy.

1 The Importance, Design and Implementation of a Middleware 17

Table 1.1 Experimental results of task execution under RM scheduling policy

Test (mean, jitter) of Execution Time (ms) (mean, jitter) of Period (ms)

Case Task(80ms) Task(200ms) Task(350ms) Task(80ms) Task(200ms) Task(350ms)

1 (14.5, 1.1) (42.4, 15.8) (49.0, 51.2) (80.9, 1.1) (200.9, 29.5) (350.9, 96.9)

2 (14.5, 0.4) (87.6, 16.0) (56.3, 102.0) (80.9, 1.2) (200.9, 29.6) (350.9, 156.1)

3 (14.5, 0.3) (129.9, 16.5) (64.7, 153.0) (80.9, 1.2) (200.9, 29.5) (350.8, 192.0)

4 (14.5, 0.3) (175.6, 17.6) (350.8, 191.9) (80.9, 2.0) (200.9, 29.3) (350.4, 191.9)

1.5 Reliability for Networked Control Systems

1.5.1 Fundamentals of Reliable System

The reliability of a system is usually defined as the probability that a system will
perform its functionality correctly throughout a duration of time. A technical mea-
sure of the reliability is the mean time between failures (MTBF), which is the sum of
the mean time to failure (MTTF) and the mean time to repair (MTTR). The MTTF
is a measure of how long a system is expected to operate correctly before a fail-
ure occurs, while the MTTR measures the difficulty of recovering a system after its
failure. As the definition indicates, the failure of a system is at the heart of the dis-
cussion of the reliability. Therefore, we first introduce the definition of failure and
two other fundamental concepts, error and fault.

1.5.1.1 Fault, Error, and Failure

Typically, all details about what are the acceptable behaviors of a system are de-
scribed in a system specification. If the behavior of the system deviates from the
specified acceptable behaviors, then this is called failure of the system. The imme-
diate cause of a failure is called an error. An error is a part of an erroneous state, a
system state which could lead to a failure by a sequence of valid state transitions.
Finally, a fault is defined to be the cause of an error. Thus, a fault is the root cause
of a failure.

Depending on the view point, faults can be classified in many different ways
[20]. A fault can be either transient or permanent based on the time duration that
a fault can exist. Typically, a transient fault is much more problematic than a per-
manent fault since it is usually harder to diagnose. A fault can also be classified as
a design fault or operational fault based on the underlying cause of the fault. The
other classifications of faults are based on the symptoms caused by the fault, e.g.,
crash faults, timing faults, omission faults, and Byzantine faults. A crash fault is a
fault which causes a system to crash so that it can never return to a valid operational
state. When a system experiences an omission fault, it fails to perform its designated
service even though it is still operating. Under a timing fault, a service provided by

18 K.-D. Kim and P.R. Kumar

a system can be delayed. Lastly, a system behaves unpredictably with Byzantine
faults. There is no specific patterns of symptoms caused by Byzantine faults.

1.5.1.2 Fault Prevention

One approach for achieving reliability of a system is to prevent system failures by
ensuring that all possible causes of unreliability have been removed from the system
before the system is deployed for its operation [1]. This is called fault prevention.
As a first step toward fault prevention, a system needs to be carefully developed so
that all faults which can be anticipated are removed during the development process.
Various techniques or methodologies from software engineering, or formal methods,
can be used during this stage to attempt to avoid introducing any faults into the sys-
tem design. However, it is not usually possible to guarantee that a developed system
is completely free from faults. No matter how thorough the development process,
there may always exist faults. The faults in the constructed system are therefore
attempted to be removed through some experimental validation process. The imple-
mented system is tested under various operating conditions to expose any existing
faults, so that they can be removed. In some cases, artificial faults are introduced
into the implemented system. This technique is called software fault injection (SFI)
[28]. SFI tries to determine what could happen when faults are activated. The infor-
mation collected through the SFI process can be used to both improve reliability of
the system and also to estimate the resilience of the implemented system to faults.

1.5.1.3 Fault Tolerance

In general, the application of fault prevention techniques to a system is not sufficient
to achieve high reliability. Given this fact, it is usually required that a system be fault
tolerant in order to provide reliability despite the presence of faults. Fault tolerance
is the ability of a system to perform its function correctly even in the presence of in-
ternal faults [20]. There are four distinct activities which provide the general means
by which fault tolerance can be implemented [1]. These four activities constitute
the basic principles which underly all fault tolerant systems. Toward fault tolerance,
errors caused by faults have to be detected first. Thus, error detection is the first
step for fault tolerance. The common techniques for error detection are replication
checks, timing checks, coding checks, and so on (see [1] for details). Once an error
is detected, it may be necessary to asses the extent to which the system state has been
damaged by the fault which manifested the detected error. This is known as damage
confinement. The next step is error recovery which recovers the system from the
erroneous system state to a valid error-free state. In the error recovery phase, there
are basically two different approaches to recover the system state, backward error
recovery and forward error recovery. In backward error recovery, the system state is
restored to a past valid state which was checkpointed during normal operations. On
the other hand, forward error recovery techniques drive the system to a new valid
state which is produced by manipulating some portion of the erroneous current state.
Finally, the forth step of fault tolerance is fault treatment. To prevent reoccurrence

1 The Importance, Design and Implementation of a Middleware 19

of the error, it is necessary to identify and treat the fault. One issue in this procedure
is that it may be hard or take a long time to identify faults which caused the errors,
since the relationship between a fault and the corresponding errors is typically very
complex.

1.5.1.4 Software Fault Tolerance

In this section, we introduce two main techniques for software fault tolerance, re-
covery block scheme and N-version programming. Basically, both the techniques
depend on the effective utilization of redundancy with the expectation that com-
ponents built differently should fail differently [26]. The basic configuration of the
recovery block scheme is illustrated in Figure 1.6. The first step in the recovery
block scheme is checkpointing the current valid system state before executing any
modules. Then the primary module is entered. Once the primary module completes
its execution, the execution result of the primary module is tested by the acceptance
test module to detect any error from the primary module if there is any. If the result
is valid, then it is propagated as the output of the block. If any error is detected, then
the error recovery process restores the primary module with the checkpointed state.
Following the recovery, the same sequence of executions is repeated, except that the
next module is used in place of the module that failed. If all of the modules fail,
then it is considered as the failure of the recover block. One issue with the recov-
ery block scheme is that the acceptance test module is highly application dependent
[26]. Hence, its error detection logic is usually required to be implemented by the
module developer.

While the recovery block scheme requires an application dependent acceptance
test module, the N-version programming model can use a generic decision algorithm
to select the correct output [26]. Usually, voting algorithms such as Formalized Ma-
jority Voter, Generalized Media Voter, Formalized Plurality Voter, and Weighted
Averaging Techniques, can be used as the generic decision algorithms in the design

Fig. 1.6 Recovery block scheme

20 K.-D. Kim and P.R. Kumar

Fig. 1.7 N-version programming model

of the selection module (see [16] for details). Another significant difference between
N-version programming and the recovery block is that the output is determined
through a voting process. In a voting process, each of the modules processes the in-
put first, and then their execution results are collected by the selection module. The
selection algorithm determines the output based on the outputs from all modules
and some decision rules. This procedure is illustrated in Figure 1.7.

1.5.2 Reliability Support in Etherware

In this section, we describe how Etherware supports the reliability requirement of
middleware for networked control systems.

1.5.2.1 Local Temporal Autonomy

Local temporal autonomy (LTA) is defined as the ability to operate correctly for a
while in the presence of a failure of the other system components [9]. To accom-
modate the failure of a network connection, nodes or components in a networked
control system, several design principles based on the LTA were proposed in [9, 19].
The basic idea of these design principles is to reduce the inter-dependency between
the interacting components. These principles can be easily understood by consid-
ering specific examples. As shown in the top figure in Figure 1.8, in a networked
control system, a controller relies on both the information from sensors and the
communication network through which the sensor information is delivered. If one
of these fails, a controller also fails. The proposed design principle suggests that
an estimator be used, which is collocated, with the controller to estimate the sen-
sor data. Then, any transient failure of either the sensor or communication network
becomes transparent to the controller.

Another example is the case when a remote controller sends its computed control
value to an actuator component which is collocated on the target plant and delivers
the control to the plant. In this situation illustrated in the bottom figure in Figure 1.8,
the proposed design principle first employs a controller to compute multiple steps
of future control values, and then sends them en bloc to the actuator. Secondly, an

1 The Importance, Design and Implementation of a Middleware 21

Fig. 1.8 The LTA-based design principles

actuator is equipped with a buffer to hold the block of control values delivered from
a controller. Clearly, this block computation and buffer mechanism can reduce de-
pendence between a controller and an actuator so that any transient failure of either
a controller or the communication network is transparent to the actuator. Etherware
provides support for both these strategies [19].

1.5.2.2 Component Model for Fault-Tolerance

In addition to the LTA-based design principles, a fault-tolerant component model
(FT component model) was proposed to support the reliability requirements in [13].
Basically, the FT component model is an extension of the original component model
of Etherware. As shown in Figure 1.9, it is designed to achieve both redundancy
based fault-tolerance, and systematic fault detection and management. The redun-
dancy based fault-tolerance is achieved by allowing multiple components, the pri-
mary and other replica components, to be executed within a Shell. The systematic
fault detection and management is possible through the fault detector and fault han-
dler elements in a Shell. Among the elements encapsulated in a Shell, the fault
manager plays the central role in the fault tolerant operation. It coordinates all the
interactions among elements within the FT component model. The fault manage-
ment policy (FM policy) provides decisions about how to coordinate them. Depend-
ing on the FM policy, the FT component model itself can behave similar to either the
recovery block mechanism or the N-version programming mechanism as explained
in Section 1.5.1 (see [13] for details about the FM policy).

The fault detector can be used to detect a design fault related to a component’s
operational semantics. As an example, if the value computed by a component is
typically expected to be both within some range and smooth, then the fault detector
checks if the result from a component satisfies these conditions. If not, it reports this
as a design fault to the fault manager, which in turn calls the fault handler to handle
this fault. If there is a crash fault or a timing fault from other Etherware components,
then these faults can also be managed by the fault handler. Unlike the design fault,
detecting these faults cannot be done within a Shell since it usually requires a time-
based delay detection mechanism such as a watchdog timer. Therefore, an additional
Etherware service, called interaction fault detection service (IFDS), was proposed,
and is being developed to detect interaction delays caused by another component’s
crash or timing fault.

22 K.-D. Kim and P.R. Kumar

Fig. 1.9 Fault-tolerant component model

1.6 Case Study: Networked Inverted Pendulum Control System

In this section, to exemplify the usefulness of a middleware framework, specifi-
cally Etherware in this case study, in implementing a networked control system, we
present the experimental results of using Etherware to control an inverted pendulum
control system. Basically, two conclusions can be made which are supported by this
case study. First, it can be easy to both develop and manage a networked control sys-
tem with proper support from a middleware. Second, it is important to consider the
non-functional requirements such as real-time and reliability, for correct operation
of a networked control system.

Next, we briefly introduce the inverted pendulum control system which is used
in the experiment.

1.6.1 Inverted Pendulum Control System

Figure 1.10 shows the inverted-pendulum system that is used in our experiment. As
shown in the figure, it has two links. The link in the base is an active one which
is actuated by a DC motor attached to it, while the other one is a passive link. The
inverted pendulum system itself is equipped with a DSP board to measure the joint
angles of both links and to apply the PWM signal to a DC motor. In our experiment,
a controller, which implements a simple state feedback control law, is developed as
an Etherware component, and it runs in a laptop which is attached to the inverted
pendulum system through an RS-232C serial communication channel. For real-time
operation of Etherware, we use the Sun JavaRTS4 as the underlying platform of
Etherware5.

4 Sun JavaRTS is a real-time Java virtual machine which implements the real-time Java
specification (RTSJ). For details about Sun JavaRTS and RTSJ, we refer the reader to
[24, 5].

5 Note that current Etherware is developed with Java programming language. Therefore,
Etherware requires a Java virtual machine which provides the fixed-priority based schedul-
ing mechanism for correct operation of Etherware’s real-time Scheduler.

1 The Importance, Design and Implementation of a Middleware 23

Fig. 1.10 Inverted pendulum control system

With support from Etherware’s notification mechanism, explained in
Section 1.3.2.4, the controller component is periodically activated to output its con-
trol action. In our experiment, the period is set to 15ms. In each period, the controller
begins its execution by requesting the angle data from the DSP. Once it receives the
measured angle data, it then computes a control output value and sends it back to the
DSP so that the control command can be applied to control the inverted pendulum.

Thus, a periodic control action requires multiple interactions between a controller
and the inverted pendulum system through the RS-232C communication network.
Therefore, in addition to the predictable activation of a controller component in
Etherware, the predictability and the reliability of the RS-232C communication net-
work are also essential factors affecting the success of the inverted pendulum sys-
tem. As explained in Section 1.4.2, the predictability of the periodic activation of
a controller component is guaranteed by the real-time scheduling mechanisms of
Etherware. However, the predictability and the reliability of the RS-232C commu-
nication network is not guaranteed by the underlying platform in our implemen-
tation. Therefore, we adopted the state estimator LTA design principle to tolerate
occasional communication errors, so as to achieve better periodic performance over
the unreliable communication layer.

Figure 1.11 is a still oscilloscope image which captures the serial communica-
tion between the DSP and PC on which the Etherware-based controller is running.
From the figure, we can observe the periodic interaction between the Etherware-
based controller and the DSP. The upper signal in the scope image is the signal for
feedback of angle data from DSP to PC, and the lower one is from PC to DSP for
requesting angle data and sending a control command.

1.6.2 Periodic Control under Stress

The real-time performance of Etherware is verified through a stress condition that
is imposed alongside the periodic control of inverted pendulum. To stress the com-
puter on which a periodic control task is running, an extra computational task is

24 K.-D. Kim and P.R. Kumar

Fig. 1.11 Periodic sensing and control action over RS-232C communication

Fig. 1.12 Periodic control of an inverted pendulum under stress

made to run concurrently with the control task. In this experiment, the stress task is
also executed periodically with a period of 5 seconds. Once it begins its execution,
the stress task requires about 1 second to finish its computation. Considering that the
period of control task is only 15ms, as explained in the above section, 1 second is
long enough to disturb the stability of the inverted pendulum, if the real-time perfor-
mance had not been supported by Etherware. To achieve timely execution behavior
of the periodic control task, the periodic notification message from Notifier to the
periodic control task is specified to have a higher priority than that of the stress task.
Figure 1.12 shows the experimental result of this experiment. In the experiment, the
stress task starts its execution around 20 seconds after the system starts. As shown
in the result, there is no apparent adverse affect on control performance even under
the stress condition. This demonstrate Etherware’s real-time performance.

1 The Importance, Design and Implementation of a Middleware 25

1.6.3 Runtime System Management

As explained in Section 1.3.2, Etherware provides mechanisms which support the
continuous evolution of a system after its deployment. The component model is at
the heart of such mechanisms. The combination of these mechanisms for flexibil-
ity, and the real-time mechanisms for temporal predictability, generate capabilities
which enable us to do runtime management of a system, especially a time-critical
control system, without sacrificing the system’s stability. The specific capabilities
that we aim to provide are controller upgrade and controller migration. In this sec-
tion, we demonstrate these capabilities of Etherware.

1.6.3.1 Controller Upgrade

In this experiment, we show Etherware’s capability for runtime component upgrade.
More specifically, a running inverted pendulum controller is replaced with a new
controller which has better control performance, while still maintaining the stability
of the inverted pendulum. To perform this upgrading process correctly without vi-
olating the stability of running system, it is important to externalize the state of the
running controller and recover the state with a new controller timely. Etherware sup-
ports this operation though its component model which enables component upgrade
and its real-time scheduling mechanism.

Figure 1.13 shows the configuration of an application for this runtime controller
upgrade experiment. The periodic controller is running on a computer which is di-
rectly connected to the inverted pendulum system through a serial port. On the other
computer, a component which requests the controller upgrade is running. In the ex-
periment, the requester component sends a request message for better control per-
formance around 30 seconds after the system starts. As shown in the figure, the
control performance is improved around 30 seconds, at the time when the controller
upgrade is requested. Thus, this result demonstrates Etherware’s capability of real-
time component upgrade.

1.6.3.2 Controller Migration

In this experiment, we demonstrate Etherware’s capability for runtime component
migration. More specifically, a controller which controls the inverted pendulum is
migrated from one computer to another at runtime while preserving the stability of
the inverted pendulum. This type of capability can be very useful in a wide range
of applications in optimizing the behavior of control systems. For example, if the
network causes long delay from a specific computer in the network, then one may
want to relocate the controller logic, i.e., component, to another computer which
has less delay. For such runtime migration, several more steps of actions have to be
performed, in addition to the runtime state externalization, as explained in previous
section. Specifically, the externalized state itself has to be migrated to the destination
where the controller will be migrated. Also, once a new instance of the controller
is created at the destination node, the migrated state has to be recovered with the

26 K.-D. Kim and P.R. Kumar

Fig. 1.13 Joint angles of the inverted pendulum under runtime controller upgrade

Fig. 1.14 Joint angles of the inverted pendulum under runtime controller migration

controller. Thus, component migration is a much more complex task than upgrade,
in general. Furthermore, all these actions have to be performed in a timely man-
ner so as to preserve the stability of the inverted pendulum. Therefore, Etherware’s
mechanisms for flexibility and predictability are essential to perform this runtime
management operation. Moreover, Etherware’s facilities make quite simple the de-
velopment and deployment of such advanced capabilities.

Figure 1.14 illustrates the application configuration for the runtime controller mi-
gration experiment. Initially, the inverted pendulum is controlled over the network
by a controller which runs at remote computer. At the computer which is directly
connected to the inverted pendulum, a component, called DSPProxy, is running to
mediate the interaction between the controller and the DSP in the inverted pendu-
lum system. At a third computer, another component which requests the controller
migration process is running. In this experiment, the requester component sends out

1 The Importance, Design and Implementation of a Middleware 27

a request message, which requests the migration of the controller from its current
location to the computer which has the direct connection to the inverted pendulum.
This request is made around 40 seconds after the system starts. Then Etherware
performs the controller migration process. As shown in Figure 1.14, the stability is
maintained even while the controller is migrating to a new computer node. Thus,
this result demonstrates Etherware’s capability of real-time component migration.

1.7 Conclusion

In this paper, we have discussed fundamental characteristics which are common to
any networked control systems. The four characteristics, which are large-scaleness,
openness, time-criticality, and safety-criticality, are identified in Section 1.2.1. Due
to these fundamental characteristics, there is a need for a middleware, which en-
ables us to realize such complex control systems. Indeed our thesis is that such a
middleware is important for the future of networked control systems.

As an underlying platform for networked control systems, a middleware is re-
quired to satisfy domain requirements which are necessitated by the domain char-
acteristics. There are several fundamental functionalities that have to be provided
by any middleware to satisfy both the operational and management domain require-
ments which are induced by the characteristics of a distributed system. Etherware, a
middleware developed at the University of Illinois, is an example of such a middle-
ware for networked control system.

In addition to the functional domain requirements such as operational and man-
agement requirements, a middleware framework is typically expected to also sup-
port the non-functional domain requirements such as timeliness and reliability. We
have presented Etherware’s approach to support the timeliness requirements. We
have also addressed the issue of faults and approaches toward fault prevention and
tolerance, Etherware’s LTA-based design principles, and the fault-tolerant compo-
nent model.

The performance of a networked inverted pendulum control system is provided
as a case study of a middleware based networked control system. In the presented
system, Etherware is used as a middleware framework which for rapid and evolv-
able control application development. We have exhibited complex and important run
time capabilities such as controller migration and controller update, to highlight the
sophisticated capabilities that a middleware such as Etherware can provide. We have
thus experimentally demonstrated Etherware’s flexibility and temporal predictabil-
ity properties.

Acknowledgements. This material is based upon work partially supported by AFOSR un-
der Contract No. FA9550-09-0121, ARO under Contract No. W911NF-08-1-0238, and NSF
under Contract Nos. NSF ECCS-0701604, CNS-07-21992, and CCR-0325716.

28 K.-D. Kim and P.R. Kumar

References

1. Anderson, T., Lee: Fault Tolerance: Principles and Practice. Prentice-Hall, Englewood
Cliffs (1981)

2. Arnold, K., Gosling, J., Holmes, D.: Java(TM) Programming Language, 4th edn. Prentice
Hall PTR, Englewood Cliffs (2005)

3. Bacon, D.F., Cheng, P., Rajan, V.T.: The metronome: A simpler approach to garbage
collection in real-time systems. In: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES), OTM Workshops, pp. 466–478 (2003)

4. Baliga, G.: A Middleware Framework for Networked Control Systems. PhD thesis, De-
partment of Computer Science, University of Illinois at Urbana-Champaign (2005)

5. Bollella, G., Brosgol, B., Gosling, J., Dibble, P., Furr, S., Turnbull, M.: The Real-Time
Specification for Java, 1st edn. Addison Wesley Longman, Amsterdam (2000)

6. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications, 2nd edn. Springer, Heidelberg (2004)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

8. Gill, C.D., Levine, D.L., Schmidt, D.C.: The design and performance of a real-time
CORBA scheduling service. Real-time Systems, The International Journal of Time-
Critical Computing Systems, special issue on Real-time Middleware 20 (1999)

9. Graham, S., Baliga, G., Kumar, P.R.: Issues in the convergence of control with commu-
nication and computing: proliferation, architecture, design, services, and middleware.
In: 43rd IEEE Conference on Decision and Control, CDC 2004, vol. 2, pp. 1466–1471
(2004)

10. Graham, S., Baliga, G., Kumar, P.R.: Abstractions, architecture, mechanisms, and a mid-
dleware for networked control. IEEE Transactions on Automatic Control 54(7), 1490–
1503 (2009)

11. Henriksson, R.: Scheduling Garbage Collection in Embedded Systems. PhD thesis, Lund
University (1998)

12. IT Convergence Laboratory, University of Illinois. Testbed of a traffic control system,
http://decision.csl.illinois.edu/˜prkumar/testbed/
videoclips.html

13. Kim, K.-D., Kumar, P.R.: Architecture and mechanism design for real-time and fault-
tolerant Etherware for networked control. In: Proceedings of the 17th IFAC World
Congress (July 2008)

14. Lindholm, T., Yellin, F.: Java(TM) Virtual Machine Specification. Prentice Hall PTR,
Englewood Cliffs (1999)

15. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM 20(1), 46–61 (1973)

16. Lorczak, P.R., Caglayan, A.K., Eckhardt, D.E.: A theoretical investigation of generalized
voters for redundant systems. In: IEEE Symposium on Fault-Tolerant Computing (1989)

17. OMG, CORBA, http://www.corba.org/
18. Puder, A., Römer, K., Pilhofer, F.: Distributed Systems Architecture: A Middleware Ap-

proach. Morgan Kaufmann, San Francisco (2005)
19. Robinson, C.L., Baliga, G., Kumar, R.R.: Design patterns for robust and evolvable net-

worked control. In: Proceedings of the 3rd Annual Conference on Systems Engineering
Research, New Jersey, USA (March 2005)

20. Selic, B.: Fault tolerance techniques for distributed systems,
http://www.ibm.com/developerworks/rational/library/114.
html

http://decision.csl.illinois.edu/~prkumar/testbed/videoclips.html
http://decision.csl.illinois.edu/~prkumar/testbed/videoclips.html
http://www.corba.org/
http://www.ibm.com/developerworks/rational/library/114.html
http://www.ibm.com/developerworks/rational/library/114.html

1 The Importance, Design and Implementation of a Middleware 29

21. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach to real-
time synchronization. IEEE Transactions on Computers 39(9), 1175–1185 (1990)

22. Sha, L., Abdelzaher, T., Arzen, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,
Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical per-
spective. Real-Time Systems 28(2-3), 101–155 (2004)

23. Stankovic, J.A.: Misconceptions about real-time computing: A serious problem for next-
generation systems. Computer 21(10), 10–19 (1988)

24. Sun Microsystems, Sun Java Real-Tim Systems, http://www.sun.com/
25. Tanenbaum, A.S.: Modern Operating Systems, 3rd edn. Prentice Hall, Englewood Cliffs

(2007)
26. Torres-pomales, W.: Software fault tolerance: A tutorial. Technical report, National

Aeronautics and Space Administration (2000)
27. Vinoski, S.: An overview of middleware. In: Llamosı́, A., Strohmeier, A. (eds.) Ada-

Europe 2004. LNCS, vol. 3063, pp. 35–51. Springer, Heidelberg (2004)
28. Voas, J.M., McGraw, G.: Software Fault Injection: Inoculating Programs Against Errors.

John Wiley & Sons, Chichester (1998)
29. World Wide Web Consortium. XML, http://www.w3.org/XML/

http://www.sun.com/
http://www.w3.org/XML/

Chapter 2
Wireless Networking for Control:
Technologies and Models

Mikael Johansson and Riku Jäntti

Abstract. This chapter discusses technologies and models for low power wireless
industrial communication. The aim of the text is to narrow the gap between the mod-
els used in the theoretical control literature with models that arise when tools from
communication theory are used to model emerging standards for industrial wire-
less. The chapter provides a tutorial overview covering basic concepts and models
for wireless propagation, medium access control, multi-hop networking, routing and
transport protocols. Throughout, an effort is made to describe both key technologies
and associated models of control-relevant characteristics such as latency and loss.
Some existing and emerging specifications and standards, including Zigbee, Wire-
lessHART and ISA100, are described in some detail, and links are made between
the developed models and useful network abstractions for control design.

2.1 Introduction

Since the first application of wireless in industrial control almost a 100 years
ago [41], the number of actual deployments has remained small. For a long time,
the market has been limited to a specific target applications (e.g. wireless remote
controls) engineered using customized technologies and sometimes even operating
on licensed spectrum. There is a growing consensus that this trend is now about
to change: the enormous success of short-range wireless in home and office appli-
cations has raised consumer confidence in wireless technologies; the emergence of
standardized, low cost, low-power radios has made industrial wireless economically

Mikael Johansson
School of Electrical Engineering, KTH, SE-10044 Stockholm, Sweden
e-mail: mikaelj@ee.kth.se

Riku Jäntti
Department of Communications and Networking
Comnet Helsinki University of Technology TKK
e-mail: riku.jantti@tkk.fi

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 31–74.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

mikaelj@ee.kth.se
riku.jantti@tkk.fi

32 M. Johansson and R. Jäntti

attractive compared with cabled sensors [28]. Intense efforts on wireless sensor
networks [33] and networked control [4] indicate that a large class of industrial
processes could be reliably controlled despite deficiencies of the wireless medium.
New standards for industrial wireless communication, such as WirelessHART and
ISA100 have recently been approved, and stardards-compliant technology is hitting
the market. All together, this raises expectations of a wide deployment of industrial
wireless [38].

The development of controllers operating over wireless networks is inherently a
problem of co-design, and good system designs require insight and understanding
of the traditionally separate disciplines of control and communications. This chap-
ter reviews technologies and models for industrial wireless networking in an attempt
to narrow the gap between models used in the theoretical control literature and the
models that arise when emerging standards for industrial wireless networks are mod-
elled using tools from communication theory. Covering a wide area of topics, from
wireless propagation and medium access control to routing and transport protocols
for multi-hop wireless networking, the chapter is admittedly broad rather than deep.
Nevertheless, a range of useful models for control-relevant quantities such as latency
and loss in industrial wireless networks are given, and several existing and emerg-
ing specifications and standards, including Zigbee, WirelessHART and ISA100, are
described in some detail. Pointers to books and selected key publications are given
throughout to guide the reader to good entry-points for more in-depth studies.

The chapter is organized as follows. We begin by a review of wireless propaga-
tion and models for the behavior of a single wireless link. We then describe various
medium access control techniques for sharing the wireless spectrum among mul-
tiple wireless links. Next, we discuss multi-hop wireless networking, routing and
protocols for end-to-end communication. With this basic understanding of wire-
less communication at hand, we describe several specifications and standards for
low-power wireless networking. Finally, we establish links between the developed
models and useful network abstractions for control design.

2.2 Understanding the Single Link

Aim: to describe the concepts of wireless propagation and outage, leading to rea-
sonable models of the raw packet-error rates in the 2.4 GHz ISM-band.

2.2.1 Wireless Propagation and Outage

Radio propagation refers to the way that radio waves behave when they are trans-
mitted and propagate from one point to another. Radio waves are affected by the
same phenomena as light waves, including reflection, diffraction, absorption and
scattering. The impact of the wireless channel on the transmitted signal is custom-
arily divided into large-scale effects and small-scale effects. Large scale effects in-
clude signal attenuation due to the propagation distance and shadowing caused by
large stationary obstacles in the radio-path. Small-scale effects are caused by signal

2 Wireless Networking for Control: Technologies and Models 33

reflections and movement of the receiver, transmitter or small objects in the radio
path. Reflections cause multiple copies of the signal to arrive at the receiver with dif-
ferent attenuation and propagation delay. The superposition of these signals at the
receiver causes time dispersion of the original signal. In the frequency domain, this
gives raise to frequency-selective fading where different frequency components of
the signal experience different attenuation and phase shift. Movement of the trans-
mitter, receiver or small objects in the environment cause dispersion of power in
frequency. This is effect is called Doppler spread and gives rise to time-selective
fading, i.e. it makes the channel response time-varying. In certain conditions, the
signal may be absorbed or multi-path components may interfere each other destruc-
tively such that the signal vanishes completely at the receiver. This phenomenon is
called erasure fading.

Small-Scale Effects

Because of multipath reflections, the impulse response of a wireless channel looks
likes a series of pulses. It is customary to characterize the delay profile of the channel
by observing the mean energy p(τ) for each delay τ . The maximum delay spread
is the total time interval during which reflections with significant energy arrive. A
common parameter for quantifying the multipath behavior of the channel is the root-
mean-square (RMS) delay spread στ . The corresponding quantity in the frequency
domain is the coherence bandwidth of the channel, the frequency range over which
two transmitted sinusoidal signals are likely to see the phase shift and attenuation.
The coherence bandwidth BC,50 where the correlation of the channel exceeds 0.5 is
approximately

BC,50 ≈ 1
5στ

If the bandwidth of the transmitted signal B is less than BC,50, the fading is
called frequency-non-selective or flat fading and can be modelled with impulse re-
sponse having only one tap (one radio path); otherwise the channel fading is called
frequency-selective. In frequency selective channel an equalizer (adaptive tapped
delay line filter) is needed at the receivers in order to keep the bit error probability
at tolerable levels. Such a filter is not needed in flat faded channel.

Measurements on the 1.3 GHz frequency band suggests that typical values for
RMS delay spread in factory environment lie between 100 ns and 200 ns, but val-
ues as high as 300 ns are possible [48]. These values are one order of magnitude
higher than what has been reported for office environments. Measurements on the
2.4 GHz band suggest that the mean RMS delay between 16 ns (mine in gran-
ite) to 85 ns (transformer station) translating to coherence bandwidth between 1250
kHz to 227 kHz [59]. The results also indicate that the RMS delay varies a lot be-
tween links in different positions within the same plant. The RMS delay spread
observed in a site tends to follow a (truncated) normal distribution. In the two ex-
amples mentioned above, the standard deviation was 8 ns and 89 ns, respectively.
The mean values tend to be smaller than in office environment where measurement

34 M. Johansson and R. Jäntti

Table 2.1 Comparative table of sample mean and standard deviation of the RMS delay spread
and the coherence bandwidth related to the mean RMS delay spread

Site Mean Standard deviation Coherence bandwidth

RMS delay spread (ns) RMS delay spread (ns) BC,50 (MHz)

Petrochemical plant 38 9 5.26

Transformer station 85 89 2.27

Manufacturing plant 44 24 4.55

Carpark amongst

multi-story buildings 74 107 2.63

Mine in granite 16 8 12.50

Coal mine 23 9 8.70

reports indicate RMS delay spreads between 45 ns and 420 ns [32]. Table 2.1 sum-
marizes the measurement results reported in [26].

To understand how small-scale fading impacts radio performance, consider the
IEEE 802.15.4 radio standard, in which receivers do not have equalizers. On the
2.4 GHz band 802.15.4-radios transmit 2 Mcps (chips per second) which translates
to 2 MHz half-power bandwidth B. To assure that the signal sees frequency-non-
selective channel, it is customary to require that the coherence bandwidth is at least
twice the signal bandwidth. By setting BC,50 = 2× 2 MHz, we get στ = 50 ns.
Based on this analysis, a RMS delay spread exceeding 50 ns would cause concern.
Simulation studies [16] suggest that IEEE 802.15.4 can achieve packet error rates
below 5 · 10−3 as long as the RMS delay does not exceed 400 ns. However, this
comes with the cost of reduced range as up to 10dB higher signal-to-noise ratio is
needed to compensate the effect of inter-symbol interference. The simulations also
suggest that half-rate at 915 MHz would tolerate RMS delay spreads up to 800 ns.
Comparing the tolerance of the IEEE 802.15.4 receiver to the values measured in
industrial settings, we can conclude that in most cases the radio can operate reliably
but in some environments the range could be limited and it is even possible to find
environments where reliable operation is not possible. The low transmit power of
IEEE 802.15.4 also helps in reducing the number of multipath reflected components.

In the wireless channel, many echoed copies of the transmitted signal appear with
almost equal delay. The multipath model groups these delay paths into discrete set
of resolvable paths, called taps, by summing all the signals received with almost
the same delay. By applying the central limit theorem, we can model the signal as
complex Gaussian random variable (it is customary to model the base band signal
as complex random variables - the modulated signal is then obtained by multiply-
ing the signal with phasor exp(j2 fct) rotating with the carrier frequency fc and
taking the real part of the resulting complex signal). The amplitude of the signal
passing through a single radio path follows either Rician or Rayleigh distribution
depending whether there is significant line-of-sight (LOS) component in the sig-
nal or not. That is, whether the complex Gaussian variables have non-zero mean or
not. In both cases, the phase of the received signal is uniformly distributed random

2 Wireless Networking for Control: Technologies and Models 35

variable. In case of Rayleigh fading, the signal power follows chi-square distribution
with two degrees of freedom which happens to coincide with the exponential distri-
bution. In the Rician case, the received signal power follows non-central chi-squared
distribution with two degrees of freedom. Yet another distribution that is often uti-
lized to characterize the line-of-sight is the Nagagami-m distribution. For m = 1, the
model coincides with Rayleigh distribution. The larger m is the less variations there
are in the channel. Measurement results in industrial environment suggest that the
firs tap in a line of sight channel, typically experience Nagagami-m distribution with
m varying between 3 and 67 while the reflected paths follow Rayleigh distribution
(m = 1) [63]. In case that m is an integer, the cumulative probability density of the
Nakagami-m faded signal strength P̃rx having mean P̄rx follows Erlang-m distribu-
tion and can be written as

Pr
{

P̃rx ≤ P
}

= 1−
m−1

∑
k=0

(
k

P̄rx

)k 1
k!

exp

(
− P

P̄rx

)
de f
= FP(P)

Doppler spread and coherence time are parameters that describe the time dispersive
nature of the wireless channel in the small-scale region. When a node or reflectors
in its environment is moving, the velocity of the moving node and/or environment
causes a shift in the frequency of the signal transmitted along each signal path. This
phenomenon is known as the Doppler shift. Although most wireless sensor networks
tends to be immobile, the industrial environment often have moving reflectors such
as overhead cranes, forklifts etc. The Doppler spread is the maximum Doppler shift
and is given by

BD ≈ v
c

fc

where v is the speed of the node, c m/s denotes the speed of light and fc is the carrier
frequency. Signals travelling along different paths can have different Doppler shifts,
corresponding to different rates of change in phase. The difference in Doppler shifts
between different signal components contributing to a single fading channel tap is
known as the Doppler spread. The coherence time of the channel during which the
channel stays essentially constant is approximately

Tc ≈ 0.423
BD

In office environments, the Doppler spread varies from 2Hz to 20Hz which trans-
lates to coherence time from 20 to 200ms [32]. These values are longer than the
typical packet lengths in the wireless sensor networks, implying that the channel
stays essentially constant during the transmission of single packet.

Large-Scale Effects

Large-scale effects can be understood by simply observing how the wireless chan-
nel affects the received power. Frii’s equation relates the transmit power Ptx to the
received power Prx and is given in logarithmic form as

36 M. Johansson and R. Jäntti

PdBm
rx = PdBm

tx + GdBi
tx −LdB

p + GdBi
rx

where GdBi
tx and GdBi

rx are antenna gains at the transmitter and receiver, respectively,
and LdB

p is the path loss. The unit of the power is typically dBm, while the antenna
gains are stated in dBi where the ’i’ refers to isotropic antenna, i.e. an antenna that
that radiates equally in all directions. One of the most simplest path loss models is
the single-slope empirical propagation model given by

LdB
p = LdBm

0 + n10log10(d)

The parameter d > 1 m denotes the distance between transmitter and receiver (in
meters), n is the path loss exponent and LdB

0 is the path loss at one meter distance.
The experienced path loss depends on the environment and typically the model pa-
rameters need to be tuned to match the environment: the parameter LdB

0 depends on
the carrier frequency used; reflection from smooth surfaces can cause the direct path
and reflected path to interfere such that the path loss exponent becomes equal to 4.
The path loss exponent can be even less than 2 in some cases due to a wave guiding
effect of the environment. Measurements conducted in factory environment suggest
that the path loss varies from 1.49 measured for line of sight paths in light clutter
(small number of echoes) to 2.81 in case of obstructed path and heavy clutter (large
number of echoes) [48]. Slightly larger path loss exponents have been reported in
[63] for metal processing facilities where reflections from metallic bodies are likely
to happen. The reported path loss exponents range from 2.56 to 4.24.

The following two slope model

LdB
p =

{
40.2 + 20log10(d) if d ≤ 8 m

58.5 + 33log10(d/8) if d ≥ 8 m

has been utilized by IEEE in the studies for the co-existence of various radios on
the 2.4 GHz Industry, Science, Medical frequency band [21]. The model assumes
line of sight path in the close proximity of the transmitter (d < 8 m) and partially
obstructed path for longer distances.

The impact of walls can be taken into account by increasing the pathloss. The
attenuation cased by walls, floors and other objects which the radio wave can pene-
trate, depend on the dielectric properties of the materials of the object and frequency
of the radio wave. The higher the frequency, the higher the pathloss. A majority of
the empirical models available in literature consider building materials used in resi-
dential and office buildings, see e.g. [22], Obstacles shadowing the radio path cause
diffraction losses to the signal, the impact of which is typically modelled as lognor-
mal random variable S̃dB called shadowing that appears additively in Frii’s equation.
Shadow fading has zero mean and its standard deviation varies between 3 to 20 dB
based on the environment. Values 4 - 9 dB have been reported for factory environ-
ments [63]. In a given link, the shadow fading term stays essentially constant, SdB,
unless there are large changes in the node position with respect to the shadowing
screens.

2 Wireless Networking for Control: Technologies and Models 37

Outage

An important metric of the radio channel quality is the Signal-to-Noise Ratio (SNR).
The instantaneous received SNR at time instant t can be written as

γ̃(t) =
g̃(t)Ptx

N0B

Here N0 is the noise power density given in terms of Watts per Hertz (W/Hz) and B is
the bandwidth of the signal. The random variable g̃(t) is called the link gain. It is the
ratio between received power and transmitted power. The link gain models both the
short scale effects and large-scale effects. Assuming that the channel is wide sense
stationary (i.e. the movement of the transmitters or receivers is slow compared to
the time scale of interest), then the large scale effects are captured by the mean value
of the channel gain

g(t) = E{γ(t)}= 10(GdBi
tx −LdB

p +SdB+GdBi
rx)/10

while the short scale effects explain the distribution of g̃(t), Fg(g) = FP(gPtx) and
its correlation properties. According to Clarke’s model, the correlation can be ex-
pressed as

ρ(τ) = E{(g̃(t)− ḡ)(g̃(t + τ)− ḡ)}= J0 (2πBD)

where J0 denotes the Bessel function of the first kind. The distribution of the re-

ceived SNR is then Fγ(γ) = Fg

(
N0B
Ptx

)
.

Assuming that the coherence time of the channel is large compared to the time it
takes for the transmitter to transmit single information symbol (one symbol can con-
sist of several bits depending on the modulation method used), the bit error probabil-
ity can be expressed as monotonically decreasing function of the instantaneous SNR
pbe(γ). If the coherence time of the channel is large compared to the packet length,
then SNR stays essentially constant during the transmission of a single packet of b
bytes. Hence, the packet error probability ppe(γ) is given by

ppe(γ) = 1− (1− pbe(γ))8b

By fixing ppe(γth) = pmax
pe , we can solve γth which guarantees that that as long as

γ ≥ γth, the packet error rate does not exceed pmax
pe . It is customary to express this

threshold in terms of received power Prx required to archive γth. This power value
Ps = γthN0B is called receiver sensitivity.

Example 2.1 (IEEE 802.15.4 O-QPSK PHY on 2.4 GHz band). According to the
IEEE 802.15.4 standard [20], the bit error probability conditioned on SNR (before
despreading) γ(t) = γ is

pbe(γ) =
1

30

16

∑
j=2

(
16
j

)
(−1) j exp

(
−20

(
1− 1

j

)
γ
)

38 M. Johansson and R. Jäntti

The resulting packet error probability PER is plotted in Figure 2.1 for 30 byte and
127 byte packets. It can be seen from the Figure, that the packet error rate is very
high untill SNR exceeds certain threshold after which the PER drops quickly. In-
creasing physical layer packet size sifts the PER curve to the right. That is, for
given SNR, the longer the packet, the higher the packet error probability - unless
some measures are taken to protect the packet from bit errors. It can bee seen from
Figure 2.1, that about 14 dB SNR is enough to obtain PER less than 0.001.

Due to the fact that the packet error probability has waterfall type of shape where
after some threshold the packet drop probability falls down quickly, a very simple
model for the effect of channel induced packet drops can be utilized. The simple out-
age model assumes that a packet is always successfully transmitted if the received
power Prx is above the receiver sensitivity; otherwise the packet is lost and we say
that the link is in outage. Hence, in the average packet delivery ratio in the fading
channel can be approximated as

pout ≈ FP (Ps) (2.1)

5 6 7 8 9 10 11 12 13 14 15
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
rr

or
 p

ro
ba

bi
lit

y

SNR (dB)

30 byte packet
127 byte packet
Single bit

Fig. 2.1 Packet error probability as a function of SNR after despreading for IEEE 802.15.4
O-QPSK PHY operating on 915 MHz band

2 Wireless Networking for Control: Technologies and Models 39

2.2.2 Markov Models for the Wireless Channel

In wireless channels, the errors typically come in bursts. The simple outage model
described above is not enough to characterize the time correlation of the errors.
Markov models have been utilized to model the evolution of the channel SNR in
time. A Finite State Markov Chain (FSMC) model of the fading channel partitions
the received SNR into finite amount of intervals. Each state corresponds to certain
SNR interval. The transition probabilities between adjacent states are then selected
to match the one sided level crossing rates of the fading process and the state proba-
bilities simply refer to the probability of finding the received SNR in the correspond-
ing interval [67]. There are, however, many ways of doing the partitioning and the
choice will have an impact on the simulation results [23].

From application point of view, we are typically more interested in the correlation
between consecutive packet drops rather than the evolution of the instantaneous
SNR. Hidden Markov Models (HMM) have been suggested for this end. In regular
Markov chains, the state (e.g. SNR) is directly visible to the observer, and therefore
the state transition probabilities are the only parameters. In a hidden Markov model,
the state is not directly visible, but output dependent on the state (packet received
correctly or not) is visible. Each state has a probability distribution over the possible
output values (packet error probability). The simplest HMM channel model is the
Gilbert-Elliot (G-E) model [15, 12] . In the G-E model, the underlying discrete time
Markov chain has only two states labeled as 0 or ’bad’ and 1 or ’good’. In bad state,
the packet is lost with probability ppe,0 and in good state it is lost with probability
ppe,1. Let p01 and p10 denote the state transition probabilities between the states 0
and 1 and vice versa. Furthermore, let P0 and P1 denote the probabilities of finding
the channel in bad and good state, respectively. In steady state, we have

P0 =
1

1 + p01
p10

(2.2)

P1 =
p01

p10

1
1 + p01

p10

The expected packet error rate of the channel is then ppe = P0 pbe,0 + P1 ppe,1.
Figure 2.2 illustrates the state transition diagram of the G-E model.

The error probabilities in the state and the transition probabilities can be fitted to
measurement values. The state holding times of the Markov chain follow Geometric
distribution with mean 1− p−1

ii , i = 0,1. The simplest, but somewhat artificial model
is to have ppe,0 = 0 and ppe,1 = 1. In such case, the state holding time for state 1 is
equivalent to the length of the error burst and the steady state probability P1 gives
directly the packet error probability. More realistic parameters can be obtained by
fitting the model to the measurement data. The two-state G-E model can be viewed
as first order approximation to the true channel in which only the mean length of the
error burst is fitted to the data. If also higher moments need to be matched, then more
states should be introduced. The G-E model is very popular among the researchers in

40 M. Johansson and R. Jäntti

0 1

Successful
transmission

Failed
transmission

1-p01

p01

p10

ppe,1ppe,01-ppe,0

1-p10

1-ppe,1

Fig. 2.2 State transition diagram of the G-E HMM model

the performance analysis of higher layer protocols (transport and application layer)
due to its simplicity, see e.g. [23] and the references therein.

2.2.3 The ISM Band, Co-existence and Interference

Wireless devices are heavily regulated throughout the world. Most countries have
allocated parts of the radio spectrum for open ”license-free” use, while other parts of
the spectrum can only be used with permission or ”license”. The license-free areas
of the spectrum are also known as industrial, scientific, and medical (ISM) bands.
The 2.4 GHz ISM band is available in most part of the world, while ISM bands in
lower frequencies vary between continents (e.g. Europe provides license-free access
in the 433 and 869 MHz bands, while the Americas have opened up the 915MHz
band). Each frequency band is split into channels: higher frequency bands are wider,
which allows for wider channels and higher data rates, but lower frequencies give
greater operating distance at a given transmit power, and a less crowded spectrum
ensures more reliable operation. Radio communication systems that use the ISM
bands are typically free for use by anyone, but typically operate under a ”license
exempt” regime that sets limits on power, spectrum spreading techniques, or duty
cycles to limit interference and make sure that no single device steals all bandwidth.

In the 2.4 GHz ISM band, at least three wireless technologies are likely to co-
exist in current industrial deployments: wireless local area networks (WLAN, IEEE
802.11), Bluetooth (IEEE 802.15.1) and low-rate wireless personal area networks
(LR-WPAN, IEEE 802.15.4). Figure illustrates the associated wireless landscape.
The 802.15.4-2006 standard defines sixteen channels, numbered 11 to 26, in the
2.4-GHz band. Each channel has a bandwidth of 2MHz and channels are separated
by 5MHz. The IEEE 802.11b and 802.11g standards operate in fourteen channels
available in the 2.4-GHz band, numbered 1 to 14, each with a bandwidth of 22 MHz
and a channel separation of 5 MHz. The most common WLAN configuration is to
enable the mutually orthogonal channels 1, 6, and 11 as in Figure 2.3. Finally, the

2 Wireless Networking for Control: Technologies and Models 41

802.11

802.15.4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2400 MHz 2425 MHz 2450 MHz 2475 MHz

25 MHz 5 MHz

22 MHz

Channel 1 Channel 6 Channel 11

Fig. 2.3 ISM band channels for 802.11 and 802.15.4. Only a handful of LR-WPAN channels
do not overlap with WiFi

IEEE 802.15.1 Bluetooth standard (not shown in the Figure) operates in 79 chan-
nels available worldwide in the 2.4-GHz band. Numbered 0 to 78, each channel has
a bandwidth of one MHz and a channel separation of one MHz.

These three technologies operate using different output powers and offer com-
munication over different ranges: WLAN output powers are typically around 20
dBm and operate within a 100m range; LR-WPAN decvices use a transmit power
of 0dBm and operate within a 50 meter range; finally, Bluetooth output powers are
generally less than 4 dBm and ranges below 10m for the more commonly used class
2 devices such as wireless headsets and keyboards. The less common class 1 de-
vices can operate at up to 20 dBm and typically within a 100m range. The higher
transmit powers used by WLAN and Bluetooth indicate that it could be difficult for
802.15.4-devices to coexist with these technologies. This has indeed been verified
in practice e.g. in [56, 45]. Both report that a saturated WLAN practically kills the
802.15.4 connection unless the operating frequencies are off-set with at least 7-10
MHz. However, the IEEE 802.15.4 radio can achieve over 90% packet delivery ra-
tio in the presence of 802.11b/g WLAN interference if the packet delivery ratio of
the WLAN is low (less than 100 packets/s) or the signal-to-interference ratio at the
802.15.4 receiver exceeds 15 dB [31]. The upcoming IEEE 11n standard WLAN is
expected to be an even more severe source of interference due to multipoint trans-
mission and wider bandwidth. The influence of Bluetooth on 802.15.4 is more lim-
ited (packet error rates around 10% were reported in [56]) mainly due to the fact
that it uses an agile frequency hopping scheme and relatively narrow channels. In
the converse direction, 802.15.4 has virtually no impact on 802.11b performance
unless the channels have the same center frequency and the 802.15.4 packets are
very long [56].

If we are interested in modelling the impact of WLAN traffic on LR-WPAN
communications, a reasonable first-order model (considering the power imbalance
between the two technologies) is to assume that the WPAN packet is lost if there is a
concurrent WLAN transmission on an overlapping channel. Simple and reasonably
accurate semi-Markov models for WLAN interference, modelling the frequency and
duration of transmit and idle periods, respectively can be found in [14, 61].

42 M. Johansson and R. Jäntti

2.2.4 Means for Increasing Reliability

2.2.4.1 Error Control

In most of the applications it is important to detect whether the received packet con-
tain errors or not. Hence, it is customary to use error detection coding. The most
common error detection coding scheme is the Cyclic Redundancy Check (CRC)
CRCs are popular because they are simple to implement in digital hardware using
shift registers, are easy to analyze mathematically, and are particularly good at de-
tecting common errors caused by noise in transmission channels. The IEEE 802.15.4
standard specifies 16 bit CRC to be utilized. The probability of an undetected error
is bounded above by 2−16. In a plant having 50 nodes each transmitting one packet
per minute, the average number of undetected errors is approximately one per day.
If 32 bit CRC is used, errors occur once per 200 years.

While CRC codes use redundant bits for detecting errors, Forward Error Correc-
tion (FEC) codes use the extra bits to correct some of the bit errors at the receiver
hence increasing the robustness of the communications. The performance enhance-
ment achievable by using FEC can be expressed in terms of coding gain. The coding
gain expresses the difference in the required Signal-to-Noise with and without cod-
ing for a given bit error rate. The coding gain can be utilized to increase range,
decrease transmitter power consumption or to increase robustness against noise and
interference, see e.g. [65]. In the outage model discussed earlier, the coding gain
simply translates to lower SNR threshold value γth.

Automatic Repeat reQuest (ARQ) algorithms are utilized to improve the trans-
mission reliability at the cost of increased packet delay. The simplest and also most
common ARQ method used in WSNs is Stop-and-Wait ARQ (SW-ARQ). If the
receiver receives the packet successfully, it will transmit an acknowledge (ACK)
packet. In case it detects an error, it can issue negative acknowledgment (NACK).
It is also possible, that the packet gets entirely lost in the wireless channel and the
receiver is not able to detect the transmission at all. In SW-ARQ, once a transmitter
generates a packet is sets a timer. If the transmitter receivers ACK before its timer
expires, it resets the timer and proceeds to the next packet. If it receives NACK, it
resets the timer and retransmit the packet. If neither ACK or NACK is received be-
fore the timer expires, the transmitter deduces that the packet must have got lost and
will try to retransmit the packet. Typically, the number of retransmission attempts is
limited; after which the packet is considered lost.

The packet transmission using SW-ARQ can be modeled by unsing the Markov
chain model and adding an absorbing state ’packet received’. In case of two state G-
E model, we the number of transmission attempts ã needed to successfully transmit
a packet follows discrete distribution

Pr{ã≤ a}= 1− τTa1

Here, τ = (P0,P1) denotes the probability of starting the process from state 0 and 1,
respectively, T is the transition matrix

2 Wireless Networking for Control: Technologies and Models 43

T =

[
(1− p01) ppe,0 p01 ppe,0

p10 ppe,1 (1− p10) ppe,1

]

and 1 = (1,1)T is a column vector of ones. Given that the maximum number of
retransmission attempts in the system is a, we can can obtain the residual packet
error probability ppe after a transmission attempts assuming ideal error detection:

ppe(a) = Pr{ã > a}= τTa1

Example 2.2 (Performance of ARQ). The packet error characteristics for IEEE
802.15.4 [20] standard radio operating on the 2.4 GHz band were measured in an
industry assembly hall. Measurement results obtained from a 30m link between
ground level and overhead crane suggested that the mean packet error probabil-
ity is ppe = 0.133 for 119 byte packets send by the rate of 10 packets/second. A
G-E model was fitted to the packet delivery traces suggesting ppe,0 = 0.02 and
ppe,1 = 0.74.

The state holding times for good and bad state were 35.54 s and 6.58 s, respec-
tively. Figure 2.4 shows the packet error probability as a function of the number
of allowed transmission attempts per packet for both the G-E model and a simple
model that assumes that packet errors are uncorrelated and error occurs with proba-
bility ppe. It can be seen form Figure 2.4 that the bursty nature of the channel makes
reliable communication much more difficult than what the simple geometric model
assuming independent errors would suggest.

FEC can be combined with ARQ to obtain Hybrid ARQ (HARQ). HARQ schemes
aim to exploit the advantages of both FEC and ARQ by incrementally increasing
the error resiliency of the packet through retransmissions. The HARQ schemes are
typically divided into two types. Type I-HARQ adds FEC on top of ARQ. The trans-
mission starts with a low number of code bits or possibly with CRC only. Once
the packet fails, the retransmitted packet is encoded with stronger code. In type II-
HARQ, the first transmission uses an uncoded packet with CRC. Once the packet
fails, the transmitter only sends code bits (incremental redundancy). The code bits
are typically selected such that the packet is self-decodable and together with the
original packet forms 1/2 rate code. The receiver can first try to check if the retrans-
mitted packet was successful - if not, it then decodes the codeword composed by
combining the original packet and the retransmitted one. Measurement resutls with
MicaZ nodes employing IEEE 802.15.4 radio, indicate that type-II HARQ is the
best to reduce latency and energy consumption [65].

2.2.4.2 Diversity Techniques

Due to frequency dependent multi-path fading certain frequency channels can
be severely faded. In wireless sensor networks, the channel is typically slowly
changing which indicates that once the channel is deeply faded, the situation is
likely to remain the same for long time causing many consecutive packets to get
dropped. The fading seen by two frequency channels that are spaced more than the

44 M. Johansson and R. Jäntti

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of transmissions

P
ac

ke
t d

ro
p

pr
ob

ab
ili

ty

G−E model
Geometric model

Fig. 2.4 Packet error probability as a function of allowed number of transmission attempts
for channel with error burst (G-E model) and independent errors (Geometric).

coherence band from each other see independent fading. This fact can be exploited
to decorrelate the transmission of the consecutive packets by utilizing different chan-
nel for each transmission attempt. Frequency hopping FH is a diversity technique,
in which the synchronized transceivers changes channels according to some pre-
defined hopping pattern. It is still possible that some channels are deeply faded or
contain a lot of interference. In such situations, the system should avoid bad chan-
nels. To avoid these problems, adaptive FH techniques (AFH) have been developed.
The basic idea implemented by these schemes is to remove from the hopping se-
quence frequencies experiencing bad channel conditions (for instance high packet
error rate), consequently reducing the number of utilized frequency bands. To this
purpose the resulting algorithms make use of a channel classification procedure
that is basically required to identify channels unsuitable for packet transmissions.
This procedure however introduces delays. Moreover, channels removed from the
hopping sequence need to be periodically checked to verify if they still do not meet
the specified performance requirements. An alternative to channel classification is
to use probabilistic (pseudo random) frequency hopping where the probability of
utilizing certain channel is constantly updated based on the estimated packet er-
ror rate for the channel. The use of FH in wireless sensor networks is discussed
e.g. in [60].

2 Wireless Networking for Control: Technologies and Models 45

In some applications, the number of available channels for sensor network oper-
ation can be very limited. For instance, in case of heavy WLAN traffic, there is only
one channel available for IEEE 802.15.4 which is completely free from the WLAN.
Spatial diversity can be exploited by utilizing multiple antennas on the sensor motes.
If the antennas are at least half a wavelength (λ2) apart from each other, and there
is enough scattering in the environment, then each antenna would see independent
fading. Just like in case of FH, we can decorrelate the transmission of the consec-
utive packets by utilizing different antenna pairs for each transmission attempt. In
low mobility scenarios, simple electro-mechanical radio frequency switch can be
utilized to select between multiple antennas. Antenna switching in WSN setting has
been studied in [53] where it was demonstrated by laboratory scale tests.

If the receiver has multiple RF units, it is possible to utilize receiver selection
diversity. In the simple outage model the packet error rate of single transmission
was pout = FP(Ps) with M-fold selection diversity (receiver has M radios), the outage
becomes pout(M) = FM

P (Ps) that is, the outage probability decreases exponentially
as the number of receiver increase.

Example 2.3 (Spatial diversity). Example 2.2 illustrated G-E parameters for one par-
ticular 30 m link in an industry assembly hall. The measurements were done using
two transmit antennas and four receive antennas. The antennas were placed half
an wavelength from each other. The resulting 8 single input - single output spa-
tial links were tested together. The resulting packet error rates (PER) for the links
(labelled L1,L2,....L8) are plotted in Figure 2.5. The figure also shows result for
random antenna switching (RS) that selects the transmit and receive antenna ran-
domly for each transmission. The resulting PER is the average of individual link
PERs. Ideal antenna switching (IS) selects the transmit - receiver antenna pair that
minimizes PER. If there is separate receiver for each antenna at the sink node, we
can utilize receiver diversity (D1 and D2 corresponding to the choice of transmitter
antenna). In case receiver selection diversity is utilized, a packet is only lost if none
of the four receivers were able to capture the packet. The receiver diversity scheme
can be combined with random transmit antenna switching (RSD) and ideal transmit
antenna selection (ISD).

The results indicate that in certain radio environments, the channel quality is very
sensitive to the placing of transmit and receiver antennas. If the node size is not a
limiting factor, then antenna diversity is a viable option to obtain diversity gains and
increase the communication reliability.

2.3 Multiple Links: Medium Access Control

Aim: to understand various MAC protocols, their advantages and disadvantages,
and how channel utilization and delay can be analyzed.

The wireless medium is inherently broadcast in the sense that a transmitter can be
heard by multiple receivers and a receiver can hear many transmitters. If two trans-
mitters transmit at the same time, their signals may interfere and become

46 M. Johansson and R. Jäntti

L1 L2 L3 L4 L5 L6 L7 L8 RS IS D1 D2 RSD ISD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
P

ac
ke

t e
rr

or
 p

ro
ba

bi
lit

y

Fig. 2.5 Packet error probability for various transmit antenna and receiver antenna
configurations

unrecoverable by the receivers, leading the associated packets to be lost. The role of
the medium access control (MAC) protocol is to define a set of rules for how to share
the medium between transmitters to avoid interference and communicate efficiently.

Although many MAC protocols exist, they can be broadly categorized as sched-
uled and contention-based. In scheduled approaches, the medium is divided into
fixed non-overlapping portions (in frequency, time, etc) and assigned to individual
transmitter pairs once and for all. In contention-based approaches, on the other hand,
transmitters try to access the medium when they have traffic and release the chan-
nel when all data is sent. Roughly speaking, scheduled methods tend to work best
when the traffic (the number of users and their traffic patterns) is predictable, while
contention-based approaches are more efficient when the traffic is unpredictable.

To quantify this intuition, we need to specify the user traffic on the network. It
is customary to assume that sensors generate packets according to a stationary er-
godic process (e.g. that packet arrival times follow a Poisson distribution with a
given fixed intensity). We say that the traffic is light when the probability that a
node has multiple packets in its buffer is negligible and saturated when this prob-
ability approaches one. Classical analysis of MAC schemes assumes that the the
arrival process of packets to nodes are mutually independent. However, in most sen-
sor applications, sensor reading events tend to be correlated. An extreme situation,

2 Wireless Networking for Control: Technologies and Models 47

common in control scenarios, is when all sensors generate packets simultaneously.
We will review some of the underlying principles of common MAC schemes next.

2.3.1 Scheduled Medium Access: TDMA and FDMA

The most common scheduled medium access techniques are time-division multiple
access (TDMA) and frequency-division multiple access (FDMA). In TDMA, the
time axis is divided into time slots of fixed length, and transmitter-receiver pairs
are allocated a fixed number of time slots in which they can communicate. FDMA,
on the other hand, divides the available communication bandwidth into disjoint fre-
quency bands (”channels”), and allocates a fixed number of channels to each user.
The two techniques can be combined into multi-channel TDMA protocols, where
the communication channel is divided in frequency and space. Such an approach is
natural in 802.15.4 networks, since the ISM band is channelized.

A

BA

BA

BA

B

B AAA

Time (slots)

11

12C
h

an
n

el B

TDMA

B

A11

12

FDMA

11

12

Multichannel TDMA

Time (slots) Time (slots)

Fig. 2.6 TDMA, FDMA and multi-channel TDMA for two transmitters (A and B) on
802.15.4-channels 11 and 12 in the ISM band

Neither TDMA nor FDMA is able to use the full channel resource for commu-
nication. TDMA requires that all nodes are synchronized to a common clock. Typi-
cally, some bandwidth is lost to synchronization messages between nodes and time
slots are made slightly longer than what is required to perform a single data trans-
action to allow for slight synchronization errors. Similarly, FDMA requires guard
bands between channels to avoid co-channel interference. For example, the 802.15.4
channels only occupy 32 out of 100 MHz in the 2.4 GHz ISM band. Similarly, out
of the 10ms slot time used by the WirelessHART multi-channel TDMA protocol
(see § 2.4.4), only 5.088ms are used for data and acknowledgement transmissions.

Another performance loss occurs when there is a mismatch between the traffic
characteristic and the deterministic transmission opportunities of scheduled access.

Example 2.4 (TDMA). To make this discussion more specific, consider a system
with N sensors, each generating traffic according to a Poisson process with intensity
g/N. The medium access is scheduled using TDMA with a frame of N slots of
equal length T . Since a packet needs to wait until the next time slot allocated to that
specific sensor appears in the schedule, the average delay is given by

D = T

(
1 +

N
2(1−gT)

)
(2.3)

48 M. Johansson and R. Jäntti

if the throughput (or busy probability) gT does not exceed one [51]. As we will see
shortly, contention-based MAC schemes are sometimes a better match with random
traffic.

2.3.2 Contention-Based Medium Access: Aloha, CSMA and
Beyond

While scheduled medium access such as TDMA provides deterministic latency (un-
der perfect channel conditions), it does come with some implementation overhead:
clocks need to be synchronized, topology information is needed for efficient trans-
mission scheduling, and nodes joining and/or leaving the network dynamically typ-
ically means that the complete schedule needs to be recomputed and redistributed.
Many of these issues are eliminated in contention-based medium access schemes.

The basic idea of contention-based medium access is the one of conflict res-
olution: users simply transmit whenever they have a packet to send and follow
a specific set of rules to resolve conflicts when collisions occur. One of the sim-
plest contention-resolution protocols is the Aloha-protocol [1]. In its slotted variant
(“Slotted Aloha”) [50], nodes are assumed to be synchronized and time is subdi-
vided into slots, each of sufficient length to transmit a single packet. Whenever users
have data to transmit, they will attempt to do so at the start of the next slot. If a colli-
sion occurs, then the node becomes backlogged. Backlogged nodes transmit in each
slot with probability q until successful. The protocol performance can be optimized
by tuning the access probability q. If the system is saturated, i.e. all N nodes have
enough packets to attempt to access the medium in every slot, then one should make
sure that q < 1/N to avoid excessive collisions. In light traffic conditions, higher
access probabilities might be advantageous, see e.g. [47].

In many multi-access channels, it is possible for a node to detect when other
nodes are transmitting (after a slight propagation and detection delay). When this
carrier sensing functionality is available, it is natural to check if the medium is
free before transmitting. This leads to the so-called p-persistent CSMA protocol,
which works as follows: whenever a node has data to send, it first performs carrier
sense; if the channel is busy, the node does not transmit in the current slot; if the
medium is idle, then the node transmits with probability p (and refrains from trans-
mitting with probability 1− p). An alternative CSMA variant is the non-persistent
CSMA. Also here, nodes perform carrier sense when they have data to send and
only attempt to transmit their data if the channel is considered idle. If the chan-
nel is busy, on the other hand, the node waits a random time before trying to ac-
cess the channel again. The random wait mechanism is often implemented using a
back-off counter: nodes initialize a counter by drawing a random number in the in-
terval [0,CW] (CW for contention window) and decrement the counter in each slot.
When the counter reaches zero, the node performs carrier sense again in hope of
gaining channel access. To understand the relationship between the contention win-
dow size in non-persistent CSMA and the access probability in p-persistent CSMA,
it is useful to consider the average waiting time after a detected collision. This

2 Wireless Networking for Control: Technologies and Models 49

waiting time is CW/2 for non-persistent CSMA and 1/p for p-persistent CSMA.
Setting p=2/CW typically results in comparable performance of the two approaches
[62]. Note, however, that the access probability distributions differ (uniform over
time in non-persistent CSMA and geometrically distributed in p-persistent) and that
this can influence the performance of certain applications [74].

Since the optimal access probability depends on the traffic load, it is natural to
try to automatically adapt the contention window size based on the perceived con-
gestion. The most common solution is the binary exponential backoff (BEB) algo-
rithm. Here, the contention window is doubled each time a collision occurs (until it
reaches a maximum allowed value) and reset to its minimum value at the beginning
of each new transmission. Many successful wireless standards, such as 802.11 and
802.15.4, use medium access control mechanisms that are based on non-persistent
CSMA with BEB. However, the actual implementation varies in many (sometimes
subtle) ways from the basic description above. For example, in 802.11, the backoff
timer only elapses when the medium is idle. Since listening consumes significant
power, 802.15.4 decrements the backoff counter irrespectively of the state of the
medium, but then performs carrier sensing in two consecutive slots to judge if the
medium is idle. It is important to re-iterate that these mechanisms were introduced
as a means to adapt to an unknown traffic situation. If the traffic is known, then the
binary backoff offers few, if any, advantages over an appropriately tuned fixed con-
tention window [34]. Naturally, one can apply similar ideas to p-persistent CSMA,
e.g. halving the access probability at collision events [7]. Such approaches are some-
times called predictive p-persistent CSMA, and standardized in e.g. the LON Talk
protocol of the ANSI/EIA 709.1 standard [37].

The following example illustrates the performance of contention-based MAC
protocol under saturated random traffic.

Example 2.5 (Slotted ALOHA and CSMA delay under Poisson traffic). We assume
that packets arrive at the rate g packets per time unit. The transmission time of the
packet is T . Let G = gT denote the traffic volume in terms of packets. In slotted
ALOHA, transmissions can start only in the beginning of a slot. The slot length is
equal to the transmission time of the packet T . Under the Poisson arrival assumption
and large backoff range, the consecutive transmission attempts become independent
of each other and follow a geometric distribution with mean 1/ps. The packet delay
stays bounded as long as the probability of successful transmission fulfills ps =
exp(−G) > 0.5 which implies upper bound for the offered traffic G = gT < ln2. Let
ω denote the initial CW window size. The expected delay of the protocol has been
derived in [73] and it is given by

D =
T
2

(
3
ps

+
ω ps

1−2(1− ps)
−ω

)
(2.4)

In case of slotted CSMA, we assume that the time is divided into slots of length τ =
aT , a ≤ 1. The slot length is selected to coincide with the carrier sensing time. As
in the slotted ALOHA case, transmissions can only start in the beginning of a new
slot. A sensor wishing to transmit must sense the channel to be free for the period of

50 M. Johansson and R. Jäntti

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

Throughput (packets)

E
xp

ec
te

d
de

la
y

(s
ec

on
ds

)

ALOHA, BEB
CSMA, BEB
TDMA

Fig. 2.7 Throughput-delay characteristics of TDMA (solid line), CSMA with BEB (dashed
line) and ALOHA with BEP (dotted line)

one slot. If multiple sensors generated packets during the same slot, a collision will
occur. The probability that the transmission is successful in case CSMA is utilized
was derived in [27]

ps =
ae−aG

1 + a− e−aG

For CSMA with BEB, the expected access delay stays bounded if ps > 0.5 and has
been derived in [73]:

D =
T
2

(
aω ps

1−2(1− ps)
+

2 + 5a
ps
− 2 + 4a

ps
pb−a(4 +ω)

)
(2.5)

The throughput for slotted ALOHA and CSMA is given by S = psG < 1.
The delay - throughput characteristics of the three protocols are shown in

Figure 2.7. It can be seen that the maximum throughput of the ALOHA and CSMA
is much less than what can be achieved with TDMA, but for low load, both con-
tention based protocols can offer significantly shorter delay. It should be noted,
however, that this conclusion is only valid for Poisson traffic. If all sensors gen-
erate packets at the same time, CSMA will result in multiple collisions and leading
to significantly longer transmission times than scheduled transmission.

Example 2.6 (Delay under correlated traffic). In control systems, traffic is seldom
completely random, but is typically correlated. For example, control loops often
request synchronous samples from multiple sensors. To study this scenario, consider
an idealized case where N sensors each generate a single packet at the same time

2 Wireless Networking for Control: Technologies and Models 51

0 20 40 60 80 100 120 140 160 180

10
−2

10
−1

10
0

k

P
[D

>k
]

CSMA no BEB
CSMA BEB m=7
Slotted Aloha

Fig. 2.8 Delay distribution for N sources that start contending for access at the same time
(from [62])

and attempt to transmit these over a shared channel. For slotted Aloha, assuming
that all sensor use the same transmit probability p, the delay distribution has been
derived in [62] and is given by

Pr(D = d) =
N

∑
i=1

ai

N

∑
j=1

(a j−1)N

∏k �= j(a j−ak)
(1−a j)d

with ak = k(1− p)pk−1. While similar expressions can be derived also for CSMA
with fixed contention-window, it appears hard to derive closed-form expressions
for CSMA with BEB. Figure 2.8 demonstrates the latency distributions when N =
10 sensors simultaneously content for access using slotted Aloha (with p = 0.1),
CSMA (with CW = 20) and CSMA with Binary Exponential Backoff, respectively.

Our discussion of CSMA protocols has assumed that carrier sensing is able to
reliably detect conflicting transmissions. In reality, two phenomena known as the
hidden terminal and exposed terminal problem, respectively, makes carrier
sensing error-prone and degrades the performance of CSMA protocols. The hidden
terminal problem occurs when two nodes which are outside each other’s transmis-
sion range attempt to communicate with the same destination node. Since the two
transmitter nodes cannot sense the carrier, they consider the medium to be idle and
might transmit simultaneously, leading to collisions. The exposed terminal prob-
lem, on the other hand, occurs when two transmitters which are within transmission
range of each other try to communicate with two different, well separated, receivers.
Carrier sensing then blocks both transmissions although they would not have col-
lided. The exposed and hidden terminal problems can be alleviated to some extent
by implementing a two-way “request-to-send/clear-to-send” handshake between

52 M. Johansson and R. Jäntti

Hidden node problem Exposed node problem

Fig. 2.9 Pictorial illustration of hidden and exposed node problem. Carrier sensing blocks
nodes from transmitting within the carrier sensing range (marked in light grey) of an ongoing
transmission. Hidden nodes may receive simultaneous transmissions despite collisions, and
exposed nodes are block although simultaneous transmissions would be possible without
collisions

transmitter and receiver prior to the actual data transmission (see, e.g., [71] for a
discussion).

2.3.3 Dynamic Access Scheduling via Polling and Reservation

While Aloha and CSMA allow nodes to arbitrate channel access under varying traf-
fic conditions, the presence of collisions limits their performance at high traffic load.
Better channel utilization can be achieved by scheduling nodes so that no collisions
occur. In dynamically scheduled medium access schemes, nodes reserve the chan-
nel before transmitting. Channel access is coordinated by a central node and can be
based on either polling (the coordinator asks nodes if they have data, as in the 802.11
point coordination function PCF) or reservation requests (nodes demand channel ac-
cess from the coordinator, as in the 802.15.4 Guaranteed Time Slot service GTS).
Dynamically scheduled medium access can be efficient if the reservation overhead is
low, but is typically restricted to very simple node topologies. The following exam-
ple provides some more details about the dynamically scheduled access in 802.15.4.

Example 2.7 (Dynamic scheduling in 802.15.4). The beacon-enabled mode of the
802.15.4 MAC supports a combination of contention-based and dynamically sched-
uled access. As illustrated in Figure 2.10, the MAC operates in a cyclic fashion
where an initial beacon triggers a sequence of contention-based access, scheduled
access and sleep periods. To reserve time slots in the contention-free period, nodes
send reservation requests to the coordinator during the contention-access period.
The requests can be for multiple time slots and extend over multiple superframes,
until deallocated by the coordinator or the node itself.

The performance of the IEEE 802.15.4 beacon enabled mode has been ana-
lyzed e.g. in [36, 40]. The results indicate that the default parameter settings given
in the standard lead to low performance and abrupt change from non-saturation
to saturation regime, and that queue stability is limited by the amount of down-
stream traffic from coordinator to nodes. One observation, elaborated in [6], is that

2 Wireless Networking for Control: Technologies and Models 53

Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CAP CFP

GTS GTS Inactive

Beacon Beacon

Fig. 2.10 Superframe structure of 802.15.4 in beacon-enabled mode. After the beacon, the
active part of the superframe is divided into a contention access period and a contention free
period

delay-sensitive control applications would have been better served if the CFP and
CAP would have switched place in the superframe.

A noticeable alternative to the IEEE standards is the Z-MAC protocol [49], which
combines TDMA with a mechanisms that allows backlogged nodes to detect and
utilize vacant time slots. The basic idea is that the node assigned to a specific time
slot has priority and starts its transmission at the slot boundary, while other back-
logged nodes wait a short time before performing their carrier sense. In this way, the
non-assigned nodes can sense the carrier of the prioritized node and refrain from
transmission if the slot is occupied. Similar ideas for improving the efficiency of
TDMA have been included in the ISA100 standard described later in this chapter.

2.3.4 Energy-Efficient Medium Access Control

Although the power consumption of wireless nodes can be reduced by avoiding
collisions and unnecessary protocol overhead, the largest energy savings can be ob-
tained by turning off the transceivers when they are not needed for communication.
For example, in TDMA it is clear that nodes can go to sleep whenever they are not
scheduled to transmit or receive. If further energy savings are needed and the traf-
fic rate is not that high, one can introduce a duty-cycle where nodes are awake for
communication D% of the duty cycle period and asleep the rest of the time. Many
MAC protocols for sensor networks require nodes to synchronize their duty cycles,
but rely on contention-based medium access in the access period [75]. Duty-cycling
becomes more challenging when nodes are not synchronized, and is then typically
based on preamble sampling: whenever a node has data to send, it starts transmitting
a train of short preambles. When a receiver wakes up, it samples the medium. If no
preamble is detected, the receiver goes back to sleep. If a preamble is detected, the
receiver compares its ID with the one embedded in the preamble to see if it is the
intended receiver of the pending data transmission. If it is the intended receiver, it
sends an acknowledge message to the transmitter which aborts the preamble strobe
and starts transmitting the actual data packet. Nodes that sample the preamble strobe
but detect that they are not the intended receiver go back to sleep. Representative
examples of such MAC protocols are B-MAC [46] and X-MAC [8].

54 M. Johansson and R. Jäntti

2.4 From Single Links to Network: The Upper Networking
Layers

2.4.1 Topologies and Multi-hop Communications

Two or more nodes that communicate form a network. The simplest network is the
single receiver-transmitter pair (the single link). Although interesting phenomena
occur already when multiple wireless links co-exist within transmission range, the
first non-trivial network topology is the star topology; see Figure 2.11. Here, a sin-
gle node maintains connection with all other nodes in the network. In many cases,
the central node coordinates transmissions and might also work as the gateway to
external networks. The star topology has at least two disadvantages: it has limited
coverage (essentially limited by the maximum distance over which a transmitter-
receiver pair can sustain reliable communication) and limited reliability (limited by
the reliability of a single link). The range can be extended by forming a cluster tree.
Here, the children of the central node in the initial star topology also have the op-
tion to act as cluster heads, maintaining a star topology with their own children, etc;
see Figure 2.11. In this way, data might be routed over multiple hops, and cover-
age is increased (at the expense of increased latency). However, there is still only
one path from each source to the destination and the failure of a single intermedi-
ate node destroys the communication for all its children. The mesh topology allows
addressing both coverage and reliability issues. In a mesh topology, all nodes par-
ticipate in the forwarding of data packets from sources to destinations. By letting
nodes maintain communication with more than one neighbor, it is possible to set
up multiple paths from each source to their destination, and quickly divert data to a
new path if an intermediate router fails. The following set of examples illustrate key
aspects of multi-hop networking: the energy consumption for delivering a packet is
likely to increase; the latency and loss rate both increase as the number of hops be-
tween source and destination increases; retransmissions allow to improve reliability
at the price of increased delay, but are less effective when packet erasures occur in
burst; multi-path diversity allows to increase reliability; and the interaction between
medium access control and multi-path routing can severely degrade the system
performance.

Star topology Cluster tree Mesh

Fig. 2.11 Star, cluster tree and mesh topologies. Squares denote devices with routing
functionality

2 Wireless Networking for Control: Technologies and Models 55

A B C 0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

2.4

Distance A−>B

E
ne

rg
y

co
st

Two−hop,α=2
Two−hop,α=3
Two−hop,α=4
Single−hop

Fig. 2.12 Node A can transmit directly to C or send data via the intermediate node B (left).
The right figure demonstrates the total energy cost for communication under various path loss
coefficients α and for various placement of the intermediate node

Example 2.8 (Energy and latency cost of multi-hop networks [13]). Consider the
three-node topology in Figure 2.12 (left). Transmitter A has the possibility to send
data directly to the sink C, or forward data via the intermediate node B. The interme-
diate route requires two transmissions (A→B, B→C) which doubles the end-to-end
delay compared to the direct transmission. However, since the path gain decays as
d−α , the shorter links can reduce their transmit power by a factor 2−α while main-
taining the same received power as the direct link, multi-hop transmissions could
potentially result in energy savings. Unfortunately, the energy gains often disappear
when we account for the fact that radios consume significant energy also in recep-
tion mode. In [13], measurements on a 802.15.4 radio revealed a receive energy of
0.68 times the maximal transmit energy Pmax. Even with a path loss of α = 4 the
difference between the energy cost of the direct path PT x + PRx = 1.68Pmax and that
of the two-hop path 2 · 2−4Pmax + 2 · 0.68Pmax = 1.485Pmax is very limited, and no
energy gain is possible when α ≤ 2.64. As Figure 2.12(right) reveals the energy
gains disappear even earlier when the intermediate B node is moved from its ideal
position in the middle of the nodes.

Example 2.9 (Latency and reliability of multi-hop communications). To understand
some of the latency and reliability issues of multi-hop networking better, consider
the transmission of a single packet across the (N + 1)-node topology shown in Fig-
ure 2.13. Assume a slotted system where a single time slot admits the transmission
of one packet, and that link transmissions fail independently with probability p.
The minimum latency is N time slots, and the probability of successful end-to-end
communication in N time slots is (1− p)N, which decays rapidly with N.

The reliability can be increased if we allow a longer latency, so that nodes
can retransmit a message if it does not receive a packet acknowledgement from
the intended receiver. If we allocate two consecutive time slots to each link (corre-
sponding to primary transmission and retransmission, respectively), then the proba-
bility of reaching the sink in 2N time slots is (1− p2)N , i.e. the reliability has been

56 M. Johansson and R. Jäntti

Fig. 2.13 Single packet transmissions over N hops (left). The latency distributions for a link
loss probability of p = 0.2 for line of length 8.

increased a factor (1 + p)N. If we can allocate retransmission attempts dynamically
(e.g. to let a node retransmit until successful) the probability of successful end-to-
end communication with latency D > N is given by [58]

(1− p)N
D−N

∑
r=0

(
N + r−1

N−1

)

pr

When losses are bursty, the effect of immediate retransmissions diminishes, since
the probability that the retransmission will also fail is high. The latency-loss curves
for dynamic retransmissions on a line where link losses are given by the Gilbert-
Elliot model are shown in Figure 2.13. Note that a significant latency is needed to
ensure high reliability.

Example 2.10 (The mesh forwarding advantage). As discussed earlier in this chap-
ter, reliability can be improved by exploiting diversity. Rather than retrying a trans-
mission on a bursty link, with high probability of continued loss, we could schedule
the retransmission on another link (possibly also on another frequency). To illustrate
the ideas, consider the “tube” topology shown in Figure 2.14(left) and assume that
erasure events on links are dictated by independent (two-state) Markov chains, pa-
rameterized according to Gilbert-Elliot. The achievable loss-latency curve, shown
in Figure 2.14(right) demonstrate an increased reliability compared to the line, with
a significant reliability boost for low latencies [76].

Example 2.11 (Multiple data streams and interaction with MAC). To consider the
interaction of medium access control and multi-hop networking, consider the prob-
lem of synchronized data collection from multiple sensors using the so-called con-
vergecast operation. In convergecast, all nodes have a single packet that should be
transmitted to the sink. Thus, if we consider a simple line with N sensors then con-
vergecast on a single channel needs a total of

2 Wireless Networking for Control: Technologies and Models 57

TTDMA =
N

∑
n=1

n =
N(N + 1)

2

time slots. The latency can be decreased to

TMCH = 2(N−1)

time slots when we use multi-channel TDMA to allow for parallel transmissions
[57]. Figure 2.15(right) demonstrates how the performance degrades significantly
when nodes use slotted ALOHA to contend for channel access. Even using the op-
timal transmit probability, the average latency is 94.5 time slots compared with the
15 slots required for single-channel TDMA and 8 slots for multi-channel TDMA.

0

1a

N

1b

2a

2b

Fig. 2.14 Single packet transmissions over an N-hop tube (left). The latency distributions for
a link loss probability of p = 0.2 for line of length 8.

0 1 N

50 100 150 200 250
0

0.01

0.02

Latency

P
ro

ba
bi

lit
y

Fig. 2.15 Convergecast operation using N sensors in line topology (left). For a 5 node case,
the right plot reveals the latency distribution for TDMA and multi-channel TDMA (deter-
ministic at 8 and 15 time slots, respectively) and the latency distribution for completion of
convergecast under the ALOHA protocol

58 M. Johansson and R. Jäntti

2.4.2 Routing

Routing is the process of selecting paths along which to send data traffic. Data pack-
ets are then forwarded from sources to their final destinations via the intermediate
nodes on the selected routes. Most routing algorithms use a single network path be-
tween sources and destinations, while multipath routing protocols maintain several
alternative paths to improve reliability. Routing protocols are further classified as
either reactive (on-demand) or pro-active (table-driven) [52]. Table-driven routing
protocols attempt to maintain consistent up-do-date routing information from each
node to every other node in the network, while on-demand routing protocols gather
such information only when needed.

Routing on resource-constrained low-power radio nodes is challenging: con-
strained memory and processing power limits the size of routing tables that can
be stored, low-power radios experience higher loss rates than high-end technologies,
and limited power supply requires energy-optimized implementations and low over-
head traffic. The wireless sensing community has developed many routing protocols
that respect these design constraints and exploit the traffic and data characteristics
of sensor networks to optimize performance (see, e.g., [2] for a survey). We will not
go into the details of the specific protocols, but rather focus on the resulting routing
topology and its performance.

Link-Metrics and Shortest Path Routing

Paths are typically selected based on some quality metric, such as latency or relia-
bility. These path metrics can often be written as the sum of the costs for using each
link in the path. For example, the end-to-end latency of a path is the sum of the trans-
mission times for its individual links. When link costs are additive, the best paths
can be found by solving a shortest path problem using, for example, the algorithms
due to Dijkstra or Bellman-Ford (see, e.g., [5]). When path costs are multiplicative, a
simple transformation allows for casting the optimal route calculation as a classical
shortest path problem. The following example illustrates this idea.

Example 2.12 (Maximum reliable path as a shortest path problem). Consider the
problem of finding the path with the maximum packet delivery probability. If links
fail independently with probability pl , then the reliability of path P, rP, can be writ-
ten as rP =∏l∈P(1− pl). Since the logarithm is monotone, the path that maximizes
rP will also maximize log(rP) = ∑l log(1− pl). Now, maximizing ∑l log(1− pl) is
the same as minimizing ∑l− log(1− pl), so the most reliable path can be found by
solving a shortest path problem with link weights equal to − log(1− pl).

Related to this model of link reliability is the expected transmission count, or ETX
for short [11]. The aim of ETX is to increase overall network throughput by find-
ing paths with the lowest expected end-to-end latency. Observing that to avoid link
level retransmissions, both the data packet and its link-level acknowledgement must
be successfully received, the expected number of transmissions for a given link is
approximated by ETX = 1/(d f ·dr). Here, d f and dr represent the delivery ratios in

2 Wireless Networking for Control: Technologies and Models 59

GW

A B

C

D

E

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(5)

(2)

(3)

GW

A B

C

D

E

GW

A B

CD

E

Shortest path Constrained shortest path Graph

Fig. 2.16 Routing strategies. Numbers in parenthesis indicate ETX for the links. The leftmost
figure demonstrates shortest-path routing in the ETX metric, where thicker lines indicate links
selected for forwarding data towards the gateway (GW). The middle figure demonstrates
constrained shortest path routing. Here, device C is the only battery operated field device
allowed to forward data, which shifts the permissible shortest paths (again, indicated with
thick lines). Finally, the rightmost figure demonstrates graph-based routing. Here, nodes are
organized into “levels” according to their ETX distance to the sink, and additional links are
introduced to neighbors on higher levels. The dashed line indicates a sibling link between
devices on the same level, which may by used if care is taken to avoid routing loops

the forward (data) and reverse (acknowledgement) direction of the link. Note that
under Bernoulli losses and symmetric links d f = dr = (1− pl), in which case ETX
and − log(1− pl) have a similar qualitative behavior.

Constraint-Based Routing

In some cases, it is useful to exclude certain links or nodes from the routing process.
For example, we might want to make sure that battery operated nodes do not need
to forward other nodes’ packets. Such considerations are included in constrained
shortest-path routing protocols. Here, nodes or links that do not satisfy certain con-
straints are removed from the routing topology, and the routes are found by com-
puting the shortest paths in this reduced graph. For example, the most reliable path
that does not use battery-operated devices can be computed by first removing the
battery-driven devices from the graph representing the network topology, and then
solving a shortest path problem with link weights equal to − log(1− pl). To bal-
ance reliability and latency, we could consider removing all unreliable links from
the connectivity graph and then find the routing paths with minimum hop distance
to the destination (for a comparison of this approach and the use of ETX, see [69]).

A more in-depth discussion about uses of constrained shortest paths in wireless
sensor networks can be found in [77].

Graph-Based Routing

The routes computed by a constrained shortest path routing protocol form trees
rooted in the destination. A drawback with this structure is if one node breaks,
the full branch from this node to its leaves breaks. One way to come around this

60 M. Johansson and R. Jäntti

problem is to set up multiple (partially) disjoint trees rooted in the destination, and
switch from one tree to another when a failure is detected. An alternative is to set-up
a directed acyclic graph (DAG), in which nodes might have multiple parents, and
forward messages along this graph. Since the graph is directed and does not contain
any cycles, each successful message transmission guarantees forward progress to-
wards the destination. Note that the forwarding policy now becomes a critical part
of the routing algorithm: not only does the preferred parent matter, but also the de-
cision about whether to retransmit on the same link or switch to a secondary route,
etc. [76]. Setting up the graph is also non-trivial, but in many cases a reasonable
graph can be built from the shortest path tree (in some metric) by connecting nodes
in the DAG with neighbors that are closer to the shortest path tree root (in e.g. num-
ber of hops) than the node itself.

Example 2.13 (Markov-models for unicast forwarding). When link losses are inde-
pendent, it is easy to construct Markov models for the latency of a single packet
traversing a routing graph from source node s to destination node d under a given
schedule. The basic idea is to construct a Markov chain whose nth state corresponds
to the packet being buffered at node n. The state transition depends on the schedule
(and hence on time): if the packet is located at node n and one of its outgoing links l
is scheduled for transmission at time t, then the packet is forwarded to the end-node
of link l with probability (1− pl) and stay in node n with probability pl .

To define the Markov chain in a compact way, consider network with N nodes and
L links whose underlying topology is represented by a node-arc incidence matrix
A = [anl] ∈ R

N×L where, anl = −1 if link l is outgoing from node n, anl = 1 if link
l is incoming to node n and anl = 0 otherwise. For convenient notation, we also
define Am = max(−A,0). Let p ∈R

L be the vector of loss probabilities for links and
let P = diag(p). Introduce the diagonal matrix S(t) = [slm(t)] ∈ 0,1L×L to encode
the scheduling decision at time t: sll(t) = 1 if link l is scheduled for transmission at
time t while all other entries are zero. Let π(t) be the probability distribution for the
Markov chain at time t. Then,

π(t + 1) =
(
A(IL×L−P)S(t)AT

m + IN×N
)
π(t)

Since the packet is known to be at state s at time zero, we have that πn(0) = 0 for
n �= s and πs(0) = 1. Similar models can also be developed for correlated losses and
more complex communication patterns [9, 43, 44].

On-Demand Routing

The most well-known on-demand routing protocol is the Ad hoc on-demand dis-
tance vector routing protocol, AODV [42]. When a source node needs to send a
packet to a destination to which it does not already have a route, it initiates a route
discovery process: it broadcasts a route request packet to its neighbors, who forward
the request to their neighbors, etc. The process continues until either the destina-
tion or an intermediate node with ”fresh enough” route to the destination receives
the request. The destination or the intermediate node then transmits a route reply

2 Wireless Networking for Control: Technologies and Models 61

message to the neighbor from which it received the first route request. The route
reply message is then transmitted back along the reverse path, and nodes on this
path set up forward route entries in their routing tables pointing to the node from
which they received the route reply. Associated with each route is a timer which will
cause a deletion of the entry if it is not used within the specified lifetime. By letting
intermediate nodes wait in a controlled fashion before forwarding route requests
and/or letting the destination wait for multiple route requests (that have arrived over
different paths) and picking the best path, AODV can come close to generating (con-
strained or unconstrained) shortest paths [13].

2.4.3 Transport Layer Protocols and Traffic Patterns

The physical layer, data-link and network layers described so far provide all the
essential functionalities required for moving information between remote hosts in
the network. The role of the transport layer is now to “package” this functionality
into an transparent end-to-end communication service for applications. While the
wireless sensor networking community has developed a wide variety of transport
protocols (see, e.g., [66]), we will focus on the solutions that appear in the industrial
wireless standards.

The most basic transport-layer protocol in the Internet is the user datagram pro-
tocol (UDP). The UDP protocol simply adds information about the source and des-
tination application process (“ports”) along with a checksum bit for error detection,
and passes the resulting packet to the network layer for forwarding to the end host.
The protocol neither provides support for informing the source about lost or cor-
rupted packets detected at the end-host, nor functionality for handling retransmis-
sions. If such functionality is needed, it must be implemented by the application.

The transmission control protocol (TCP) adds reliability and flow control func-
tionalities to the end-to-end communication primitive. In contrast to UDP, TCP is
a connection-oriented protocol: before any communication can take place and end-
to-end connection has to be established. In addition to a checksum, TCP packets
also include sequence numbers to allow the end host to detect lost messages and to
reorganize packets that are delivered out of order. The end-host informs the source
about which packets it has received by returning acknowledgement messages. If
the source does not receive an acknowledgement within a given time-out period, it
assumes that the associated packet is lost and retransmits the data. Another impor-
tant feature of TCP is flow control: the protocol automatically adjusts the rate at
which packets are sent, so as to avoid congestion in the network. However, TCP’s
flow control mechanism was originally designed for fixed networks and has per-
formance problems in case of wireless transmissions [18]. TCP treats lost packets
as an indication of congestion and decreases the flow rate when no acknowledge-
ments are returned. While optical networks are essentially free from transmission
errors, most of the packet drops in wireless networks are due to fluctuating channel
quality and not from congestion-induced buffer overflows. The flow control of TCP
thus unnecessarily decreases the flow rate every time a packet gets lost in a wireless

62 M. Johansson and R. Jäntti

link, leading to poor utilization of the radio resources. Another known performance
problem is related to the interaction between TCP protocol and BEB in multi-hop
networks. Single-hop flows will capture a majority of the transmission opportuni-
ties leaving the multi-hop flows to starve. The problems of the TCP in multi-hop
environments are discussed in, e.g., [72]. The rich feature set of TCP makes it rather
heavy-weight to implement and most real-time communication protocols rely on
UDP for end-to-end communication.

Finally, note that contrary to fixed networks where point-to-point (unicast) com-
munication is the most common traffic pattern, wireless sensor and actuator net-
works often rely on many-to-one (e.g. sensors to gateway) and one-to-many (e.g.
controller to actuators) communication. A large body of work in the wireless sensor
networks literature considers theory and tailored system solutions for convergecast
(many-to-one) and multicast (one-to-many) solutions.

2.4.4 Standards and Specifications for Industrial Wireless
Networking

Aim: To list some existing standards, and to describe which techniques/functionali-
ties from above that they explore.

Zigbee PRO

Zigbee exists since 2004 and was one of the first attempts to provide a low-power
radio standard for home automation and industrial control. Its focus was on provid-
ing a self-organizing scalable and secure short-range wireless solution with a battery
life up to two years. However, Zigbee has some serious reliability flaws, which has
stopped it from making its way into a true industrial standard. Zigbee remains, to
date, in specification form.

Zigbee builds on the physical and MAC-layer of IEEE 802.15.4, and specifies the
behavior of the higher protocol layers. There are two types of nodes in a Zigbee net-
work: full-function devices and reduced-function devices. Full-function devices can
route messages and act as network coordinator, while reduced-function devices can
only communicate directly with a full-function device. The standard supports mesh
networking among full-function devices and routing is performed using the AODV
protocol. Hence, a node can send packets to any other node in the network, but need
to execute the algorithms for route discovery and route maintenance as discussed
earlier in this chapter. In a Zigbee network, all nodes share the same channel, and
there is no frequency hopping. The only way to attempt to provide reliable operation
is to scan the spectrum for a channel with low interference before deploying the net-
work. Since AODV is a single-path routing protocol (unless we allow us the time to
re-discover a route when we detect a breakage) neither frequency nor path diversity
is supported in Zigbee and the overall reliability is typically low. Zigbee can op-
erate in both beaconed and non-beaconed mode. Beaconing allows some degree of
synchronization among nodes, but the medium access is generally contention-based

2 Wireless Networking for Control: Technologies and Models 63

(CSMA/CA). There is an option to use guaranteed time slots, but the support for
this is not mandatory and might break interoperability of nodes. As we have seen in
Example 2.11, the lack of synchronized communication can seriously increase la-
tency under correlated traffic. Moreover, the uncoordinated operation of nodes also
means that devices need to stay awake practically all the time and that the energy
consumption is higher than needed. The latency and reliability issues, together with
the security concerns detailed in [29], are some of the key reasons for the limited
industrial success of Zigbee.

WirelessHART

WirelessHART is an extension of wired HART, a transaction-oriented communica-
tion protocol for monitoring and control applications. As illustrated in Figure 2.17,
the basic elements of a WirelessHART network include: field devices connected
to the process equipment and able to source, sink and forward packets on behalf
of other devices in the network; gateways, possibly equipped with multiple access
points, enable communication between host applications and field devices; a net-
work manager responsible for configuring the network, health monitoring, manag-
ing routing tables and scheduling communication between devices. WirelessHART
networks may also include adapters for connecting to existing HART-compatible
devices and handhelds to configure, maintain or control plant assets. An important
restriction of WirelessHART is that device-to-device communication is not sup-
ported: all data must pass through the gateway.

Like Zigbee, WirelessHART is based on the 802.15.4-2006 physical layer, but
it is restricted to operate on 15 channels (number 11-26) of the 2.4GHz ISM band.
The medium access is controlled using a multi-channel TDMA MAC. A time slot
is 10ms, which allows for a complete data packet and associated acknowledgement
transaction. Transmissions are scheduled on one of the 15 logical channels, which
are mapped onto the physical channel by a channel hopping sequence.

The transmission schedule is organized into multiple superframes. A superframe
is simply a collection of links, each assigned to a specific time slot and a specific
channel, see Figure 2.18 for an illustration. Superframes repeat in time, and should
have periods that form a harmonic chain (e.g. 1,2,4,8,16, . . . or any other period

Field Device

Gateway

Network Manager

Automation Controller

1

2
3

4

5

6

7

8

Handheld

Fig. 2.17 Example of wirelessHART network infrastructure

64 M. Johansson and R. Jäntti

Time (slots)

0

25

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23

24

21

22

19

20

18

16

17

14

15

13

11

12

C
h

an
n

el
s

80
2.

11
 C

h
 1

80
2.

11
 C

h
 6

80
2.

11
 C

h
 1

1

Fig. 2.18 WirelessHART schedules transmissions in time and frequency

that conforms to an expression on the form abn), so that all superframes are aligned
at the start of the longest superframe. Each superframe is typically constructed to
accommodate for communication among a specific group of devices and allows
to run the whole network at different duty cycles. Additional superframes might
be defined to support traffic at different scan rates, to handle alarm traffic, etc. At
least one superframe is always enabled while additional superframes can be added
and removed. The standard also specifies procedures for link arbitration to resolve
conflicts that may appear if a network device participates in multiple superframes.

The schedule supports three different types of slots: dedicated slots, with a sin-
gle transmitter-receiver pair; shared slots, where many transmitters but only a single
receiver are scheduled; and broadcast slots, where one transmitter and multiple re-
ceivers are scheduled. Dedicated and shared slot transmissions are acknowledged,
i.e., the receiver transmits a short acknowledgement packet to the transmitter in the
same time slot, while broadcast packets are unacknowledged. WirelessHART uses
non-persistent CSMA to resolve conflicts in shared slots. If no acknowledgement is
received, the backoff exponent of the link is incremented and the backoff counter
is initialized with a random number in the associated backoff window. The backoff
counter is decremented in every time the same link is scheduled in a shared slot,
and the data is retransmitted when the backoff counter reaches zero. Note that this is
a completely different time-scale than the back-off counter in the 802.15.4 CSMA
and that back-off times in shared WirelessHART slots can be significant.

WirelessHART supports two routing paradigms: graph and source routing. In
graph routing, network nodes store multiple DAG:s. Packets are tagged with the ID
of the graph along which they should be forwarded. In source routing, on the other
hand, the complete path is encoded into the packet. Source routing specifies a single

2 Wireless Networking for Control: Technologies and Models 65

path between source and destination, and is thus fragile to link failures, while graph
routing supports multiple forwarding paths to improve reliability.

The transport layer provides both unacknowledged and acknowledged end-to-end
communication. The unacknowledged service is, much like UDP, a basic protocol
without acknowledgement packets and without guarantees of packet ordering at the
destination node. The acknowledged service, on the other hand, provides end-to-end
acknowledgements and guarantees packet ordering (but not advanced TCP features
such as flow control).

The standard supports methods to maintain network-wide time synchronization,
network formation and topology maintenance, security features on both link level
and network level, and much more. Since these features do not have a direct influ-
ence on the end-to-end performance of the network, we do not describe these in
detail here, but refer to the standard documents.

ISA 100

While WirelessHART formally only standardizes wireless communication with
HART devices, the ISA standard was created with the more ambitious aim of pro-
viding a single wireless standard that supports multiple legacy application layer
protocols. However, as the standardization work has proceeded, ISA100 and Wire-
lessHART have evolved into rather similar specifications and there is now an on-
going effort in the standard committees to see if and how the two standards could
“converge” into one. In this section, we will review ISA100 and highlight some of
the features that differ from WirelessHART.

Like WirelessHART, ISA100 is based on the IEEE 802.15.4-2006 physical layer
and the data link layer uses a multi-channel TDMA medium access control. How-
ever, in ISA100 different superframes can use different time slot lengths, ranging
from the 10ms of WirelessHART up to 12ms. Longer time slot lengths give some
extra margin against poor device synchronization, but perhaps more importantly
this feature enables prioritized access in shared time slots and advanced transmis-
sion primitives beyond unicast and broadcast. Prioritized access in shared slots is
implemented by transmitting high-priority data at the very beginning of time slots,
while waiting a short time before performing CCA and attempting to transmit lower-
priority data. The duocast primitive allows a field device to broadcast a data packet
to multiple access points (backbone routers in the ISA100 terminology) and re-
ceive serial acknowledgements within the same time slot. The duocast transaction
is considered successful if at least one link-level acknowledgement is received, and
allows low-latency communication with high probability of first success. There is
no restriction of individual superframe lengths, but the system realigns time slots
of all superframes every 250ms by the insertion of short idle periods. Frequency
hopping can be performed on a per time-slot basis (“slotted hopping”, like in Wire-
lessHART) or with longer intervals (“slow hopping”) where the same channel offset
is used for multiple consecutive transmissions. The slower hopping can be useful,
for example at network discovery, since it allows for less accurate synchronization
among nodes. Similarly to WirelessHART, ISA100 supports both source and graph

66 M. Johansson and R. Jäntti

routing. The network layer of ISA100 is based on the IETF 6LoWPAN standard,
and the transport layer provides end-to-end encrypted communication through UDP
datagrams as outlined in IETF RFCs RFC 768 and 2460.

Alternative and Emerging Standards

While WirelessHART and ISA100 appear to be able to provide the industrial-grade
reliability and security that Zigbee was lacking, they still have a serious drawback:
they both rely on centralized network configuration and resource management. The
centralized management comes with large overhead for collecting network health
information and disseminating routing graphs and transmission schedules to nodes,
and the times required for a node to join a WirelessHART network can be sub-
stantial. It is thus natural to ask whether it is possible to create distributed routing
and MAC protocols that could exploit diversity and offer the reliability required
by control applications. No such standard exists at the writing of this book chap-
ter, but (at least) two noticeable efforts are currently taking place towards that aim.
The first one is the work on the Internet Engineering Task Force (IETF) on Rout-
ing over Low-power and Lossy Networks (ROLL). This effort attempts to develop
and standardize a routing protocol that includes distributed DAG construction and
maintenance. Complementing this work, the IEEE 802.15.4e attempts to amend the
802.15.4-2006 standard to better cater for industrial needs, and the current draft
standard includes a time-slotted channel hopping medium access control.

2.5 Control Relevant Models of Latency and Loss

Aim: show how the existing models used in the control literature apply to various
scenarios above.

The purpose of this section is not to provide an extensive overview of design
methodologies for networked control (such expositions can be found elsewhere in
this book and in several survey papers, e.g. [17, 64]). Rather, our aim is to provide
the link between the communication network models derived earlier and abstrac-
tions that have been used in the theoretical control community.

The Network as a Delay

The initial work on networked control, e.g. [30, 39], which focused on wired control
loops, advocated to model the network as a time-varying delay. The general set-up,
shown in Figure 2.19, includes delays from sensors to controller τsc(t) and from
controller to actuator τca(t).

If we assume that

τsc(t)+ τca(t)≤ h

2 Wireless Networking for Control: Technologies and Models 67

Actuator
node

u(t) y(t)

τsc
τca

Process
Sensor
node

Controller
node

Network

Fig. 2.19 The network abstracted as a time-varying delay

Then, a discrete-time controller with sampling period h can be developed that does
not need to consider the possibility of packet loss. The time-varying delays can be
dealt with using varying degrees of sophistication.

The simplest approach is to let the sensor and controller work synchronously with
sampling period h, and insert a buffer in the actuator node that waits until the end of
the sampling interval before applying the control [30]. In this way, all stochasticity
is removed and replaced by a fixed one-sample information delay in the control
loop. Hence, a wealth of classical control design techniques apply.

As the control performance generally degrades with increasing information de-
lay, it is natural to let the controller be event-driven, in the sense that it computes the
control signal as soon as senor data arrives and immediately transmits the command
to the actuator [39]. Since the sensor-controller actuator delay is known at the con-
troller, a time-varying Kalman filter allows to optimally estimate the process state.
In this case, we do not need to know the latency distribution

Pr(τsc = κ)

(e.g. using one of the models developed earlier in this chapter to design the algo-
rithm, only to evaluate its performance. Suboptimal schemes that use a fixed gain
Kalman filter, however, will need access to latency distributions in their design [10].
The latency distributions are also needed for computing the appropriate controller
gains, since the delays between controller and actuator are not known to the con-
troller (see, e.g. [24] for alternative solutions).

When it is not possible to guarantee a communication delay less than the sam-
pling interval, it is natural to consider designs that allow

τsc(t)+ τca(t)≤ Kh

for some fixed K > 1. A new problem that appears is that packets might now arrive
out of order. Similarly as above, one can use buffers to remove the stochasticity

68 M. Johansson and R. Jäntti

in the control loop. Although the advantage of acting as quickly as possible when
new data arrives increases when K increases, dealing with out-of-order delivery
increases implementation complexity. The optimal filter, for example, now needs
buffers to store the last K sensor packets received and the covariance matrix of the
time-varying Kalman filter at time t −Kh, and it needs to run K iterations of the
Riccati equations when new data arrives [54].

When the latencies are upper-bounded, then one can also consider the networked
control problem from a robust control perspective. One useful result here is the
jitter-margin [25] which relates the maximum tolerable network delay to the “band-
width” of the complementary sensitivity function (see also [35] for less conservative
results).

As we have seen, however, natural models for wireless control systems are
stochastic and do not allow any deterministic guarantees on latencies. The possi-
bility of packet loss should thus be considered.

The Network as an Erasure Link

One other class of models disregard communication delay and only consider whether
or not packets arrive at their destination; see Figure 2.20.

The most common model in the theoretical control literature is the Bernoulli loss
process, which assumes that losses occur independently with a fixed probability
ploss. The loss probability can be computed from the latency distributions derived
earlier, as

ploss =
∫ ∞

κ=h
Pr(τ = κ)dκ (2.6)

For this type of model, bounds on the tolerable loss probability can be computed and
some optimal controllers and estimators can be derived [55]. Co-design of network
and controllers are also possible [44].

Actuator
node

u(t) y(t)
Process

Sensor
node

Controller
node

Network

uc
(t) γ(t)y(t)

γ(t) = 0

γ(t) = 1ν(t) = 1

ν(t) = 0

ν(t)uc
(t)

Fig. 2.20 The network abstracted as an erasure link

2 Wireless Networking for Control: Technologies and Models 69

The independent loss model is reasonable if the sampling times are longer than
the coherence time of the wireless channels, but not appropriate for modelling single
links at the short time-scale. In the shorter time-scale of a few consecutive transmis-
sions, the loss process on a given link tends to be correlated [68] and more complex
loss models, such as higher-order Markov models should be used. In this case, the
natural modeling framework is the one of jump-linear systems [10, 70]. Some spe-
cific results for estimation over Gilbert-Elliot models also exist [19, 3].

Models which assume a bounded delay of hK also applies if one can guarantee
that the network produces no more than K consecutive losses. However, once again,
no such deterministic guarantees can be derived from the natural stochastic models
of loss described earlier in this chapter.

Combined Latency-Loss Models

In many cases, the most natural models for control is to pay careful attention to the
shorter delays, in order to act quickly when the network incurs a short delay, but then
put an upper bound on the tolerable latency after which the packet is considered as
lost. Such a mechanism is easy implemented by retransmission and buffering poli-
cies in the single link and using time-to-live counters for in the multi-hop scenario.
Also in this case, the appropriate modelling framework is one of jump-linear sys-
tems [70]. Once again, the latency distributions using various technologies can be
derived using the techniques described earlier in this document and the loss proba-
bility calculation (2.6).

It is natural to relate the time-to-live not only to the network but also to the
sampling interval and characteristics of the process at hand. Networking-controller
co-design procedures following this philosophy are presented in, e.g. [47, 44].

2.6 Conclusions

This chapter has given an overview of technologies and models for wireless net-
working for control and monitoring applications. Starting with physical signal trans-
mission of radio signals, we have described theoretical models for propagation,
fading, and outage. These models describe how packets on a single isolated link
can get corrupted and impossible to decode at the receiver. We shortly discussed
various diversity techniques for minimizing the probability of outage, and coding
techniques for correcting occasional bit errors. We have also discussed how the co-
existence with other technologies on the license-free ISM band creates interference
for low-power radios. Next, we described various methods for sharing the spectrum
among several transmitters. These medium access control methods could broadly
be characterized as scheduled or contention-based: scheduled medium access gives
predictable channel access for predictable traffic, but tends to be inefficient when the
traffic itself is random and uncorrelated. Contention-based medium access, on the
other hand, is more efficient in dealing with random traffic but creates random and
sometimes unnecessarily long latencies when traffic is correlated and predictable.

70 M. Johansson and R. Jäntti

From the single link, we moved to multi-hop networks to illustrate several critical
issues such as increased end-to-end latency and decreased reliability. We demon-
strated how multi-path diversity improved reliability, especially in the case of corre-
lated losses. We also described various routing paradigms, including single path and
multi-path (graph-based) routing and relevant link metrics. With this basic under-
standing, we described several standards and specifications for low-power industrial
wireless communication. The chapter was concluded with a short section describ-
ing how control-relevant models of latency and loss could be developed based on
the individual models that we have described.

Acknowledgements. Luca Stabellini kindly let us use Figure 2.8 from his paper [62]. Zhen-
hua Zou generated the Figures 13 and 14 based on our recent work. Joonas Pesonen, Pablo
Soldati, Haibo Zhang, Olaf Landsiedel and Maurice Heemels gave several constructive com-
ments that helped to improve the quality of the text.

References

1. Abramson, N.: The ALOHA system – another alternative for computer communications.
In: Proc. of the Fall Joint Computer Conference, pp. 281–285 (1970)

2. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad
Hoc Networks 3, 325–349 (2005)

3. Almstrom, P., Rabi, M., Johansson, M.: Networked state estimation over a Gilbert-Elliot
type channel. In: Proc. IEEE Conference on Decision and Control, Shanghai, China (De-
cember 2009)

4. Antsaklis, P., Baillieul, J.: Special issue on technology of networked control systems.
Proceedings of the IEEE 95(1) (January 2007)

5. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall, Englewood Cliffs (1987)
6. Bhatti, G., Mehta, A., Sahinoglu, Z., Zhang, J., Viswanathan, R.: Modified beacon-

enabled IEEE 802.15.4 MAC for lower latency. In: Global Telecommunications Con-
ference, IEEE GLOBECOM 2008, pp. 1–5. IEEE, Los Alamitos (2008)

7. Buchholz, P., Plonnigs, J.: Analytical analysis of access-schemes of CSMA type. In:
Proc. IEEE International Workshop on Factory Communication Systems, Vienna, Aus-
tria (2004)

8. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble mac proto-
col for duty-cycled wireless sensor networks. In: SenSys 2006: Proceedings of the 4th
international conference on Embedded networked sensor systems, pp. 307–320 (2006)

9. Chen, P., Sastry, S.: Latency and connectivity analysis tools for wireless mesh networks.
In: ROBOCOMM, p. 33 (2007)

10. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Sys-
tems. Springer, Heidelberg (2005)

11. De Couto, D.S.J.: High-Throughput Routing for Multi-Hop Wireless Networks. PhD
thesis, MIT (2004)

12. Elliot, E.O.: Estimates of error rates for codes on burst-noise channels. Bell SystemTech-
nology Journal 39, 1253–1264 (1963)

13. Gao, C.: Performance and energy efficiency in wireless self-organized networks. PhD
thesis, University of Vaasa (November 2009)

2 Wireless Networking for Control: Technologies and Models 71

14. Geirhofer, S., Tong, L., Sadler, B.M.: Dynamic spectrum access in WLAN channels:
Empirical model and its stochastic analysis. In: Proceedings of the First International
Workshop on Technology and Policy for Accessing Spectrum, Boston, MA (2006)

15. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Systems Technology Journal 39,
1253–1264 (1960)

16. Gorday, P.: 802.15.4 multipath. IEEE 803.15-4-0337-00-004b (2004)
17. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control

systems. Proceedings of the IEEE 95(1), 138–162 (2007)
18. Holland, G., Vaidya, N.: Analysis of TCP performance over mobile ad hoc networks.

Wireless Networks 8(2), 275–288 (2002)
19. Huang, M., Dey, S.: Stability of Kalman filtering with Markovian packet losses. Auto-

matica 43, 598–607 (2007)
20. IEEE standard for information technology - telecommunications and information ex-

change between systems - local and metropolitan area networks specific requirements
part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications
for low-rate wireless personal area networks (lr-wpans). IEEE Std 802.15.4-2003 (2003)

21. IEEE recommended practice for information technology - telecommunications and in-
formation exchange between systems - local and metropolitan area networks - specific
requirements part 15.2: Coexistence of wireless personal area networks with other wire-
less devices operating in unlicensed frequency bands. IEEE Std 802.15.2-2003 (2003)

22. ITU-R. Propagation data and prediction methods for the planning of indoor radiocom-
munication systems and radio local area networks in the frequency range 900 mhz to 100
ghz. Recommendation ITU-R P.1238-6 (2009)

23. Krishnamurty, P., Arauz, J., Labrador, M.A.: Discrete rayleigh fading channel modelling.
Wireless Communications and Mobile Computing 4, 413–423 (2004)

24. Johansson, M., Xiao, L.: On optimal control over packet-oriented communication links.
In: 38th Annual Allerton Conference on Communication, Control, and Computing, Mon-
icello, vol. Il (October 2000)

25. Kao, C.-Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays.
Automatica 40(8), 1429–1434 (2004)

26. Kemp, A., Bryant, E.: Channel sounding of industrial sites in the 2.4 GHz ISM band.
Wireless Personal Communications 31, 235–248 (2004)

27. Kleinrock, L., Tobagi, F.: Packet switching in radio channels: Part I–carrier sense
multiple-access modes and their throughput-delay characteristics. IEEE Transactions on
Communications 23(12), 1400–1416 (1975)

28. Koumpis, K., Hanna, L., Andersson, M., Johansson, M.: Wireless industrial control and
monitoring beyond cable replacement. In: Proc. 2nd PROFIBUS International Confer-
ence, Coombe Abbey, UK (June 2005)

29. Lennvall, T., Svensson, S., Hekland, F.: A comparison of Wireless HART and Zigbee
for industrial applications. In: IEEE International Workshop on Factory Communication
Systems, WFCS 2008, pp. 85–88 (May 2008)

30. Luck, R., Ray, A.: An observer-based compensator for distributed delays. Automat-
ica 25(6), 903–908 (1990)

31. Mahmood, A., Hossain, M.M.A., Jantti, R.: Channel ranking algorithms for cognitive
coexistence of IEEE 802.15.4. In: Proc. IEEE PIMRC 2009, Tokyo, Japan (2009)

32. MacLeod, H., Loadman, C., Chen, Z.: Experimental studies of the 2.4-GHz ISM wireless
indoor channel, pp. 63–68 (May 2005)

33. Marrón, P.J., Minder, D.: Embedded WiSeNts Consortium. Embedded WiSeNts research
roadmap. Logos Verlag, Berlin (2006)

72 M. Johansson and R. Jäntti

34. Medepalli, K., Tobagi, F.A.: Towards performance modeling of IEEE 802.11 based
wireless networks: a unified framework and its applications. In: Proc. IEEE Infocom,
Bercelona, Spain (April 2006)

35. Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold
circuits. IEEE Trans. Automat. Control 52(6), 1109–1112 (2007)

36. Misic, J., Shafi, S., Misic, V.B.: Performance of a beacon enabled IEEE 802.15.4 clus-
ter with downlink and uplink traffic. IEEE Trans. Parallel Distrib. Syst. 17(4), 361–376
(2006)

37. Miskowicz, M., Sapor, M., Zych, M., Latawiec, W.: Performance analysis of predictive
p-persistent CSMA protocol for control networks. In: 4th IEEE International Workshop
on Factory Communication Systems, pp. 249–256 (2002)

38. Morse, J.: Market pulse: wireless in industrial systems: cautious enthusiasm. Industrial
Embedded Systems 2(7), 10–11 (2006)

39. Nilsson, J.: Real-time control systems with delays. PhD thesis, Lund Institute of Tech-
nology, Lund, Sweden (1998)

40. Park, P., Fischione, C., Johansson, K.H.: Performance analysis of GTS allocation in bea-
con enabled IEEE 802.15.4. In: 6th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2009, pp. 1–9
(June 2009)

41. Pérez-Yuste, A.: Early developments of wireless remote control: The Telekino of Torres-
Quevedo. Proceedings of the IEEE 96(1), 186–190 (2008)

42. Perkins, C.E., Royer, M.E.: Ad-hoc on demand distance vector routing. In: Proc. 2nd
IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA,
pp. 90–100 (1999)

43. Pesonen, J.: Stochastic estimation and control over Wireless HART networks: Theory
and implementation. Master’s thesis, Royal Institute of Technology (February 2010)

44. Pesonen, J., Zhang, H., Soldati, P., Johansson, M.: Methodology and tools for controller-
networking codesign in Wireless HART. In: Proc. 14th IEEE International Conference
on Emerging Techonologies and Factory Automation, Palma di Mallorca, Spain (2009)

45. Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S.: Performance study of IEEE 802.15.4
using measurements and simulations, vol. 1, pp. 487–492 (2006)

46. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor net-
works. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pp. 95–107 (2004)

47. Rabi, M., Stabellini, L., Proutiere, A., Johansson, M.: Networked estimation under
contention-based medium access. International Journal of Robust and Nonlinear Con-
trol (2010)

48. Rappaport, T.S.: Characterization of UHF multipath radio channels in factory buildings.
IEEE Transactions on Antennas and Propagation 37(8), 1058–1069 (1989)

49. Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-MAC: a hybrid mac for wireless
sensor networks. IEEE/ACM Trans. Netw. 16(3), 511–524 (2008)

50. Roberts, L.G.: Dynamic allocation of satellite capacity through packet reservation. In:
Computer communication networks, Noordhoff Internat Publishing, Groningen (1972)

51. Rom, R., Sidi, M.: Multiple access protocols – performance and analysis. Springer, Hei-
delberg (1989),
http://webee.technion.ac.il/people/rom/PDF/MAP.pdf

52. Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad hoc mobile wireless
networks. IEEE Personal Communications, 46–55 (April 1999)

53. Jantti, R., Nethi, S., Nassi, V.: Time and antenna diversity in wireless sensor and actuator
networks. In: Proc. IEEE MICC 2009, Kuala Lumpur, Malaysia (2009)

http://webee.technion.ac.il/people/rom/PDF/MAP.pdf

2 Wireless Networking for Control: Technologies and Models 73

54. Schenato, L.: Optimal estimation in networked control systems subject to random delay
and packet drop. IEEE Transactions on Automatic Control 53(5), 1311–1317 (2008)

55. Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of
control and estimation over lossy networks. Proceedings of the IEEE 95(1), 163–187
(2007)

56. Sikora, A., Groza, V.F.: Coexistence of IEEE 802.15.4 with other systems in the 2.4 GHz
ISM band, vol. 3, pp. 1786–1791 (2005)

57. Soldati, P., Zhang, H., Johansson, M.: Deadline-constrained transmission scheduling and
data evacuation in Wireless HART networks. In: Proc. European Control Conference,
Budapest, Hungary (September 2009)

58. Soldati, P., Zhang, H., Zou, Z., Johansson, M.: Optimal routing and scheduling of
deadline-constrained traffic over lossy networks. In: IEEE Globecom 2010, Miami,
Florida (2010)

59. Kemp, A., Bryant, E.: Channel sounding of industrial sites in the 2.4 GHz ISM band.
Wireless Personal Communications 31, 235–248 (2004)

60. Stabellini, L.: Design of reliable communication solutions for wireless sensor networks,
Licentate Thesis. Technical report, Royal Institute of Technology, KTH (2009)

61. Stabellini, L.: Quantifying and modeling spectrum opportunities in a real wireless envi-
ronment. In: Proc. IEEE WCNC 2010, Sydney, Australia (April 2010)

62. Stabellini, L., Proutiere, A.: Evaluating delay and energy in sensor networks with spo-
radic and correlated traffic. In: The 7th Scandinavian Workshop on Wireless Ad-hoc and
Sensor Networks, Stockholm, Sweden (2009)

63. Tanghe, E., Joseph, W., Verloock, L., Martens, L., Capoen, H., Van Herwegen, K.,
Vantomme, W.: The industrial indoor channel: large-scale and temporal fading at 900,
2400, and 5200 MHz. IEEE Transactions on Wireless Communications 7(7), 2740–2751
(2008)

64. Tipsuwan, Y., Chow, M.-Y.: Control methodologies in networked control systems. Con-
trol Engineering Practice, Special Section on Control Methods for Telecommunica-
tion 11(10), 1099–1111 (2003)

65. Vuran, M.C., Akyildiz, I.F.: Error control in wireless sensor networks: A cross layer
analysis. IEEE/ACM Transactions on Networking 17(4), 1186–1199 (2009)

66. Wang, C., Sohraby, K., Li, B., Daneshmand, M., Hu, Y.: A survey of transport protocols
for wireless sensor networks. IEEE Network 20(3), 34–40 (2006)

67. Wang, H.S., Moayeri, N.: Finite-state Markov channel-a useful model for radio commu-
nication channels. IEEE Transactions on Vehicular Technology 44(1), 163–171 (1995)

68. Willig, A.: A new class of packet- and bit-level models for wireless channels. In: The
13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communi-
cations, vol. 5, pp. 2434–2440 (September 2002)

69. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges in reliable multihop
routing in sensor networks. In: ACM Sensys, Los Angeles, CA (2003)

70. Xiao, L., Hassibi, A., How, J.P.: Control with random communication delays via a
discrete-time jump system approach. In: Proceedings of the 2000 American Control Con-
ference, vol. 3, pp. 2199–2204 (2000)

71. Xu, K., Gerla, M., Bae, S.: How effective is the IEEE 802.11 RTS/CTS handshake in ad
hoc networks. In: Global Telecommunications Conference. IEEE GLOBECOM 2002,
vol. 1, pp. 72–76 (November 2002)

72. Xu, S., Saadawi, T.: Does the IEEE 802.11 MAC protocol work well in multihop wireless
ad hoc networks. IEEE Communications Magazine (June 2001)

73. Yang, Y., Yum, T.-S.P.: Delay distributions of slotted ALOHA and CSMA. IEEE Trans-
actions on Communications 51(11), 1846–1857 (2003)

74 M. Johansson and R. Jäntti

74. Jamieson, K., Tay, Y.C., Balakrishnan, H.: Collision-minimizing CSMA and its appli-
cations to wireless sensor networks. IEEE Journal on Selected Areas in Communica-
tions 22(6), 1048–1057 (2004)

75. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive
sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking 12(3),
493–506 (2004)

76. Zou, Z., Soldati, P., Zhang, H., Johansson, M.: Delay-constrained maximum-reliability
routing over lossy links. In: IEEE Conference on Decision and Control, Atlanta, GA
(December 2010)

77. Winter, T., Thubert, P. (eds.), The ROLL Team: RPL. IPv6 Routing Protocol for Low
power and Lossy Networks. Internet Draft draft-ietf-roll-rpl-06 (work in progress)

Chapter 3
A Survey on Distributed Estimation and Control
Applications Using Linear Consensus
Algorithms

Federica Garin and Luca Schenato

Abstract. In this chapter we present a popular class of distributed algorithms, known
as linear consensus algorithms, which have the ability to compute the global aver-
age of local quantities. These algorithms are particularly suitable in the context of
multi-agent systems and networked control systems, i.e. control systems that are
physically distributed and cooperate by exchanging information through a commu-
nication network. We present the main results available in the literature about the
analysis and design of linear consensus algorithms,for both synchronous and asyn-
chronous implementations. We then show that many control, optimization and esti-
mation problems such as least squares, sensor calibration, vehicle coordination and
Kalman filtering can be cast as the computation of some sort of averages, there-
fore being suitable for consensus algorithms. We finally conclude by presenting
very recent studies about the performance of many of these control and estima-
tion problems, which give rise to novel metrics for the consensus algorithms. These
indexes of performance are rather different from more traditional metrics like the
rate of convergence and have fundamental consequences on the design of consensus
algorithms.

3.1 Introduction

In the past decades we have being witnessing the growth of engineering systems
composed by a large number of devices that can communicate and cooperate to
achieve a common goal. Although complex large-scale monitoring and control
systems are not new, as for example nuclear plants and air traffic control, a new

Federica Garin
INRIA Grenoble Rhône-Alpes, France
e-mail: federica.garin@inrialpes.fr

Luca Schenato
Department of Information Engineering, University of Padova, Italy
e-mail: schenato@dei.unipd.it

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 75–107.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

federica.garin@inrialpes.fr
schenato@dei.unipd.it

76 F. Garin and L. Schenato

architectural paradigm is emerging, mainly due to the adoption of smart agents, i.e.,
devices that have the ability to cooperate and to take autonomous decisions without
any supervisory system. In fact, traditional large-scale systems have a centralized or
at best a hierarchical architecture, which has the advantage to be relatively easy to
be designed and has safety guarantees. However, these systems require very reliable
sensors and actuators, are generally very expensive, and do not scale well due to
communication and computation limitations. The recent trend to avoid these prob-
lems is to substitute costly sensors, actuators and communication systems with a
larger number of devices that can autonomously compensate potential failures and
computation limitations through communication and cooperation. Although very
promising, this new paradigm brings new problems into the picture, mainly due to
the lack of analysis and design tools for such systems. In particular, there are only
few tools for predicting the global behavior of the system as a whole starting from
the local sensing and control rules adopted by the smart sensors and actuators. As a
consequence, there has been a strong effort in past years by many engineering areas
to develop such tools.

One of the most promising tools are the linear consensus algorithms, which are
simple distributed algorithms which require only minimal computation, commu-
nication and synchronization to compute averages of local quantities that reside in
each device. These algorithms have their roots in the analysis of Markov chains [53]
and have been deeply studied within the computer science community for load bal-
ancing [61, 42] and within the linear algebra community for the asynchronous so-
lution of linear systems [30, 56]. More recently they have been rediscovered and
applied by the control and robotics communities for cooperative coordination of
multi-agent systems, as surveyed in [52, 51] and in the recent book [12].

The spirit of this chapter is mostly tutorial. We start in Section 3.2 by present-
ing a coherent description of the linear consensus algorithms and by surveying the
most important results. No prior knowledge is required except for standard linear
algebra and control systems theory. A special attention has been placed on the de-
sign of such algorithms, which, in our opinion, is one of the most relevant aspects
for a control engineer. In Section 3.3 we illustrate through some examples how
these algorithms can be applied to relevant estimation and control problems such
as least squares, sensor calibration, and vehicle coordination, just to name a few.
Section 3.4 presents some more recent research directions. More precisely, starting
from the analysis of control applications of consensus algorithms, such as those de-
scribed in Section 3.3, we show that the performance indexes to be considered are
different from the traditional index given by rate of convergence, i.e. the essential
spectral radius of the consensus matrix, and in general this index depends on all the
eigenvalues of the consensus matrix. This observation has relevant consequences in
terms of analysis and design of consensus algorithms, which goes beyond the cur-
rent results and opens up new research directions, which we believe are particularly
relevant for the control community.

3 A Survey on Distributed Estimation and Control Applications 77

3.2 Linear Consensus Algorithms: Definitions and Main Results

In this section, we review some of the main results on the analysis and design of
consensus algorithms and we also provide references for more recent developments
under different scenarios and assumptions. In particular, we will concentrate on lin-
ear discrete-time consensus algorithms. However we will give some references to
continuous time and nonlinear consensus. We start by introducing some mathemat-
ical preliminaries. Let us consider the following linear update equation:

x(t + 1) = Q(t)x(t) (3.1)

where x(t) = [x1(t) x2(t) · · · xN(t)]T ∈R
N and, for all t, Q(t)∈R

N×N is a stochastic
matrix, i.e. [Q(t)]i j = qi j(t) ≥ 0 and ∑N

j=1 qi j = 1, ∀i, i.e. each row sums to unity.
Equation (3.1) can be written as

xi(t + 1) =
N

∑
j=1

qi j(t)xi(t), i = 1, . . . ,N (3.2)

= xi(t)+∑
j �=i

qi j(t)(x j(t)− xi(t)) (3.3)

where the local updates of each component of the vector x is written explicitly.
A stochastic matrix Q is said doubly-stochastic if also ∑N

i=1 qi j = 1, ∀ j, i.e. each
column sums to unity. Clearly if a stochastic matrix is symmetric, i.e. Q = QT ,
then it is also doubly-stochastic. An important class of doubly-stochastic matrices
is given by the class of stochastic matrices which are also circulant. A matrix Q =
circ(c1,c2, . . . ,cN) is a circulant matrix if

Q =

⎡

⎢
⎢⎢
⎣

c1 c2 c3 · · · cN

cN c1 c2 · · · cN−1
...

. . .
...

c2 c3 c4 · · · c1

⎤

⎥
⎥⎥
⎦

(3.4)

All eigenvaluesλi of a stochastic matrix Q are included in the unit circle, i.e. |λi| ≤ 1,
and the vector 1 = [1 1 · · ·1]T ∈R

N is an eigenvector for Q and its eigenvalue is equal
to one, i.e Q1 = 1. The essential spectral radius esr(Q) of a stochastic matrix
Q is defined as the second largest eigenvalue in modulus of the matrix Q, i.e. if
we consider the ordered eigenvalues in modulus 1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λN |, then
esr(Q) = |λ2|.

Many important results about convergence of consensus algorithms can be re-
framed as graph properties. Therefore we provide some useful preliminary def-
initions. We define the (directed) graph associated with a stochastic matrix Q
as GQ = (N ,EQ), where the nodes are N = {1,2, . . . ,N} and the edges are
EQ = {(j, i) |qi j > 0}, i.e. (j, i) ∈ E implies that node i can receive information
from node j. A graph is undirected if (i, j) ∈ E implies that also (j, i) ∈ E .

78 F. Garin and L. Schenato

We also say that a matrix Q is compatible with the graph G = (N ,E) if its
associated graph GQ = (N ,EQ) is such that GQ ⊆ G , i.e., is a subgraph of G . We
denote with Gsl the set of graphs which include all self-loops, i.e. G ∈ Gsl if and
only if (i, i) ∈ E ,∀i ∈N . The in-degree of a node i is defined as din(i) = |Vin(i)|,
where Vin(i) = { j |(j, i) ∈ E , i �= j} is the set of neighbors that can send information
to i and | · | indicates the cardinality of a set. Similarly, the out-degree of a node i is
defined as dout(i) = |Vout(i)| and Vout(i) = { j |(i, j) ∈ E , i �= j}. For an undirected
graph, in-neighbors and out-neighbors of a node i coincide and they are simply
denoted by the set V (i) whose degree is d(i) = |V (i)|.

The adjacency matrix A∈ {0,1}N×N of a graph G = (N ,E) is defined as [A]i j =
1 if (i, j) ∈ E and i �= j, and [A]i j = 0 otherwise. The Laplacian matrix L of a
undirected graph is defined as L = D−A, where D = diag{d(1),d(2), . . . ,d(N)} is
diagonal and d(i) is the degree of node i. The Laplacian L is positive semidefinite
and L1 = 0.

A graph is rooted if there exists a node k∈N such that for any other node j ∈N
there is a unique path from k to j. A graph is strongly connected if there is a path
from any node to any other node in the graph. Clearly a strongly connected graph
implies that it is also rooted for any node. The diameter of a graph is defined as
the length of the longest among all shortest paths connecting any two nodes in a
strongly connected graph. A graph is complete if (i, j) ∈ E ,∀i, j ∈N . The union of
two graphs G1 = (N ,E1) and G2 = (N ,E2) is defined as the graph G = (N ,E) =
G2∪G1 where E = E1∪E1.

3.2.1 Analysis

In this section we describe three main frameworks for modeling consensus algo-
rithms. The first is related to static synchronous implementation, where updates
at each node are performed simultaneously, thus being well-represented by con-
stant matrices. The second and the third are both more suitable for modeling asyn-
chronous implementations, where information exchanges and local variable updates
are not necessarily coordinated, thus being well-represented by time-varying ma-
trices. The second framework addresses the problem of finding the weakest suffi-
cient conditions that guarantee convergence to consensus from a worst-case point
of view, thus being able to characterize a wide class of consensus implementations.
The drawback of this approach is that it is very hard to estimate performance in-
dexes such as the rate of convergence and, when possible, the predictions are often
over-pessimistic. The third framework considers randomized asynchronous imple-
mentations which has three main advantages as compared to the second approach.
The first advantage is that randomized communication and updates require almost
no coordination among nodes and are easy to implement in practice. The second ad-
vantage is that this approach naturally models stochastic nature of the environment,
such as communication losses, communication noise and quantization. The third
advantage is that the estimation of performance such as rate of convergence is closer
to the experimental performance observed through simulations and experiments.

3 A Survey on Distributed Estimation and Control Applications 79

Let us consider the following consensus problem definitions:

Definition 3.1. Let us consider Eqn. (3.1). We say that Q(t) solves the consensus
problem if limt→∞ xi(t) = α, ∀i = 1, . . . ,N, where xi(t) is the i-th component of the
vector x(t). We say that Q(t) solves the average consensus problem if in addition
to the previous condition we have α = 1

N ∑
N
i=1 xi(0). If Q(t) is a random variable,

then we say that Q solves the probabilistic (average) consensus problem if the limit
above exists almost surely.

These definitions include a wide class of consensus strategies: strategies with a
time–invariant matrix Q(t) = Q, deterministic time-varying strategies Q(t), and
randomized strategies where Q(t) is drawn from a set of stochastic matrices Q ac-
cording to a probability distribution. The next theorem describes some sufficient
conditions which guarantee deterministic and probabilistic (average) consensus.

Theorem 3.1. Let us consider the sequence of constant matrices Q(t) = Q. If the
graph GQ ∈Gsl and is rooted, then Q solves the consensus problem, and

lim
t→∞Qt = 1ηT

where η ∈ R
N is the left eigenvector of Q for the eigenvalue one and has the prop-

erties ηi ≥ 0 and 1Tη = 1. If GQ is strongly connected, then ηi > 0,∀i. If in addition
Q is doubly-stochastic, then GQ is strongly connected and Q solves the average con-
sensus problem, i.e. η = 1

N 1. Moreover, in all cases the convergence is exponential
and its rate is given by the essential spectral radius esr(Q).

This theorem is well known and can be found in many textbooks on Markov chains
such as in [53]. The assumption that GQ ∈ Gsl is not necessary to achieve consen-

sus; for example consider Q =
[

1 0
1 0

]
, for which x(t) = x1(0)

[
1
1

]
for each t ≥ 1

and x(0) = [x1(0) x2(0)]T . However, some additional assumption besides GQ being

rooted is actually needed in order to guarantee consensus: for example Q =
[

0 1
1 0

]

is such that GQ is rooted, but it gives x(2t) =
[

x1(0)
x2(0)

]
and x(2t + 1) =

[
x2(0)
x1(0)

]

for all t. In this chapter, for the sake of simplicity, we will use the assumption that
GQ ∈ Gsl, also noting that this is a very mild requirement since it means that any
agent can communicate to itself; however in some cases, such as in the de Bruijn
graphs [24], it is useful to consider also graphs not in Gsl.

Besides the results on constant matrices Q, much research has been devoted to the
analysis of time-varying linear consensus which is addressed by the next theorem.

Theorem 3.2. Consider the deterministic sequence of stochastic matrices {Q(t)}+∞t=0
and the corresponding associated graphs G (t) = GQ(t). Suppose G (t) ∈ Gsl,∀t.
Then the sequence Q(t) solves the consensus problem if and only if there exists
a finite positive integer number T such that the graphs G (τ) obtained from the

80 F. Garin and L. Schenato

union of the graphs G (τ) in the following way: G (τ) = G (τ)∪G (τ+ 1)∪ . . .∪
G (τ+ T −1) with τ = 0,1, . . . are all rooted. If in addition the matrices Q(t) are
all doubly-stochastic, then they solve the average consensus problem.

A simple proof of the previous theorem can be found in [41], but its roots can be
tracked back at least to [61], and it has been rediscovered several times in the past
years [33, 50, 8, 13]. The previous theorem states that it is not necessary for graphs
associated to the matrices Q(t) to be connected at all time, but only over a time win-
dow. This assumption basically guarantees that information travels, possibly with
some delay, from at least one node to all other nodes infinitely many times. What is
particularly remarkable in this theorem and also in Theorem 3.1, is that convergence
is completely characterized by connectivity properties of the graphs GQ(t), regard-
less of the specific values of the entries of the matrices Q(t). On the other hand,
the negative side is that the rate of convergence is hard to estimate since it is based
on worst-case analysis. Therefore in general it is over-pessimistic and of little prac-
tical use. Recent work has tried to address this problem by finding tighter bounds
on the rate of convergence while adding only general constraints on the topological
properties of the graphs GQ(t) and on the numerical values for the entries of Q(t) [2].

A more recent approach to consensus is to model time-varying consensus in term
of randomized strategies. The advantage of a randomized approach is to preserve
simple convergence conditions based on graph properties while obtaining good esti-
mates for the rate of convergence of typical realizations. The next theorem provides
convergence conditions for the randomized linear consensus.

Theorem 3.3. Consider a random i.i.d. sequence of stochastic matrices {Q(t)}+∞t=0
drawn according to some probability distribution from the set Q, and the stochastic
matrix Q = E[Q(t)]. If the graphs G (t) = GQ(t) ∈Gsl,∀t and if GQ is rooted, then the
sequence Q(t) solves the probabilistic consensus problem. The rate of convergence
in mean square sense defined as ρ = supx(0) limsupt→∞(E[||x(t)− x(∞)||2])1/t is
bounded by

(esr(Q))2 ≤ ρ ≤ sr(E[QT (t)ΩQ(t)])

where Ω := I− 1
N 11T and sr(P) indicates the spectral radius of the matrix P, i.e.

its largest eigenvalue in absolute value. If in addition Q(t) are all doubly-stochastic,
then they solve the probabilistic average consensus problem.

The proof of this theorem can be found in [26]. Similarly to the previous two the-
orems, even in a randomized scenario the convergence conditions are characterized
in terms of graphs connectivity properties. In particular, it states that convergence is
guaranteed if the graph is connected on average. However, differently from Theo-
rem 3.2, the randomized framework provides tighter bounds on the rate of conver-
gence. Another advantage of considering a randomized framework is the ability to
model scenarios subject to random communication links or nodes failure.

There is a rich literature on randomized consensus that extends the results of the
previous theorem. One direction is to find weaker convergence conditions, more
specifically by relaxing the hypothesis of i.i.d. sequences to ergodicity only [58].
Another direction is to add additional hypotheses on the matrices Q(t) or on the

3 A Survey on Distributed Estimation and Control Applications 81

set Q in order to improve the convergence bounds. For example, in [11] it was
shown that if Q(t) are symmetric and idempotent. i.e. Q(t) = QT (t) and Q2(t) =
Q(t), then the upper bound is given by sr(E[QT (t)ΩQ(t)]) = esr(Q).

There is also a rich literature on the analysis of consensus under different sce-
narios. For example, there is an equivalent version of the consensus problem in
continuous time given by

ẋ = A(t)x (3.5)

where A is a Metzler matrix, i.e. a matrix whose off-diagonal elements are nonneg-
ative and the row-sum is null, i.e. A1 = 0. This types of systems have been well
characterized by Moreau [40]. For example, the opposite of a Laplacian matrix is
a Metzler matrix, which implies that ẋ = −Lx achieves consensus under general
connectivity properties of the associated graph. The continuous time framework is
particularly suitable for modeling flocking and vehicle dynamics [28, 52, 59].

Another research direction is concerned with convergence conditions for con-
sensus with delayed information, i.e. for consensus whose dynamics can be written
as

xi(t + 1) =
N

∑
j=1

qi jx j(t− τi(t)), i = 1, . . . ,N

where the delay τi(t) can be unknown and time-varying [46, 8, 7, 60, 54, 62]. The
main finding is that consensus is very robust to delay, which is particularly important
in networked systems where delay is unavoidable. This comes from the observation
that the convex hull of the points xi(t) can only shrink or remain constant, and delay
only marginally affects this property [41, 8].

Also much interest has been generated from consensus subject to quantization
and in particular to quantized communication. In this context the dynamics can be
written as

xi(t + 1) =
N

∑
j=1

qi jqd(x j(t)), i = 1, . . . ,N

where qd(·) : R → Qd and Qd is a finite or countable set. A typical example is
qd(x) = �x, where �x indicates the largest integer smaller than x. This problem
is particularly challenging due to the fact that quantization acts similarly to noise,
thus being particularly harmful since the consensus matrices Q(t) are not strictly
stable but always have an eigenvalue in one and convergence might not be guaran-
teed. Therefore, much effort has been given in finding quantization strategies and
quantization functions that still guarantee consensus [37, 18, 29, 38, 36, 43].

Another interesting aspect is related to consensus subject to lossy communi-
cation , i.e. a scenario where communication scheduled between two nodes fails
due to random interference or noise. This scenario naturally fits the randomized
framework of Theorem 3.3, however it also requires the design of a compensation
mechanism when a packet is lost. Different strategies have been proposed and stud-
ied [35, 27, 47]. For example a natural scheme is to compensate for the lost packets
by replacing the the lost value x j from the transmitting node j with the self value xi

of the receiving node i, more formally:

82 F. Garin and L. Schenato

xi(t + 1) =
(

qii +
N

∑
j=1,i�= j

(
1− γi j(t)

)
qi j

)
xi +

N

∑
j=1,i�= j

γi j(t)qi jx j(t), i = 1, . . . ,N

where γi j(t) is a random variable such that γi j(t) = 1 if transmission at time t from
node j to node i was successful, and γi j(t) = 0 otherwise [27]. These works show
that packet loss in general does not affect convergence to consensus, but it can re-
duce convergence rate and change the final consensus value as compared to ideal
scenario with perfect communication, i.e. γi j(t) = 1,∀i, j, t.

A different setting is studied in [64], where additive noise is included in the con-
sensus dynamics, i.e.

x(t + 1) = Qx(t)+ v(t) .

Note that, in all cases described above, noise affects the speed of convergence and
the final value obtained (which is not the desired average), but does not prevent
convergence. Differently, in the case when there is noise in the transmissions among
nodes (without feedback), so that the messages sent by an agent are received by its
neighbors corrupted by noises which might be different, and which are unknown to
the sender, then convergence itself is an issue. The difficulty is in the design of a
modified consensus algorithm capable of avoiding noise accumulation. Algorithms
dealing with variations on this setting have been designed and analyzed by various
authors, e.g. [49, 32, 34] (using time-varying weights in the consensus algorithm,
to decrease the effect of neighbors’ noise) and [16] (using error-correcting codes of
increasing length to decrease the communication noise).

3.2.2 Design

Up to now, we provided a short overview of the properties of consensus algorithms
under different scenarios and assumptions. However, in many engineering applica-
tions it is also very important to be able to design such algorithms. From a con-
sensus design perspective, the design space is given by the communication graph
G = {N ,E } of a network of N = |N | agents, and the design problem consists in
finding suitable Q(t) compatible with G that achieve consensus or average consen-
sus. We assume that the graph G includes self-loops, i.e. G ∈ Gsl, and that it is at
least rooted.

There are two main approaches to design. The first focuses on local design meth-
ods which require only local information, i.e. each node can design its commu-
nication and consensus updates weights almost independently of the other nodes.
Obviously, with this approach optimality with respect to some performance index
is not guaranteed. The second approach focuses on methods which try to optimize
some global performance index. As a consequence, this often leads to a centralized
optimization problem that strongly depends on the topology and might be suitable
if the network static and has small size. We start by presenting these two approaches
first within the context of static consensus, i.e. Q(t) = Q and then in the context of
time-varying consensus strategies.

3 A Survey on Distributed Estimation and Control Applications 83

3.2.2.1 Matrix Design – Static Consensus: Q

If only consensus is required then a simple local strategy to design the matrix Q is
given by:

qi j =
1

din(i)+ 1
, (j, i) ∈ E

Clearly GQ = G , and Q is stochastic, thus satisfying hypotheses of Theorem 3.1.
Differently, if average consensus is required, various solutions are possible. If the

graph is undirected a possible solution is to choose:

qi j =
{
ε if (j, i) ∈ E and i �= j
1− εd(i) if i = j

(3.6)

where ε < 1
maxi d(i) . This matrix is clearly symmetric since the non-zero off-diagonal

terms are all equal and positive qi j = q ji = ε,∀i, j. The condition on ε is necessary
to guarantee that all diagonal terms are positive. As a consequence, Q is a stochastic
symmetric matrix, therefore it is also doubly-stochastic. Moreover GQ = G and by
hypothesis G is rooted1, thus satisfying hypotheses of Theorem 3.1. Note that this
matrix is strongly related to the Laplacian matrix L of the graph G . In fact, consider
the discretized dynamics of Eqn. (3.5) where A =−L with time step ε , i.e. x(t +1)=
e−εLx(t) = Qdx(t), then the first order expansion of Qd , i.e. Qd = I−εL+O(ε), has
the same structure of the Q given by Eqn. (3.6).

Another possible strategy for undirected graphs is based on the Metropolis-
Hastings weights:

qi j =

{
1

max(d(i),d(j))+1 if (j, i) ∈ E and i �= j

1−∑N
j=1,i�= j qi j if i = j

(3.7)

Clearly the matrix Q is symmetric and the diagonal elements are strictly positive
since qii = 1−∑N

j=1,i�= j qi j ≥ 1−∑N
j=1,i�= j,(i, j)∈E

1
d(i)+1 = 1− d(i)

d(i)+1 = 1
d(i)+1 > 0,

therefore Q is doubly-stochastic and GQ = G which are sufficient conditions to
guarantee average consensus. As compared to the strategy based on the Laplacian
of Eqn. (3.6), the strategy based on the Metropolis weights of Eqn. (3.7) is local,
i.e. each node requires only the knowledge of local information, namely the degrees
of its neighbors, while the former requires the knowledge of an upper bound on
the degree of all nodes of the network. Moreover, the Metropolis-based consensus
matrix has in general faster convergence rate than the Laplacian-based consensus
matrix.

If the communication graph G is directed, then the design of a consistent doubly-
stochastic matrix is not trivial. A possible strategy is based on the design of a doubly-
stochastic matrix based on a convex combination of permutation matrices, where a
permutation matrix P is defined as P ∈ {0,1}N×N,1T P = 1T ,P1 = 1. Note that a
permutation matrix is doubly-stochastic. This procedure is basically an application

1 If an undirected graph is rooted, then it is also strongly connected.

84 F. Garin and L. Schenato

of the Birkhoff’s Theorem [39]. We start from the assumption that the graph is
strongly connected. This implies that for each edge e = (j, i) ∈ E there exists a path
connecting node i to node j, which in turns implies there exists at least one simple
cycle C in the graph including the edge e, i.e. there exists a sequence of non repeated
vertices �1, �2, . . . , �L ∈N such that �1 = i, �L = j, (�i, �i+1) ∈ E for i = 1, . . . ,L−1
and (�L, �1)∈ E . Associated to this cycle it is possible to define a permutation matrix
Pe as follows:

[Pe]�r�r+1 = 1 for r = 1, . . . ,L−1
[Pe]�L�1 = 1
[Pe]kk = 1 for k �= �r, r = 1, . . . ,L
[Pe]hk = 0 otherwise

Clearly GPe ⊆ G . According to this procedure it is always possible to find M cycles
in the graph G and permutation matrices Pi, i = 1, . . . ,M constructed as above, that
includes all edges of the graphs. Let us consider now the matrix Q = a0I +∑M

i=1 aiPi

where ai > 0,∀i = 0, . . . ,M and ∑M
i=0 ai = 1, then Q is still doubly-stochastic since

it is a convex combination of doubly-stochastic matrices. Also since all edges of G
are included in Q, then GQ = G . These two facts guarantee that Q achieves average
consensus.

However, this procedure is rather tedious and requires global knowledge of the
graph topology. There is an elegant alternative solution to achieve average consensus
[1], which requires only local knowledge of the graph topology. Let us consider the
matrix Q designed as follows:

qi j =
1

dout(j)+ 1
, (j, i) ∈ E

This matrix is column-stochastic, i.e. its transpose is stochastic (QT 1 = 1), and
GQ = G is strongly connected. This implies by Theorem 3.1 that limt→∞Qt =
limt→∞((QT)t)T = (1ρT)T = ρ1T where ρi > 0,∀i. Now let us consider z(t +
1) = Qz(t) and w(t + 1) = Qw(t) where the initial condition are z(0) = x(0) and

w(0) = 1, and the x(t) such that xi(t) = zi(t)
wi(t)

. From limt→∞Qt = ρ1T , it follows that

limt→∞ z(t) =
(
∑N

i=1 zi(0)
)
ρ =

(
∑N

i=1 xi(0)
)
ρ and limt→∞w(t) =

(
∑N

i=1 wi(0)
)
ρ =

Nρ , therefore limt→∞ xi(t) =
ρi

(
∑N

i=1 xi(0)
)

ρiN
= 1

N ∑
N
i=1 xi(0) as desired. Note that av-

erage consensus is achieved through a nonlinear algorithm that uses two parallel
linear iterative updates very similar to standard consensus. The weak point of this
approach is that perfect communication is required since the algorithm can become
unstable if lossy links are considered.

So far, we just considered design strategies to achieve consensus or average con-
sensus, but we did not discuss about their rate of convergence. Design of consensus
algorithms with fast rate of convergence is not a trivial task. If simple consensus is
required, there is a simple strategy that achieves in a finite number of steps. Given
a rooted graph, it is always possible to find a tree that connects one node, namely
the root, to all other nodes. Without loss of generality, assume that the root is node
i = 1, and let us consider only the set of directed edges associated with this tree,

3 A Survey on Distributed Estimation and Control Applications 85

i.e. Etree ⊆ E . Note that Etree does not contain self-loops. Let us consider the matrix
Q designed as follows:

q11 = 1, qi j = 1 (j, i) ∈ Etree, j �= 1

Clearly the matrix is stochastic and it is not difficult to see that Qt = 1[1 0 · · · 0]
for t ≥ �, i.e. xi(t) = x1(0) for t ≥ �, where � is the maximum distance of all nodes
from the root. This implies that esr(Q) = 0. In other words, each node sets the
value of its variable xi(t) to the value received from its parents, therefore after a
finite number of steps all nodes will have a copy of the initial condition of the root.
This gives very fast convergence rate even for very large networks, as long as the
diameter, i.e. the largest path distance within any two nodes, is small.

If average consensus is required, then the previous strategy is obviously not suit-
able. Optimal design of Q in terms of fast rate of convergence is not trivial in di-
rected graph. If the graph is undirected, then it has been shown by Xiao et al. [63]
that finding a symmetric stochastic matrix consistent with the graph with smallest
esr is a convex problem. i.e.

min
Q

esr(Q)

s.t. Q = QT ,Q1 = 1, [Q]i j ≥ 0,GQ = G

Actually the non-negativeness constraint on the elements of Q is not necessary to
have a convex problem, and therefore can be removed, thus providing a matrix Q
with possible negative entries which can lead to an even smaller esr. On the other
hand, this is a centralized optimization problem, and the whole topology of the
network is needed to find the optimal solution. Local optimization strategies to min-
imize the esr are still an open area of research.

3.2.2.2 Matrix Design – Dynamic Consensus: Q(t)

Now, we address the problem of designing dynamic consensus strategies where the
consensus matrix is not constant but can change over time. The major drawback of
static consensus is that it requires some sort of synchronization among all nodes of
the network. In fact, between one iteration and the subsequent iteration, nodes need
to exchange information and then update their local variables simultaneously. This
can be difficult to enforce or simply too costly. Therefore, there is much interest in
designing consensus strategies that require little coordination and synchronization
among nodes. These algorithms are also referred as asynchronous algorithms. Some
of the most popular asynchronous strategies are motivated by practical consideration
based on the communication schemes that can be implemented on networks. These
include broadcast [3], asymmetric gossip [25] and symmetric gossip [11].

In the broadcast scheme , one node i transmits its information to all its neigh-
bors Vout(i), and each receiving node updates its local variable using consensus.
More formally, given a possibly directed graph G = (N ,E), then Q(t) ∈ QB =
{Q1,Q2, . . . ,QN}, where N = |N | and

86 F. Garin and L. Schenato

Qi = I−w ∑
j∈Vout(i)

e j(e j− ei)T

where w ∈ (0,1), I is the identity matrix of dimension N, and ei ∈R
N is a vector of

all zeros except for the i-th entry which is set to one. Clearly all Qi are stochastic,
have self-loops, and GQi ⊆ G .

Differently, in the asymmetric gossip one node i selects only one of its possi-
ble neighbors Vout(i), which after receiving the message updates its local variable.
More formally, given a possibly directed graph G = (N ,E), then Q(t) ∈ QAG =
{Qi j | (i, j) ∈ E , i �= j}, where

Qi j = I−we j(e j− ei)T

where w ∈ (0,1) and ei are defined as above. Clearly all Qi j are stochastic, have
self-loops, and GQi j ⊆ G . Note that even if the graph G is undirected, than the ma-
trices Qi j are only stochastic and do not guarantee average consensus. The same
consideration applies to the broadcast matrices Qi defined above.

The symmetric gossip is applicable only to undirected graphs. In this scheme,
one node i transmits its information to only one of its neighbors j, which in turn
transmits back to the node i another message with its local value. Only after the
completion of this procedure the two nodes update their local values using a con-
sensus scheme based on the same weight w. More formally, given the undirected
graph G = (N ,E), then Q(t) ∈QSG = {Qi j | (i, j) ∈ E , i �= j}, where

Qi j = I−w(e j− ei)(e j− ei)T

Clearly all Qi j are doubly-stochastic, are idempotent (i.e., (Qi j)2 = Qi j), have self-
loops, and GQi j ⊆ G . Although symmetric gossip is somewhat more complex from a
communication point of view, differently from broadcast and asymmetric gossip, it
has the advantage to preserve the average at any time instant, therefore convergence
to consensus automatically guarantees convergence to average consensus.

At this point, the design problem is how to select a sequence of Q(t) from the sets
defined above for the broadcast, asymmetric gossip and symmetric gossip, and how
to choose the consensus weight w. In general the consensus weight is set to w = 1/2
and more attention is paid on the drawing of matrices Q(t). One approach is to de-
terministically select these matrices according to some sequence, however this still
requires some sort of coordination and synchronization. A more natural approach
is to select these matrices randomly, possibly according to some i.i.d. distribution
on the sets Q. This distribution can be represented by a vector p ∈ R

N , such that
p≥ 0 and 1T p = 1 for the broadcast model, where pi = P[Q(t) = Qi]. Similarly, the
probability distribution in the symmetric and asymmetric gossip can be represented
by a matrix P ∈ R

N×N which is nonnegative, i.e. [P]i j ≥ 0, is consistent with the
graph, i.e. GP ⊆ G , and sum to unity, i.e. 1T P1 = 1, where [P]i j = P[Q(t) = Qi j]. In
this case, the design space corresponds to the probability distribution of these sets,
i.e. the vector p or the matrix P. The proper framework to analyze these strategies is
given by Theorem 3.3. Many results about exact rate of convergence and its optimal

3 A Survey on Distributed Estimation and Control Applications 87

design are available for communications graphs G that present special symmetries
like complete graphs, circulant graphs, hypercubes, and tori [17, 26]. Differently, for
general undirected graphs, Boyd et al. [11] showed that under the randomized sym-
metric gossip schemes with weight w = 1/2, the rate of convergence can be bound
by ρ ≤ esr(Q) thus suggesting the following optimization criteria for maximizing
the rate of convergence:

min
P

esr(Q)

s.t. Q =
N

∑
i=1

N

∑
j=1

[P]i jQ
i j, [P]i j ≥ 0,1T P1 = 1, GP ⊆ G

which turns out to be a convex problem. This optimization problem is a central-
ized problem, however the authors in [11] suggested also suboptimal decentral-
ized optimization schemes. Fagnani et al. [25] studied the asymmetric gossip for
general undirected graphs and showed that rate of convergence can be bound by
ρ ≤ sr([QT (0)ΩQ(0)]) = 1−2w

(
(1−w)−wN−1

)
μ , where μ is the smallest posi-

tive eigenvalue of the positive semidefinite matrix S = diag(P1)−(P+PT)/2, where
diag(x) : R

n→ R
n×n indicates a diagonal matrix whole diagonal entries are the en-

tries of the vector x. Therefore in this scenario a possible optimization criterium for
minimizing the rate of convergence is to minimize ρ which is minimized by set-
ting w = 1

2
N+1

N ≈ 1
2 and by maximizing μ . If we restrict to symmetric probability

matrices P = PT , maximizing μ is equivalent to the following convex optimization
problem:

max
P,ε

ε

s.t. diag(P1)−P≥ εI, P = PT , [P]i j ≥ 0,1T P1 = 1, GP ⊆ G

Similarly to [11] also this optimization problem is centralized and therefore might
not be suitable for fully distributed optimization.

3.2.2.3 Graph Design

In the previous sections, we focused on the issue of how to design the coefficients
of the matrix Q for a given communication graph G . However, there are scenarios
for which also the communication graph can be designed, therefore it is useful to
understand the effect of the graph topology on the performance and how it scales as
the number of nodes increases. Also, it is important to note that, in many cases, the
effect of the graph topology on performance is much more relevant than the actual
choice of the weights, i.e. of the non-zero entries of Q. In fact, for example, Xiao et
al. [64] studied consensus over random geometric graphs [48] and compared opti-
mal design with suboptimal decentralized strategies like the consensus based on the
Metropolis matrix, showing that performance difference was not so drammatically
different and seemed to scale similarly with the graph size.

88 F. Garin and L. Schenato

In this context, let us consider the static consensus x(t +1) = Qx(t). Asking what
graph allows for the fastest convergence, without any further constraint, is trivially
answered (the complete graph, i.e. every pair of nodes is connected by an edge) and
is not very meaningful: the complete graph corresponds to centralized computation.
A more interesting question is asked by Delvenne et al. [23, 24]: what is the best
graph, under the constraint that each agent receives at most ν messages at each
iteration (i.e., GQ has bounded in-degree)? The answer is given by a family of graphs
known as de Bruijn graphs, well-known in the computer science literature for their
expansion properties, and capable of giving the exact average in finite time (not only
limt→∞ x(t) = 1

N 1T x(0), but also x(t̄) = 1
N 1T x(0) for some t̄), and moreover the time

t̄ is the smallest possible with the constraint on the in-degree.
The very good performance of de Bruijn graphs is surprising if compared with a

family of graphs, Abelian Cayley graphs [17], which are grids on d-dimensional tori
(a circle for d = 1), and whose algebraic structure (a generalization of circulant ma-

trices) allows to compute the eigenvalues and to prove that esr(Q) ≥ 1− cN
1

ν+1 ,
where ν is the degree of the nodes and c is a positive scalar independent of the
graph. This proves that, when N → ∞, esr(Q)→ 1, i.e., convergence is consider-
ably slowed down by the size of the network. However, this is not always the case:
in addition to de Bruijn graphs, there are other significant classes of graphs, known
as expander graphs, such that esr(Q) is bounded away from 1 when N → ∞ (see
[45] for the study of such graphs in the context of consensus algorithms). A particu-
lar family of graphs which allow fast information transfer (having a small diameter
despite the small degree of each node) are the so-called small-world graph, which
are considered as a reasonable model for many social interactions (e.g., the col-
laboration graph for scientific authors, or the spread of some diseases) and for the
world-wide web; they have been studied in the consensus literature by Olfati-Saber
[44] and Tahbaz-Salehi et al. [57].

All such graphs have good properties in terms of fast convergence, despite the
small (average) number of neighbors of each node, and as opposed to Abelian Cay-
ley graphs (roughly speaking: grids) where convergence is very slow for large net-
works. The key fact that makes this difference is that in grids not only the number
of neighbors is little, but also their position is forced to be local, in a somehow
geometrical sense. In many practical deployments of sensor networks, geometrical
constraints are indeed present, and thus the very structured and symmetrical Abelian
Cayley graphs can be thought as an idealized version of realistic settings, and are
important in that they underline the strong limitations that such locality constraint
has on performance and gives guidelines for the design of the number of nodes in
the network, in the case when the topology is bound to have such a given struc-
ture and the size only is the objective of design. A step towards a more realistic,
less structured family of graphs where geometrical bounds are enforced is the study
of random geometric graphs [48]. Random geometric graphs are undirected graphs
which are widely used to model wireless sensor networks, and they are obtained by
randomly generating points in the Euclidean space (usually, in the plane) according
to a Poisson point process (the number of points in any bounded region is a Poisson
random variable with average proportional to the area, and the position of points is

3 A Survey on Distributed Estimation and Control Applications 89

uniformly distributed in the region) and then drawing an edge between two nodes
if and only if their relative distance is smaller than a predefined communication
radius r.

The analysis of the effect of the graph topology on performance has been con-
sidered also for time-varying consensus algorithms, and particularly for randomized
algorithms (as opposed to the previously-mentioned results, where families of ran-
dom graphs were considered in the sense that the one time-invariant graph is ran-
domly selected before starting the algorithm). An early work by Hatano et al. [31]
studies the case where, at each time step, the graph is chosen randomly according
to the Erdős-Rényi model, i.e., the presence or absence of edges between any pair
of nodes are given by i.i.d. Bernoulli random variables. A more recent research line
has studied convergence of various randomized gossip algorithms, when the random
activation of a node or of an edge is restricted to an underlying graph smaller than
the complete graph. In this context, a relevant result by Fagnani et al. [26] concerns
the rate of convergence of various algorithms (including symmetric, asymmetric
and broadcast gossip) when the underlying graph is an Abelian Cayley graph. An-
other very interesting result can be found in [11], where the rate of convergence of
symmetric gossip is found for random geometric graphs and compared to the faster
convergence in the preferential connectivity model (a popular model for the graph
of the world wide web, and an example of small-world graph).

3.3 Estimation and Control Problems as Average Consensus

In this section we illustrate with few examples that some estimation and control
problems can be reframed as the computation of the average of some quantities,
which therefore can be efficiently computed in a distributed fashion using average
consensus algorithms.

3.3.1 Parameter Estimation with Heterogeneous Sensors

Let us consider N sensors that measure a noisy version of the true parameter θ ∈ R

as follows:
yi = θ + vi, vi ∼N (0,σ2

i), i = 1, . . . ,N

where vi are independent zero-mean random variable with covariance σ2
i , i.e. sen-

sors have different accuracy. The minimum-variance estimate of the parameter θ ,
given all the measurements, is given by:

θ̂MV =
N

∑
i=1

αiyi, αi =
1
σ2

i

∑N
j=1

1
σ2

j

i.e. it is a convex combination of the measurements. It is easy to see that the previous
estimator can be written as:

90 F. Garin and L. Schenato

θ̂MV =
1
N ∑

N
i=1

1
σ2

i
yi

1
N ∑

N
j=1

1
σ2

j

i.e. it is the ratio of two averages. Therefore, it can be asymptotically computed in a
distributed fashion using two average consensus algorithms in parallel whose initial
condition are set to xy

i (0) = 1
σ2

i
yi and xσi (0) = 1

σ2
i

, so that

lim
t→+∞

θ̂i(t) :=
xy

i (t)
xσi (t)

= θ̂MV, ∀i .

3.3.2 Node Counting in a Network

In many applications it is important to know how many nodes there are in a net-
work. This can be easily computed via an average consensus algorithm, by set-
ting all the initial conditions to zero except for one node, i.e. x1(0) = 1 and
xi(0) = 0, i = 2, . . . ,N. Since average consensus guarantees converge to the aver-
age of initial conditions, an asymptotically correct estimator of the total number of
node N is given by:

N̂i(t) :=
1

xi(t)
,

because

lim
t→+∞

N̂i(t) = lim
t→∞

1
xi(t)

=
1

1
N ∑

N
j=1 xi(0)

= N, ∀i .

3.3.3 Generalized Averages

Besides the common arithmetic average it is also possible to compute other types of
averages such as

zα = α

√
1
N

N

∑
i=1

yαi

where α = 1 gives rise to the usual arithmetic average, α = 2 the mean square,
α = −1 the harmonic mean. Also note that z∞ := limα→+∞ zα = maxi yi [6, 21].
These generalized averages can be computed using average consensus by setting
the initial condition xi(0) = yαi and computing an estimate of the desired average as
follows:

lim
t→+∞

ẑi(t) := α
√

xi(t) = zα , ∀i
Another important average is the geometric mean defined as:

zg = N

√
N

∏
i=1

yi

3 A Survey on Distributed Estimation and Control Applications 91

The geometric mean can be written as zg = exp(logzg) = exp
(
∑N

i=1 logyi
)
, there-

fore it can be computed using average consensus by setting the initial conditions to
xi(0) = logyi and the following estimator:

lim
t→+∞

ẑi(t) := exp(Nxi(t)) = zg, ∀i

Note, however, that in this case the number of nodes N needs to be known in advance.

3.3.4 Vehicle Rendezvous

An important example of vehicle formation control is the rendezvous problem (see
e.g. [12]), where all vehicles are required to meet at a common location using only
relative position information for all initial conditions. In its simplest formulation,
the vehicle dynamics is given by

xi(t + 1) = xi(t)+ ui(t)

and the goal is to find a linear control strategy which uses only relative distance
information, i.e.

ui(t) =
N

∑
j=1

qi j(t)(x j(t)− xi(t))

such that limt→+∞ xi(t) = x̄ for some x̄. This is indeed a consensus problem that
can be solved by choosing the weights qi j(t) that guarantees convergence2. Besides
convergence, it is also relevant to compute performance of the rendezvous strategy.
A natural approach is to consider a linear quadratic (LQ) measure given by:

JLQ = Jx + εJu =
∞

∑
t=0
||x(t)− x(∞)||2 + ε

∞

∑
t=0
||u(t)||2

where x = [x1 x2 · · · xN]T , u = [u1 u2 · · · uN]T , and ε is a positive scalar that trades
off the integral square error of all vehicles from the rendezvous location x(∞) = x̄1,
namely Jx, versus the integral energy of all vehicles required to achieve consensus,
namely Ju.

3.3.5 Least Squares Data Regression

Least squares are one of the most popular estimation techniques in data regres-
sion, where the objective is to estimate a function y = f (x), from a noisy data
set D = {(xi,yi)}N

i=1. A standard approach is to propose a parametrized function

2 In realistic scenarios the gains qi j are a function of vehicle location, i.e. qi j = qi j(x). A
typical model is to consider limited communication range r > 0, i.e. qi j = 0 if |xi−x j|> r.
This gives rise to nonlinear dynamics which is not captured by the model presented in
Section 3.2. The analysis of these systems is beyond the scope of this work and we refer
the interested reader to [22] an references therein.

92 F. Garin and L. Schenato

fθ (x) := ∑M
j=1 θigi(x), where gi(x) are known functions, often called basis func-

tions, and θi, i = 1 . . . ,M are unknown parameters to be determined based on the
data set D . The least squares estimate of the parameter vector θ = [θ1 θ2 · · · θM]T

is defined as

θ̂LS = arg minθ
N

∑
i=1

(yi− fθ (xi))2

If we define the vectors gi = [g1(xi) g2(xi) · · · gM(xi)]T ∈ R
M, i = 1, . . . ,N, y =

[y1 y2 · · · yM]T ∈ R
N , and the matrix G = [g1 g2 · · · gM]T ∈ R

N×M , then we have

θ̂LS = arg minθ ‖y−Gθ‖2 = (GT G)−1GT y =
(N

∑
i=1

gig
T
i

)−1(N

∑
i=1

giyi

)

=
(

1
N

N

∑
i=1

gig
T
i

)−1(1
N

N

∑
i=1

giyi

)

under the implicit assumption that (GT G)−1 exists. From last equation it is clear that
the estimate can be computed as a nonlinear combination of two averages, therefore
a consensus based strategy is to run two average consensus algorithms with initial
conditions xgg

i (0) = gigT
i ∈R

M×M and xgy
i (0) = giyi ∈R

M , and then asymptotically
computing the least square estimate as:

lim
t→+∞

θ̂i(t) :=
(
xgg

i (t)
)−1

xgy
i (t) = θ̂LS, ∀i

Note that in this scenario xgg
i are matrices and xgy

i are vectors, therefore they are not
scalar as usually considered in Eqn. (3.1), however all results of Section 3.2 still
apply by considering the local updates rules of Eqn. (3.2) or Eqn. (3.3) [65, 9].

3.3.6 Sensor Calibration

Often inexpensive sensors might be affected by unknown offsets due to fabrica-
tion imperfections or aging. A common example is given by the sensor that mea-
sures the signal strength, the RSSI, in the radio chip of commercial wireless sensor
nodes [9]. The RSSI is often used to estimate the relative distance between two of
these wireless nodes for localization and tracking applications. More precisely the
signal strength yi j measured by node i from node j can be modeled as:

yi j = f (ξi,ξ j)+ oi

where ξi and ξ j are the locations of the receiving node i and the transmitter node
j, respectively, and oi is the offset of the receiving node. Typically, f (ξi,ξ j) is a
function of the distance ‖ξi− ξ j‖ only, but in indoor environments this cannot be
the case. However, it still holds that

f (ξi,ξ j) = f (ξ j,ξi) ,

3 A Survey on Distributed Estimation and Control Applications 93

i.e. the function f is symmetric in terms of nodes locations. The objective of cal-
ibration is to estimate the offset oi for each node in order to remove it from the
measurements. This is clearly impossible, unless at least one node is calibrated or if
the function f and the node locations ξ are known. A less demanding requirement
is to find offset estimates ôi such that oi− ôi = ō for all i, i.e. to be able to have all
nodes with the same offset ō. This can be interpreted as a consensus problem on the
variable xi(t) = oi− ôi(t). However, this is still an undetermined problem since ō is
arbitrary. One solution to remove this ambiguity is to choose one node as a refer-
ence, for example node i = 1, i.e. ō = o1. A less arbitrary choice is to find ō such
that

arg minō

N

∑
i=1

ô2
i = arg minō

N

∑
i=1

(oi− ō)2 =
1
N

N

∑
i=1

oi =
1
N

N

∑
i=1

xi(0)

where the last equality is obtained by setting ôi(0) = 0. This strategy, which aims
at minimizing the magnitude of offset compensation terms ôi, implies that average
consensus is to be sought. By substituting xi(t) = oi− ôi(t) into Eqn. (3.3) we get:

oi− ôi(t + 1) = oi− ôi(t)+
N

∑
j=1

qi j(t)
(
o j− ô j(t)− (oi− ôi(t))

)

ôi(t + 1) = ôi(t)−
N

∑
j=1

qi j(t)
(

f ji + o j− ô j(t)− (fi j + oi− ôi(t))
)

= ôi(t)+
N

∑
j=1

qi j(t)
(
ô j(t)− ôi(t)+ yi j− y ji

)

where we used the notation f (ξi,ξ j) = fi j and the assumption that fi j = f ji. From
average consensus we have that:

lim
t→+∞

ôi(t) = oi− 1
N

N

∑
j=1

oi

From this expression, it is clear that if the offset are normally distributed, i.e. oi ∼
N (0,σ2), then limN→+∞ |ôi(∞)−oi|= 0 almost surely, i.e. if the number of nodes
is large, then the offset estimate is very close to the true offset.

3.3.7 Kalman Filtering

Estimation of dynamical systems is another important area. Let us consider the fol-
lowing dynamical systems observed by N sensors:

ξ (t + 1) = Aξ (t)+ w(t)
yi(t) = Ciξ (t)+ vi(t), i = 1, . . . ,N

94 F. Garin and L. Schenato

where w(t) ∼ N (0,Q) and vi(t) ∼ N (0,Ri) are uncorrelated white Gaus-
sian noises. If we define the new vectors y(t) = [y1(t) y2(t) · · · yN(t)]T and
v(t) = [v1(t) v2(t) · · · vN(t)]T . The minimum error covariance estimate is given
by ξ̂ (h|t) := E[ξ (h) |y(t),y(t − 1) . . .y(1)] and its error variance is P(h|t) :=
Var(ξ (h)− ξ̂ (h|t)). The optimal estimator is known as the Kalman Filter, whose
equations are given by:

ξ̂ (t|t−1) = Aξ̂ (t−1|t−1)
P(t|t−1) = AP(t−1|t−1)AT + Q

ξ̂ (t|t) = ξ̂ (t|t−1)+ P(t|t−1)CT (CP(t|t−1)CT + R)−1(y(t)−Cξ̂(t|t−1))
P(t|t) = P(t|t−1)−P(t|t−1)CT (CP(t|t−1)CT + R)−1CP(t|t−1)

The first two equations are known as the prediction step, while the last two equations
are known as the correction step. Using the matrix inversion lemma, the correction
step can be written as

ξ̂ (t|t) = P(t|t)(P(t|t−1)ξ̂(t|t−1)+CT R−1y(t))

= P(t|t)(P(t|t−1)ξ̂(t|t−1)+
N

∑
i=1

CT
i R−1

i yi(t))

= P(t|t)(P(t|t−1)ξ̂(t|t−1)+ z(t))

P(t|t) = (P(t|t−1)+CTR−1C)−1 = (P(t|t−1)+
N

∑
i=1

CT
i R−1

i Ci)−1

= (P(t|t−1)+ Z)−1

which are also known as the inverse covariance filter. From these equations it is
evident that the sufficient statistics necessary to recover the centralized Kalman filter
are the quantities z(t) = N(1

N ∑
N
i=1 CT

i R−1
i yi(t)) and Z = N(1

N ∑
N
i=1 CT

i R−1
i Ci) which

are averages of local quantities. Therefore, a possible strategy to run a local filter
on each local node, which, between two measurements y(t − 1) and y(t), runs m
iterations of the average consensus algorithm to recover z(t) and Z, and then updates
its estimate using the centralized Kalman gain. If m is sufficiently large and if the
total number of nodes N is known to each sensor, then each local filter coincides
with the centralized Kalman filter [55]. If m is not sufficiently large to guarantee
that the consensus has converged, then performance of the local filters needs to
evaluated and also the consensus algorithms design should be designed accordingly
to improve it. In this context [14], if scalar dynamics is considered, i.e. ξ ∈R where
A =Ci = 1,∀i, Q = q, and R = r, then the equations for the consensus-based Kalman
filter can be written as

{
x̂(t|t−1) = Qm x̂(t−1|t−1)
x̂(t|t) = (1− �) x̂(t|t−1)+ �y(t)

(3.8)

3 A Survey on Distributed Estimation and Control Applications 95

where x̂ = [x̂1(t) x̂2(t) · · · x̂N(t)]T ∈ R
N is the vector of the local estimators of the

true state ξ at each node and � ∈ (0,1) is the Kalman gain.

3.4 Control-Based Performance Metrics for Consensus
Algorithms

The performance analysis of consensus algorithms presented in Sect. 3.2, which
exploits results from Markov chains literature, is focused on predicting the speed
of convergence to the average. This is very useful, but however it is not the whole
story. In fact, when convergence to the average is not an objective per se, but is
used to solve an estimation or control problem, it is important to consider different
performance measures, more tightly related to the actual objective pursued. Also,
the introduction of other performance indices allows a better understanding of large-
scale networks, because for some very relevant families of communication graphs,
e.g., for grids (lattices), the essential spectral radius goes to one when the number
of agents N grows, so that it is not clear whether esr(Q)t will go to zero or not,
if both N and t tend to infinity. In this section, we will present examples of some
alternative performance indices, and references to the relevant literature; however,
this research topic is very recent and presently active, so that very likely new papers
will appear in the next years.

For the sake of simplicity, we restrict our attention to constant Q, instead of study-
ing all the (randomly)-time-varying schemes introduced in the previous sections.
Moreover, we will always assume that GQ is rooted and has all self-loops, so that
Thm. 3.1 holds true. Additional assumptions that we will often use are that Q is
doubly-stochastic, so that η = 1

N 1, and that Q is normal, i.e., QT Q = QQT ; under
these assumptions, all the costs we consider can be re-written as simple functions of
the eigenvalues of Q.

3.4.1 Performance Indices

In this sections we give some examples of performance metrics arising in the use
of consensus algorithm for estimation or control tasks. This is not a comprehen-
sive list of all indices presented in the recent literature on distributed estimation and
networked control; for example, we do not present here the interesting results re-
lated to estimation from relative measurements [5], to the costs arising from vehicle
formation control [4], and clock synchronization [15].

3.4.1.1 LQ Cost

As discussed in Sect. 3.3.4, an interesting performance metric is the LQ cost
JLQ = Jx +εJu, where Jx = 1

N ∑t≥0 E
(‖x(t)− x(∞)‖2

)
is related to the speed of con-

vergence, while a second term Ju = 1
N ∑t≥0 E

(‖x(t + 1)− x(t)‖2
)

takes into account
the energy of the input sequence.

96 F. Garin and L. Schenato

Let us see how to obtain easier expressions for Jx and Ju [23, 20]. Let us fo-
cus on the case when Q is doubly-stochastic, so that x(∞) = 1

N 1T x(0). Under this
assumption, the following equalities hold true3:

Jx = 1
N ∑

t≥0

∥
∥Qt − 1

N 11T
∥
∥2

F and Ju = 1
N ∑

t≥0

∥
∥Qt+1−Qt

∥
∥2

F , (3.9)

where ‖ · ‖F the Frobenius norm of a square matrix, i.e., ‖A‖F =
√

trAT A.
If in addition Q is normal, then the expression furtherly simplifies to:

Jx = 1
N ∑
λ∈Λ(Q)
λ �=1

1
1−|λ |2 and Ju = 1

N ∑
λ∈Λ(Q)
λ �=1

|1−λ |2
1−|λ |2 (3.10)

where Λ(Q) denotes the set of all eigenvalues of Q (with their multiplicity).
The proof —as all proofs in this section— repeatedly uses linearity of expectation

and of trace, plus the observation that for any scalar a ∈R we have a = tra, and the
property tr(ABC) = tr(CAB) where A,B,C are matrices of suitable size.

The first expression in Eqn. (3.9) is obtained as follows:

Jx =
1
N ∑t≥0

E
[
x(0)T (Qt − 1

N 11T)T (Qt − 1
N 11T)x(0))

]

=
1
N ∑t≥0

E
[
tr
(
x(0)T (Qt − 1

N 11T)T (Qt − 1
N 11T)x(0)

)]

=
1
N ∑t≥0

tr
(
(Qt − 1

N 11T)T (Qt − 1
N 11T)E

[
x(0)x(0)T]) .

where we assume uniform distribution of initial conditions, i.e. E[x(0)x(0)T] = I.
The second expression is easily obtained by the same techniques.

In order to prove Eqn. (3.10), we recall that normality of Q implies that all pow-
ers of Q, as well as QT and QT Q are diagonalized with the same change of basis.
Moreover, by stochasticity and primitivity of Q, also Q− 1

N 11T (and all its pow-
ers, and its transpose) are diagonalized in that same basis and, denoting the eigen-
values of Q by λ1 = 1,λ2, . . . ,λN , we have that the eigenvalues of Qt − 1

N 11t are
λ1−1 = 0,λ2−0 = λ2, . . . ,λN−0 = λN , so that ‖Qt − 1

N 11t‖2
F = ∑N

h=2‖λh‖2t , and
finally Jx = 1

N ∑
N
h=2∑t≥0(‖λh‖2)t = 1

N ∑
N
h=2

1
1−‖λh‖2 .

3 Jx and Ju might be infinite for some choices of Q. A sufficient condition for conver-
gence of both costs is that Q is doubly-stochastic, GQ is rooted and GQ ∈ Gsl. This is
easily proved from Eqn. (3.9) using the following property of Frobenius norm: ‖AB‖F ≤
‖A‖F ‖B‖F. Thus, Jx ≤ 1

N ∑∞t=0

∥∥(Q− 1
N 11T

)∥∥2t
F = 1

N tr∑∞t=0

(
QT Q− 1

N 11T
)t

, where the
convergence of the last series is ensured by the fact that QT Q is stochastic (Q being
doubly-stochastic) and GQT Q is a subgraph of GQ (thanks to the self-loops in GQ) and
thus inherits its properties. A similar proof can be given also for Ju, after noting that
Ju = ∑t≥0 ‖(Q− 1

N 11T)t(Q− I)‖2
F.

3 A Survey on Distributed Estimation and Control Applications 97

For the second part of Eqn. (3.10), note Qt+1−Qt is normal and has eigenvalues
λ t

h(λh−1) for h = 1, . . . ,N, and then conclude with the same technique as above.

3.4.1.2 Steady-State Performance for Noisy or Quantized Consensus

For the consensus algorithm of Eqn. (3.1), Thm. 3.1 tells everything about steady-
state performance: when t → ∞, x(t) → x(∞) := ηT x(0)1, and if Q is doubly-
stochastic, then η = 1

N 1. However this is no longer true if there is noise in the
consensus process, or quantization in the exchanged messages.

In the presence of noise within the successive iterations of the consensus algo-
rithm, the steady state can be different from the average of the initial values, despite
Q being doubly-stochastic. Here we present a case analyzed in [64], where the noise
is additive.

Consider the following consensus algorithm affected by noise:

x(t + 1) = Qx(t)+ v(t) ,

where {vi(t)} are noises uncorrelated w.r.t. both i and t, with zero mean and unit
variance. Consider the case when Q is doubly-stochastic, so that, for any initial
condition x(0), 1T

E[x(t)] = 1T x(0) for all t, and E[x(t)]→ 1
N 1T x(0). However, it

is clear that the average-preserving property, and the convergence to 1
N 1T x(0) are

true only in expectation, and not for all realizations of the noise process. Thus, it
is more reasonable to define the error as the distance from current average δ (t) =
x(t)− 1

N 11T x(t)) rather than distance from average consensus, which might not even
exist. Hence, the relevant average quadratic cost is here defined as

Jnoisy := lim
t→∞

1
N

E
[‖x(t)− 1

N 11T x(t)‖2]

Notice that Jnoisy turns out to be the same as the cost Jx introduced when studying
the LQ-cost. In fact, note that

x(t) = Qtx(0)+
t−1

∑
s=0

Qsv(t−1− s) ,

so that δ (t) = (Qt − 1
N 11T)x(0)+

t−1

∑
s=0

(Qs− 1
N 11T)v(t−1− s) . Thus, by the statis-

tical assumptions on the noises (zero-mean, uncorrelated, unit variance):

E
[‖δ (t)‖2]= ‖(Qt − 1

N 11T)x(0)‖2

+ 2
t−1

∑
s=0

x(0)T (Qt − 1
N 11T)T (Qs− 1

N 11T)E[v(t−1− s)]

+
t−1

∑
r,s=0

tr
{
(Qr− 1

N 11T)T (Qs− 1
N 11T)E[v(t−1− r)v(t−1− s)]

}

= ‖(Qt − 1
N 11T)x(0)‖2 +

t−1

∑
s=0

tr(Qs− 1
N 11T)T (Qs− 1

N 11T)

98 F. Garin and L. Schenato

When t → ∞, the first term goes to zero, while the sum becomes an infinite sum,
thus ending the proof.

A similar cost has been considered in [29], where however the noise was used as
a model for quantization error, and thus noise appears in the equation in a different
way, as follows:

x(t + 1) = Q[(x(t)+ v(t)]− v(t)

The fact that noise is multiplied by Q takes into account that the quantization error
is within all messages passed to neighbors, while the substraction−v(t) is possible,
as every agent knows its own quantization error, and is useful for avoiding accumu-
lation of errors over time: in this way, the average 1

N 1T x(t) is kept constant.
As in the previous case, the assumption is that vi(t)’s are uncorrelated with

respect to both i and t, and have zero-mean and unit variance, and Q is doubly-
stochastic, so that Ex(t)→ 1

N 1T x(0). Again the relevant cost is the variance of the
distance from consensus δ (t) = x(t)− 1

N 11T x(t), in the limit of infinite number of
iterations:

Jquantiz := lim
t→∞

1
N

E
(‖x(t)− 1

N 11T x(t)‖2)

Clearly, due to the different update equation for x(t), this will result in an expression
for Jquantiz different from the one for Jnoisy; it turns out that Jquantiz is equal to the
cost Ju defined when dealing with the LQ-cost.

To prove this, notice that

x(t + 1) = Qtx(0)+
t−1

∑
s=0

Qs(Q− I)v(t−1− s)

so that δ (t + 1) = (Qt − 1
N 11T)x(0)+

t−1

∑
s=0

(Qs+1−Qs)v(t−1− s).

By exploiting linearity of expectation and of trace, and the fact that arguments
of the trace can be cyclically permuted, together with the assumptions on the noise,
we get

E
(‖δ (t)‖2)= ‖(Qt − 1

N 11T)x(0)‖2 +
t−1

∑
s=0

tr
{
(Qs+1−Qs)T (Qs+1−Qs)

}

By taking the limit for t → ∞, the first term goes to zero, while the summation
becomes an infinite sum, giving Jquantiz = 1

N ∑t≥0 ‖Qt+1−Qt‖F and thus ending the
proof.

3.4.1.3 Performance of Static Estimation Algorithm

Consider the static estimation problem described in Sect. 3.3.1, but in the simplest
case, when all sensors have the same variance σ2 = 1. In this case, the best estimate
is the average, θ̂MV = 1

N 1T x(0) and the sensors can compute it in a distributed way
by simply using a consensus algorithm x(t +1) = Qx(t), for some stochastic matrix

3 A Survey on Distributed Estimation and Control Applications 99

Q. What is peculiar to this setting, is that the focus is not on how precisely the
average is computed, but on how good the estimate of θ is. In fact, knowing that
x(t) converges to x(∞) = ηT x(0)1 does not answer the questions on how well is θ
estimated by x(∞) if the matrix Q is not doubly-stochastic and on how well is θ
estimated after t iterations of the algorithm.

To address these questions, we consider the estimation error e(t) := x(t)−θ1. To
answer the first question, let us first notice that, if Q is doubly-stochastic, then x(∞)
is the average of the measurements, i.e., x(∞) = θ̂MV1, and θ̂MV has zero-mean and
variance 1

N . If Q is not doubly-stochastic, then it is interesting to study the error; it
is easy to see that e(∞) = 1ηT v, and so E[e(∞)] = 0, while its covariance matrix is

E
[
e(∞)e(∞)T]= 1ηT

E
[
vvT]η1T = 1‖η‖21T = ‖η‖211T ,

i.e., each sensor’s final estimate has variance ‖η‖2. Notice that 1/N ≤ ‖η‖2 ≤ 1,
since ‖η‖1 = 1.

Now let us turn our attention to the more interesting problem of understanding
how well θ is estimated after a finite number of iterations, t, studying e(t). More
precisely, the relevant performance measure is the average quadratic error, defined
as

Jestim(t) := 1
N E

[‖x(t)−θ1‖2]

This cost can be re-written as:

Jestim(t) = 1
N tr[(QT)tQt]

and, if Q is normal, the expression simplifies as follows:

Jestim(t) = 1
N ∑
λ∈Λ(Q)

|λ |2t . (3.11)

To prove the first claim, note that

Jestim(t) = 1
N E

[‖Qtx(0)−θ1‖2]= 1
N E

[‖(Qt − I)θ1 + Qtv‖2]= 1
N E

[
vT (Qt)T Qtv

]

from which the claim follows by taking the trace and cyclically permuting its ar-
guments, recalling that E[vvT] = I. Then the simplified expression for normal Q is
immediate.

3.4.1.4 Distributed Kalman Filter

Consider the distributed Kalman filter presented in Sect. 3.3.7, and in particular
its scalar version described in Eqn. (3.8). There are different ways of analyzing
performance of such algorithm. One interesting performance index is the asymptotic
quadratic estimation error, defined as:

JK,est := 1
N lim

t→∞E
[‖x̂(t|t)− x(t)1‖2]

100 F. Garin and L. Schenato

This cost can be re-formulated as follows:

JK,est =
q(1− �)2

1− (1− �)2 + 1
N

∞

∑
s=0
‖(1− �)sQsm‖2

F

and, in the case when Q is normal, the following easier characterization holds true:

JK,est =
q(1− �)2

1− (1− �)2 +
r�2

N ∑
λ∈Λ(Q)

1
1− (1− �)2|λ |2m .

Another relevant performance metric is the asymptotic quadratic prediction error

JK,pred := 1
N lim

t→∞E
[‖x̂(t|t−1)− x(t)1‖2] ,

which can be re-written as

JK,pred =
q

1− (1− �)2 +
r�2

N

∞

∑
s=0

∥
∥
∥(1− �)sQ(s+1)m

∥
∥
∥

2

F

and, for normal Q, is also equal to

JK,pred =
q

1− (1− �)2 +
r�2

N ∑
λ∈Λ(Q)

|λ |2m

1− (1− �)2|λ |2m .

The techniques used for obtaining the simplified expressions are similar to those
shown for the costs previously presented and details can be found in [14].

3.4.2 Evaluation and Optimization of Performance Indices

Clearly any performance index can be numerically computed for a given matrix Q,
and gives a way of comparing the quality of different choices for Q. However, there
are two research lines which lead to interesting results using some performance
index. A first line concerns optimization of a chosen cost among all matrices Q
consistent with a given communication graph. A second interesting direction is the
study of the different costs for some relevant families of graphs and matrices, in par-
ticular for large-scale graphs. The more classical results in this two directions when
the performance index is the essential spectral radius are discussed in Section 3.2.2.

Providing a comprehensive summary of the results is beyond the scope of this
chapter: we give here some examples, so as to illustrate some curious or unexpected
results and motivate the need for different performance metrics, and then we give
pointers to some relevant literature, with the disclaimer that —this being a very
recent and still active research area— our reference list will surely turn out to be
incomplete.

An interesting work on design of the entries of Q for a given graph by optimiza-
tion of a cost different from esr(Q) is Xiao et al. [64]. Here noisy consensus is

3 A Survey on Distributed Estimation and Control Applications 101

analyzed, so that the relevant metric is Jnoisy = Jx. The authors show that the prob-
lem of finding, for a given graph and among all symmetric choices of weights, the
weights minimizing Jnoisy, is a convex optimization problem, and they provide effi-
cient (although centralized) algorithms for its solution. They also compare numeri-
cally, for various graphs topologies, the three costs Jnoisy obtained with the optimal
Q, with the Q minimizing esrQ and the simple Metropolis rule; for some topolo-
gies the difference is significant, while for other graphs the three results are very
similar.

Another example is Carli et al. [14], where the problem of optimizing JK,pred for
a given graph among normal matrices is examined. The first interesting result is that
symmetric matrices are indeed optimal, and then, the authors prove that, for fixed
�, the optimization problem among symmetric matrices is convex in Q; however,
despite the problem being also convex in �, it is not jointly convex in Q and �.
Then simplified problems (under the limit for infinite communication or for small
measuerement noise) are studied more in detail.

The optimality of de Bruijn graphs with respect to convergence speed, among all
graphs with bounded in-degree, is confirmed, at least asymptotically in N and for
small ε , also when the LQ cost is considered [23].

Another approach which is receiving much attention is the study of asymptotic
performance in large-scale graphs. The idea is to consider families of graphs of
increasing size, sharing the same common properties (in some sense that will be
specified in the examples, having the same shape), and to analyze how the cost
scales with the number of nodes. This is more an analysis than a design problem,
but it gives useful hints on the number of nodes. Here we present a simple example.

Example 3.1 (Circle). Consider a graph GN consisting of a circle o N nodes, where
each node has a self-loop and an outgoing edge towards its neighbor on the right.
Consider a coefficient 1/2 on each edge, so that QN = circ(1/2,1/2,0, . . . ,0) is a
circulant matrix. Because GN is circulant, we know that it is normal, and we can
easily compute its eigenvalues:Λ(QN) = { 1

2 + 1
2 ei 2π

N h, h = 0, . . . ,N−1} [17]. Thus,
the essential spectral radius is

esr(QN) = |λ 2
1 |=

√
1
2 (1 + cos(2π

N)) = 1− π2

N2 + O(1
N4) for N→ ∞ .

Now we can plug the expression for the eigenvalues in Equations (3.10) and (3.11).
Then, an explicit computation (see e.g. [19]) gives that

Ju = 1− 1
N

while some careful upper and lower bounds (see e.g. [20]) show that

c1N ≤ Jx(QN)≤ c2N and c3 max
{

1
N , 1√

t

}
≤ Jestim(QN ,t)≤ c4 max

{
1
N , 1√

t

}
,

where c1,c2,c3,c4 are positive numbers independent of N.

102 F. Garin and L. Schenato

It is interesting to compare the performance of the circle with that of a complete
graph, i.e., with the case Q′N = 1

N 11T , where in one step the exact average is com-
puted. It is easy to see that the eigenvalues of Q′ are 1 with multiplicity 1 and 0 with
multiplicity N−1, so that esr(Q′N) = 0, Jx(Q′N) = 1− 1

N , Jestim(Q′N , t) = 1
N for all

t ≥ 1). Intuitively, performance of the circle is much worse, because of the slow
flow of information, as opposed to the complete exchange of messages in one single
iteration for the complete graph. This intuition is confirmed for most performance
indices; however, it is interesting to note that Jx(QN) = Jx(Q′N) is actually the same
as for the circle and for the complete graph, thus showing that a different choice of
performance metric can lead to significantly different results.

The key point that allows to study the example of the circle is the fact that an ex-
pression for the eigenvalues is easily found, thanks to the algebraic structure of Q,
which is circulant. The same can be done more in general, for the case of circles
with more edges towards neighbors (giving rise to different circulant matrices) and
for higher dimension, where the underlying algebraic structure is that of Cayley
graphs, Cayley matrices and discrete Fourier transform over Abelian groups (see
e.g. [17]). The result presented in [20] concerns grids on d-dimensional torus, or
grids on d-dimensional cubes with some assumptions of symmetry of the coeffi-
cients and suitable border conditions, and in both cases with local neighborhoods
(bounded difference among labels of nodes connected by an edge). It states that

c1 fd(N)≤ Jx≤ c2 fd(N) and c3 max
{

1
N , 1

(
√

t)d

}
≤ Jestim(t)≤ c4 max

{
1
N , 1

(
√

t)d

}
,

where f1(N) = N, f2(N) = logN and fd(N) = 1 for all d ≥ 3, and where c1,c2,c3,c4

are positive numbers independent of N.
The study of Cayley graphs, although motivated by the algebraic structure that

allows to tackle the analysis, is interesting, because they are a simplified and ide-
alized version of communication scenarios of practical interest. In particular, they
capture the effects on performance of the strong constraint that communication is
local, not only in the sense of a little number of neighbors, but also with a bound
on the distance among connected agents. The study of more irregular and realistic
scenarios of communication with geometric constraints is the subject of on-going
research, where two main directions are being explored. On the one side, there is an
interest in the random geometric graph model (points thrown uniformly at random
in a portion of space and edges among all pairs of vertices within a given distance
r), for which simulations show a behavior very similar to that of a grid (see e.g.
[20]), but a rigorous theory is still missing: most of known results concern only the
essential spectral radius and not all the spectrum. On the other side, there is the idea
to study perturbations of known graphs; this is completely different from traditional
theory of perturbation of matrices, because here perturbations are not continuous,
and are little in the sense that only few edges (with respect to the graph size) are re-
moved or added or receive different weight. In this direction, a useful tool (because
of its monotonicity properties with respect to edge insertion) is the analogy between
reversible Markov chains and resistive electrical networks, exploited e.g. in [5].

3 A Survey on Distributed Estimation and Control Applications 103

We conclude this section by presenting in detail an example that clarifies how
comparing two families of graphs by two different performance measures can in-
deed significantly change the result, leading to a different definition of the ‘best’
graph. This is a toy example, not very sensible in practice, but easily highlighting
which issues can arise.

Example 3.2. Let N be an even number, and consider GN a graph consisting of two
disconnected complete graphs, each on N/2 nodes; Figure 3.1(a) depicts G10 as an
example. Associate to each edge a coefficient 2/N, so that QN has the following
form:

QN =
[2

N 11T 0
0 2

N 11T

]
.

We would like to compare performance of this QN with the circle presented as Ex-
ample 3.1, by looking at the essential spectral radius, and then by looking at the
estimation error Jestim. The eigenvalues of QN are simply 1 with multiplicity 2 and
the eigenvalue 0 with multiplicity N−2, so that esr(QN) = 1, which is worse than
the circle. However, for all t ≥ 1, Jestim(QN) = 2

N , which is almost as good as the
best possible error (the error variance in the case of centralized estimation, 1

N), as
opposed to the circle which, for large N, has a very slow convergence.

Behind computation of the eigenvalues, there is an intuitive explanation of what
happens. In the graphs GN , the essential spectral radius 1 describes the fact that the
graph is disconnected, and thus no convergence is possible to the average of all
initial values: simply no information can transit from one group to another; never-
theless, the estimation error is very good for large N, because it is the average of N/2
measurements, and it is computed very fast, in one iteration, thanks to the complete
graph which gives centralized computation within the group of N/2 agents. Con-
versely, in the circle average consensus can be reached asymptotically, as described
by the essential spectral radius smaller than one, but convergence is very slow for
large N (esr= 1− π2

N2 +O(1
N2)), and a reasonably good estimation error is achieved

only after a long time.
The readers concerned with the fact that GN is disconnected (and thus violates the

assumptions made throughout this chapter) may consider a slightly modified graph
G̃N , as shown in Figure 3.1(b), still associating a coefficient 2/N with each edge;
Let us denote by Q̃N the matrix so modified. This graph is studied in [10] under the

(a) Graph G10 in Example 3.2 (b) Graph G̃10 in Example 3.2

Fig. 3.1 Communication graphs considered in Example 3.2

104 F. Garin and L. Schenato

name KN/2−KN/2 and [10, Prop. 5.1] gives the exact computation of all eigenvalues
of Q̃N : Λ(Q̃N) has 1 with multiplicity 1, 0 with multiplicity N−3 and then 1

2 − 2
N ±

1
2

√
1 + 8

N − 16
N2 with multiplicity 1 each. Here the single edge connecting the two

subgroups of agents allows only a quite slow convergence (esr(Q̃N) = 1− 8
N2 +

O(1
N2), very similar to that of the circle), while the estimation error becomes very

good after few iterations (Jestim(Q̃N)≤ 3
N for all t ≥ 1).

3.5 Conclusion

In this chapter we have tried to present a comprehensive view of the linear consensus
algorithms from a control and estimation perspective, by reviewing the most impor-
tant results available in the literature, by showing some of the possible applications
in control and estimation, and by presenting which are suitable control-based indices
of performance for the consensus algorithm design.

We believe that much has still to be done in this area, in particular in two direc-
tions. The first direction points to finding which traditional control and estimation
problems can be cast as consensus problems. In fact, although not all problems can
be cast as averages of local quantities, if they can be approximated as so, we could
exploit the effectiveness and strong robustness of consensus algorithms. The second
direction addresses the implications of the new control-based performance metrics
for the design of the consensus algorithms. In fact, as we illustrated with few toy
examples, they give rise to design criteria that can be quite different from the tradi-
tional ones.

Acknowledgements. We would like to thank Sandro Zampieri for many useful discussions
on the topics of this chapter and for reviewing the original manuscript, and Paolo Frasca for
his suggestions. We acknowledge funding from the European Community’s Seventh Frame-
work Programme under agreement n. FP7-ICT-223866-FeedNetBack and from the Italian
CaRiPaRo Foundation under project WISE-WAI.

References

1. Alighanbari, M., How, J.P.: An unbiased Kalman consensus algorithm. In: Proceedings
of IEEE American Control Conference, ACC 2006 (2006)

2. Angeli, D., Bliman, P.-A.: Tight estimates for non-stationary consensus with fixed under-
lying spanning tree. In: Proceedings of 17th IFAC World Congress, IFAC 2008 (2008)

3. Aysal, T.C., Yildiz, M.E., Sarwate, A.D., Scaglione, A.: Broadcast gossip algorithms for
consensus. IEEE Transactions on Signal Processing 57(7), 2748–2761 (2009)

4. Bamieh, B., Jovanovic, M., Mitra, P., Patterson, S.: Coherence in large-scale networks:
Dimension dependent limitations of local feedback. In: IEEE Trans. Aut. Cont. (to ap-
pear, 2010)

5. Barooah, P.: Estimation and Control with Relative Measurements: Algorithms and Scal-
ing Laws. PhD thesis, University of California, Santa Barbara (2007)

3 A Survey on Distributed Estimation and Control Applications 105

6. Bauso, D., Giarré, L., Pesenti, R.: Nonlinear protocols for optimal distributed consensus
in networks of dynamic agents. Systems and Control Letters 55, 918–928 (2006)

7. Bliman, P.A., Ferrari-Trecate, G.: Average consensus problems in networks of agents
with delayed communications. In: Proceedings of 44th IEEE Conference on Decision
and Control, CDC 2005, vol. 44(8), pp. 1985–1995 (2008)

8. Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multia-
gent coordination, consensus, and flocking. In: Proceedings of 44th IEEE Conference on
Decision and Control (CDC 2005) and European Control Conference (ECC 2005), pp.
2996–3000 (December 2005)

9. Bolognani, S., Del Favero, S., Schenato, L., Varagnolo, D.: Consensus-based distributed
sensor calibration and least-square parameter identification in WSNs. International Jour-
nal of Robust and Nonlinear Control 20(2), 176–193 (2010)

10. Boyd, S., Diaconis, P., Parrilo, P., Xiao, L.: Symmetry analysis of reversible Markov
chains. Internet Mathematics 2, 31–71 (2005)

11. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE
Transactions on Information Theory/ACM Transactions on Networking 52(6), 2508–
2530 (2006)

12. Bullo, F., Cortés, J., Martı́nez, S.: Distributed Control of Robotic Networks. Applied
Mathematics Series. Princeton University Press, Princeton (2009)

13. Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus in a dynamically
changing environment– a graphical approach. SIAM Journal on Control and Optimiza-
tion 47(2), 575–600 (2008)

14. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: Distributed Kalman filtering based on
consensus strategies. IEEE Journal on Selected Areas in Communications 26(4), 622–
633 (2008)

15. Carli, R., Chiuso, A., Zampieri, S., Schenato, L.: A PI consensus controller for networked
clocks synchronization. In: IFAC World Congress on Automatic Control, IFAC 2008
(2008)

16. Carli, R., Como, G., Frasca, P., Garin, F.: Average consensus on digital noisy networks.
In: Proc. of 1st IFAC Workshop on Estimation and Control of Networked Systems (Nec-
Sys 2009), September 24-26, 2009, pp. 36–41 (2009)

17. Carli, R., Fagnani, F., Speranzon, A., Zampieri, S.: Communication constraints in the
average consensus problem. Automatica 44(3), 671–684 (2008)

18. Carli, R., Frasca, P., Fagnani, F., Zampieri, S.: Gossip consensus algorithms via quantized
communication. Automatica 46, 70–80 (2010)

19. Carli, R.: Some issues on the Average Consensus Problem. PhD thesis, Università di
Padova, Italy (2008)

20. Carli, R., Garin, F., Zampieri, S.: Quadratic indices for the analysis of consensus algo-
rithms. In: Proc. of the 4th Information Theory and Applications Workshop, La Jolla,
CA, USA, pp. 96–104 (Feburary 2009)

21. Cortés, J.: Distributed algorithms for reaching consensus on general functions. Automat-
ica 44, 726–737 (2008)

22. Cortes, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents
via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Con-
trol 51(8), 1289–1298 (2006)

23. Delvenne, J.-C., Carli, R., Zampieri, S.: Optimal strategies in the average consensus
problem. In: Proc. of the IEEE Conference on Decision and Control 2007, pp. 2498–
2503 (2007)

24. Delvenne, J.-C., Carli, R., Zampieri, S.: Optimal strategies in the average consensus
problem. Systems and Control Letters 58, 759–765 (2009)

106 F. Garin and L. Schenato

25. Fagnani, F., Zampieri, S.: Asymmetric randomized gossip algorithms for consensus. In:
Proceedings of 17th IFAC World Congress, IFAC 2008 (2008)

26. Fagnani, F., Zampieri, S.: Randomized consensus algorithms over large scale networks.
IEEE Journal on Selected Areas in Communications 26(4), 634–649 (2008)

27. Fagnani, F., Zampieri, S.: Average consensus with packet drop communication. SIAM
Journal on Control and Optimization 48, 102–133 (2009)

28. Fax, J.F., Murray, R.M.: Information flow and cooperative control of vehicle formations.
IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)

29. Frasca, P., Carli, R., Fagnani, F., Zampieri, S.: Average consensus on networks
with quantized communication. International Journal of Robust and Non-Linear Con-
trol 19(16), 1787–1816 (2009)

30. Frommer, A., Szyld, D.B.: On asynchronous iterations. Journal of Computation and Ap-
plied Mathematics 123, 201–216 (2000)

31. Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Transactions on Au-
tomatic Control 50(11), 1867–1872 (2005)

32. Huang, M., Manton, J.H.: Coordination and consensus of networked agents with noisy
measurements: Stochastic algorithms and asymptotic behavior. SIAM Journal on Control
and Optimization 48(1), 134–161 (2009)

33. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6), 988–1001
(2003)

34. Kar, S., Moura, J.M.F., Ramanan, K.: Distributed parameter estimation in sensor net-
works: Nonlinear observation models and imperfect communication (submitted, 2008)

35. Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with im-
perfect communication: Link failures and channel noise. IEEE Transactions on Signal
Processing 57(5), 355–369 (2009)

36. Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks: Quantized
data and random link failures. IEEE Transactions on Signal Processing 58(3), 1383–1400
(2010)

37. Kashyap, A., Başar, T., Srikant, R.: Quantized consensus. Automatica 43(7), 1192–1203
(2007)

38. Lavaei, J., Murray, R.M.: On quantized consensus by means of gossip algorithm–Part I:
Convergence proof. In: Proceedings of the American Control Conference, ACC 2009
(2009)

39. Minc, H.: Nonnegative matrices. John Wiley & Sons, Chichester (1988)
40. Moreau, L.: Stability of continuous-time distributed consensus algorithms. In: Proceed-

ings of the 43rd IEEE Conference on Decision and Control (CDC 2004), vol. 4, pp.
3998–4003 (December 2004)

41. Moreau, L.: Stability of multiagent systems with time-dependent communication links.
IEEE Transactions on Automatic Control 50(2), 169–182 (2005)

42. Muthukrihnan, S., Ghosh, B., Schultz, M.H.: First and second order diffusive methods
for rapid, coarse, distributed load balancing. Theory of Computing Systems 31, 331–354
(1998)

43. Nedić, A., Olshevsky, A., Ozdaglar, A., Tsitsiklis, J.N.: On distributed averaging algo-
rithms and quantization effects. IEEE Transaction on Automatic Control 54(11), 2506–
2517 (2009)

44. Olfati-Saber, R.: Ultrafast consensus in small-world networks. In: Proceedings of the
2005 American Control Conference ACC 2005, vol. 4, pp. 2371–2378 (2005)

45. Olfati-Saber, R.: Algebraic connectivity ratio of ramanujan graphs. In: Proceedings of
the 2007 American Control Conference (July 2007)

3 A Survey on Distributed Estimation and Control Applications 107

46. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Transactions on Automatic Control 49(9), 1520–
1533 (2004)

47. Patterson, S., Bamieh, B., El-Abbadi, A.: Convergence rates of distributed average con-
sensus with stochastic link failures. IEEE Transactions on Automatic Control (2009)

48. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
49. Rajagopal, R., Wainwright, M.J.: Network-based consensus averaging with general noisy

channels. Technical Report 751, Dept. of Statistics, UC Berkeley (2008)
50. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically

changing interaction topologies. IEEE Transactions on Automatic Control 50(5), 655–
661 (2005)

51. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative
control. IEEE Control Systems Magazine 27(2), 71–82 (2007)

52. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in multi-agent
networked systems. Proceedings of IEEE 95(1), 215–233 (2007)

53. Seneta, E.: Non-negative Matrices and Markov Chains. John Wiley & Sons, Inc.,
Springer (2006)

54. Seuret, A., Dimarogonas, D.V., Johansson, K.H.: Consensus under communication de-
lays. In: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008,
pp. 4922–4927 (December 2008)

55. Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Distributed Kalman filtering in sensor net-
works with quantifiable performance. In: Proccedings of the Information Processing for
Sensor Networks IPSN 2005, pp. 133–139 (2005)

56. Strikwerda, J.C.: A probabilistic analysis of asynchronous iteration. Journal of Linear
Algebra and its Applications 349, 125–154 (2002)

57. Tahbaz-Salehi, A., Jadbabaie, A.: Small world phenomenon, rapidly mixing Markov
chains, and average consensus algorithms. In: Proceedings of IEEE Conference on De-
cision and Control, CDC 2007, pp. 276–281 (2007)

58. Tahbaz-Salehi, A., Jadbabaie, A.: Consensus over ergodic stationary graph processes.
IEEE Transaction on Automatic Control 54(12) (2009)

59. Tanner, H., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE
Transaction on Automatic Control 52(5), 863–868 (2007)

60. Tanner, H.G., Christodoulakis, D.K.: The stability of synchronization in local-interaction
networks is robust with respect to time delays. In: Proceedings of the 44th IEEE Confer-
ence on Decision and Control, CDC 2005, pp. 4945–4950 (December 2005)

61. Tsitsiklis, J.N., Athans, M.: Convergence adn asymptotic agreement in distributed deci-
sion problems. IEEE Transactions on Automatic Control 29(1), 42–50 (1984)

62. Xiao, F., Wang, L.: Consensus protocols for discrete-time multi-agent systems with time-
varying delays. Automatica 44(10), 2577–2582 (1998)

63. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Systems and Control
Letters 53(1), 65–78 (2004)

64. Xiao, L., Boyd, S., Kim, S.-J.: Distributed average consensus with least-mean-square
deviation. Journal of Parallel and Distributed Computing 67(1), 33–46 (2007)

65. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on
average consensus. In: Proceedings of the Information Processing for Sensor Networks,
IPSN 2005, pp. 63–70 (2005)

Chapter 4
Distributed Optimization and Games:
A Tutorial Overview

Bo Yang and Mikael Johansson

Abstract. This chapter provides a tutorial overview of distributed optimization and
game theory for decision-making in networked systems. We discuss properties of
first-order methods for smooth and non-smooth convex optimization, and review
mathematical decomposition techniques. A model of networked decision-making is
introduced in which a communication structure is enforced that determines which
nodes are allowed to coordinate with each other, and several recent techniques for
solving such problems are reviewed. We then continue to study the impact of non-
cooperative games, in which no communication and coordination are enforced. Spe-
cial attention is given to existence and uniqueness of Nash equilibria, as well as the
efficiency loss in not coordinating nodes. Finally, we discuss methods for studying
the dynamics of distributed optimization algorithms in continuous time.

4.1 Introduction

We are interested in optimization algorithms that can be distributed across many
decision-makers. The classical approach to distributed optimization has been
decomposition: based on the specific structure of the objective function and con-
straints, the problem is decomposed into a number of subproblems. These sub-
problems can be solved independently, but typically require a coordinator to ensure
that the local decisions converge to the global optimum; see Figure 4.1. Note how
the problem structure imposes a certain computation and communication structure
among the individual decision-makers.

In many emerging applications of distributed optimization, however, the situa-
tion is the reverse: the communication and computation structure is given and the

Bo Yang
Department of Automation, Shanghai Jiao Tong University, China
e-mail: bo.yang@sjtu.edu.cn,bo.yang@ieee.org

Mikael Johansson
School of Electrical Engineering and ACCESS Linnaeus Center
e-mail: mikaelj@ee.kth.se

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 109–148.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

bo.yang@sjtu.edu.cn, bo.yang@ieee.org
mikaelj@ee.kth.se

110 B. Yang and M. Johansson

Fig. 4.1 Schematic illustration of centralized optimization, decomposition, networked opti-
mization and non-cooperative optimization

implementation of a centralized coordinator is undesirable or infeasible. One exam-
ple is systems where nodes can only coordinate their decisions with their immediate
neighbors. In this case, we are restricted to use optimization algorithms that re-
spect the communication structure; see Figure 4.1. In some applications, it is desir-
able to avoid coordination altogether, either because it is unlikely that nodes would
actually cooperate, or as a way to eliminate complex coordination protocols and
associated traffic overhead, see Figure 4.1. We will consider all the three classes
of distributed optimization techniques in this chapter: decomposition, networked-
optimization, and non-cooperative games. Although we do not make any restrictions
on the computational model, it is good to note that often we will not have access to a
closed-form mathematical expression for the per-node objective functions. Rather,
these can only be evaluated by applying our best current decision to an underly-
ing engineering system and observe its performance. We will hence also investi-
gate the consequences of having a real system acting as oracle for our optimization
algorithm.

This chapter is organized as follows: we first discuss gradient and subgradient
method for convex optimization. Although these algorithms do not have the best
theoretical properties, they are easy to implement and surprisingly robust to noise
and errors. We then proceed to study mathematical decomposition techniques, fo-
cusing primarily on dual and primal decomposition. Next, we focus on networked
optimization problems where an underlying communication graph dictates which
nodes can coordinate with each other. Our final methodological discussion concerns
game theory. Finally, the chapter is concluded by methods for studying the dynamics
of optimization algorithms.

4.2 Convex Optimization Using First-Order Methods

We consider optimization problem on the form

minimize f0(x)
subject to x ∈ X

(4.1)

4 Distributed Optimization and Games: A Tutorial Overview 111

Here x ∈ R
n is the vector of decision variables that must belong to the feasible set

X and f0 is the convex objective function that we would like to minimize. We will
assume that X is closed, convex and non-empty and that dom f0⊆ X . It is sometimes
useful to characterize the constraint set explicitly. We then use the notation

minimize f0(x)
subject to fi(x)≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p
(4.2)

Hence, the feasible set is the set of x that satisfies the constraint equations, X =
{x | fi(x) ≤ 0, hi(x) = 0}. Note that for X to be convex, fi(x) have to be convex
and hi(x) must be affine functions of x. There is a vast literature on methods for
solving convex optimization problem; some good starting points include the text
books [10, 5, 49, 53] and slightly more advanced text are [57, 24]. In recent years,
interior-point methods have become the method of choice for solving large-scale
convex programming, due to their attractive theoretical properties and strong prac-
tical performance. However, our focus is different: we look for methods that can be
distributed across many nodes. In this case, first order (gradient) methods are easier
to apply and will be the central workhorse throughout this chapter.

4.2.1 Gradient Methods for Smooth Problems

Let us start with the most basic problem of minimizing a smooth convex function
without constraints, i.e.

minimize f0(x)

The gradient method then takes the form

x(t+1) = x(t)−α(t)∇ f0(x(t)) (4.3)

i.e. new iterates are computed by adjusting the current iterate in the direction of the
negative gradient. In its most basic form the step size is constant, i.e. α(t) = α , and
convergence is guaranteed using the following typical result.

Proposition 4.1. Assume that f0(x) is a convex function with dom f0 = R
n whose

gradient is Lipschitz continuous with constant L > 0, i.e.

‖∇ f0(x)−∇ f0(y)‖2 ≤ L‖x− y‖2 ∀x,y

Assume that f0 has finite optimal value f �
0 with minimizer x�. Let {x(t)} be a se-

quence generated by the gradient iteration (4.3) with a constant stepsize α(t) = α
satisfying 0 < α ≤ 1/L. Then

f0(x(t))− f �
0 ≤

1
2αt
‖x�− x(0)‖2

2

112 B. Yang and M. Johansson

This result tells us several things. First, the gradient iteration improves the objec-
tive function value in each step. Second, the iterates converge asymptotically to the
optimum. Third, ε accuracy can be achieved in O(1/ε) iterations for any continu-
ously differentiable function with Lipschitz continuous gradient.

Practical performance can be improved by time-varying step sizes, either found
via line search in each iteration or predetermined (“open-loop”). Common open-
loop step-size sequences include the square summable but not summable,

∞

∑
t=1

α(t) = ∞,
∞

∑
t=1

(α(t))2 < ∞ (4.4)

such as α(t) = a/(b + t) for a > 0,b≥ 0, or diminishing stepsizes

∞

∑
t=1

α(t) = ∞, lim
t→∞α

(t) = 0 (4.5)

such as α(t) = a/
√

t for a > 0. However, the complexity of the method is not im-
proved but O(1/ε) iterations are still needed to achieve ε accuracy.

An important performance measure of optimization algorithms is their conver-
gence rate. If we assume that f0(x) is strongly convex, i.e. that there exists a positive
constant l such that

l‖x− x�‖2
2 ≤ f0(x− x�)

and that f0 is twice continuously differentiable with Lipschitz-continuous gradient.
Then, in a neighborhood of x� where f can be approximated as

f0(x)≈ f0(x�)+ f ′0(x)(x− x�)+ f ′′0 ‖x− x�‖2
2

one can show that the distance between optimal point and the iterates produced by
the gradient method decreases geometrically

‖x(t)− x�‖ ≤ cqt

for some positive constants c and q with q < 1. In the optimization literature, one
then says that the method converges linearly, since the distance to the optimal set
in iteration t is a linear function of the distance to the optimal set in iteration t−1.
The convergence rate q of the basic gradient method can be improved by multi-step
methods. One of the first such method was the heavy-ball method due to Polyak:

x(t+1) = x(t)−α(t)∇ f0(x(t))+β (t)(x(t)− x(t−1)) (4.6)

The following result reveals the optimal constant step-size parameters α and β and
quantifies the speed-up compared to the classical gradient iteration [53].

Proposition 4.2. Let x� be a nonsingular minimum point of f0(x) : R
n �→ R and

assume that f0 is twice continuously differentiable and satisfies

4 Distributed Optimization and Games: A Tutorial Overview 113

lIn � f ′′0 (x�)� LIn

Then, we can find an ε > 0 such that for any x(0),x(1) with ‖x(0)− x�‖2 ≤ ε and
‖x(1)−x�‖2 ≤ ε , both the gradient and the heavy-ball method produce iterates that
converge to x� with geometric progression

‖x(t)− x�‖ ≤ c(δ)(q + δ)t , 0≤ q < 1, 0 < δ < 1−q

For the gradient method, the smallest achievable value of q is (L− l)/(L + l)
obtained for α(t) = 2/(L + l). For the heavy-ball method, the smallest achiev-
able value of q is (

√
L−√l)/(

√
L +
√

l) obtained for the step size parameters
α(t) = 4/(

√
L+
√

l)2, β (t) = (
√

L−√l)2/(
√

L+
√

l)2.

If the problem is ill-conditioned, i.e. if L/l is large, then heavy-ball improves the
value of q by roughly a factor of

√
L/l. Since multi-step methods can improve the

convergence rate of the gradient iteration, it is interesting to see if also the com-
plexity can be improved from O(1/ε) to the theoretical lower bound O(1/

√
ε). The

answer to this question was given by Nesterov [47], who constructed a family of
multi-step methods on the form

x(t) = x̂(t−1)−α(t)∇ f0(x̂(t−1))

x̂(t) = x(t) +β (t)(x(t)− x(t−1))
(4.7)

For appropriate choices of α(t) and β (t), these methods have complexity O(1/
√
ε)

and are thus order optimal. In most cases, α(t) and β (t) are time-varying, which
sometimes makes it inconvenient to use them in distributed optimization, but when
f0 is strongly convex, the constant step-sizes α(t) = 1/L and β (t) = (

√
L−√l)/

(
√

L+
√

l) also yield an optimal scheme.
The gradient methods can also be extended to deal with problems with con-

straints. In this case, one typically uses projected gradient methods,

x(t+1) = PX{x(t)−α(t)∇ f0(x(t))} (4.8)

where PX{x} denotes the (Euclidean) projection of x onto the constraint set X . Sim-
ilar convergence results hold as for the unprojected gradient method (see, e.g., [5]).

Example 4.1. To get a feel for the different gradient methods introduced above, con-
sider the problem of minimizing

f0(x) =
n

∑
k=1

k2 x2
k

2

Since the Lipschitz constant equals n2, the gradient method uses α(t) = 1/
(n + 1)2; the heavy-ball method uses α(t) = 4/(n + 1)2,β (t) = (n− 1)2/(n + 1)2,
and Nesterov’s method uses the updates above with α(t) = 1/n. The figures be-
low show the evolution objective function for n = 1 (left) and n = 7 (right). We
can notice several things: first, the heavy-ball method is perfectly tuned towards a

114 B. Yang and M. Johansson

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

Iteration count

O
bj

ec
tiv

e
Gradient descent
Heavy−ball
Nesterov

0 20 40 60 80 100
10

−10

10
−5

10
0

10
5

Iteration count

O
bj

ec
tiv

e

Gradient descent
Heavy−ball
Nesterov

Fig. 4.2 Comparison of ordinary gradient descent, the heavy-ball method, and Nesterov’s
scheme

second-order quadratic function and has the best convergence rate for n = 2 and
Nesterov’s method does not show any advantage over the gradient scheme. Note
how Nesterov’s method is not a descent method as the objective function sometimes
increases. Moving to n = 7 we see that the asymptotic convergence rate of the heavy-
ball method is still superior, but that is too aggressive initially. The improvement of
Nesterov’s scheme compared to the ordinary gradient method is now significantly
improved.

4.2.2 Subgradient Methods for Non-smooth Problems

In many situations when we do distributed optimization, we will need to work with
objective functions that are not smooth. One natural extension of the gradient of a
convex function is the concept of a subgradient. Like the gradient, the subgradient
of a convex function is a global underestimator, i.e.

Definition 4.1. A vector g ∈ R
n is a subgradient of f at x if

f (y) ≥ f (x)+ gT (y− x) for all y ∈ dom f

The set of all g satisfying the inequality is called the subdifferential of f at x and
denoted ∂ f (x).

The subgradient method for unconstrained minimization of a non-smooth convex
function now takes the form

x(t+1) = x(t)−α(t)g(t) (4.9)

where g(t) ∈ ∂ f (x(t)), and the result corresponding to Proposition 4.1 reads

Proposition 4.3. Assume that f0(x) is a convex function with dom f0 = R
n and that

f0 is Lipschitz continuous with constant L > 0, i.e.

‖ f0(x)− f0(y)‖2 ≤ L‖x− y‖2 ∀x,y

4 Distributed Optimization and Games: A Tutorial Overview 115

Assume that f0 has finite optimal value f �
0 with minimizer x�. Let {x(t)} be a

sequence generated by the subgradient iteration (4.9) with a constant stepsize
α(t) = α . Then

min
0≤k≤t

f0(x(k))− f �
0 ≤
‖x�− x(0)‖2

2 + tα2L2

2αt

There are several important differences between this result and the corresponding
result for the gradient method: the analysis only establishes properties of the best it-
erate found so far and says nothing about the most recent iterate. In fact, the subgra-
dient method is not a descent method and the objective function typically does not
improve in each iteration. Moreover, under fixed stepsize even the best iterate does
not converge to the optimum when t→∞: all we can say is that liminft→∞ f0(x(t)) is
approximately L2α/2 suboptimal. If we change from constant to divergent stepsize
sequences (4.4) or (4.5), then liminft→∞ f0(x(t))→ f �

0 . It is possible to show that
the subgradient method can achieve ε-convergence in O(1/ε2) iterations, which is
considerably slower than the gradient methods (see, e.g. [62]). Only recently, Nes-
terov has demonstrated how smoothing techniques can be applied to non-smooth
optimization to recover the O(1/ε) complexity of the basic gradient method [48].

It is possible to make slightly stronger statements about the subgradient method
by considering the Cesàro averages

x̃(t) =
∑t

k=0α(k)x(k)

∑t
k=0α(k)

Under the same conditions as Proposition 4.3, if x(t) are generated by the subgradi-
ent iteration (4.9) with a constant stepsize α(k) = α , then

f0(x̃(t))− f �
0 ≤
‖x(0)− x�‖2

2 + tα2L2

2αt

This inequality establishes that limt→∞ f0(x̃(t)) ≤ f � +αL2/2. Similarly, the corre-
sponding analysis for divergent step-size sequences (4.4) or (4.5) establishes that
the Cesàro averages converge asymptotically to the optimal set.

As for the gradient method, the subgradient method can be extended to handle
constrained minimization by projecting the iterates onto the constraint set. The pro-
jected subgradient method takes the form

x(t+1) = PX

{
x(t)−α(t)g(t)

}

Again, very convergence results similar to those of the (unprojected) subgradient
method can be established also for the projected subgradient method [62].

4.2.3 Incremental Subgradient Methods

In many applications, we will encounter objective functions on the form

116 B. Yang and M. Johansson

f0(x) =
N

∑
i=1

f0i(x)

where each component f0i can be evaluated in parallel (on different machines, or by
different decision-makers). The projected subgradient method

x(t+1) = PX

{

x(t)−α(t)
N

∑
i=1

g(t)
0i

}

would need to collect all the subgradients g0i of the individual objective function
components f0i at the current iterate x(t) to perform an iteration. In contrast, incre-
mental subgradient methods cycle through the components and make incremental
changes of the iterate in the direction of the negative subgradient of each component,

x(t)
i = PX

{
x(t)

i−1−α(t)g(t)
0i

}
, i = 1, . . . ,N

x(t+1)
0 = x(t)

N

(4.10)

Here x(t)
i is the iterate computed by accounting for component i, and the subgradient

is evaluated at the iterate produced by component i−1 at the same iteration, i.e.

g(t)
0i ∈ ∂ f0i(x

(t)
i−1)

The first line of (4.10) describes how the inner iterations cycle through components,
one-by-one in a given order, and makes incremental updates in the iterate. The sec-
ond line describes how a new round of iterations are started by passing the iterate
produced by the last component to the first. By analyzing how the iterates behave
at the beginning of each iteration round, very similar convergence results as for the
standard subgradient method can be obtained

Proposition 4.4. Assume that f0i(x) are convex functions with X ⊆ dom f0i and that
f0i are Lipschitz continuous with constants Li > 0, i.e.

‖ f0i(x)− f0i(y)‖2 ≤ Li‖x− y‖2 ∀x,y

Assume that f0 =∑i f0i has finite optimal value f �
0 with minimizer x�. Let {x(t)} be a

sequence generated by the incremental subgradient iteration (4.10) with a constant
stepsize α(t) = α . Then

min
0≤k≤t

f0(x
(k)
0)− f �

0 ≤
‖x�− x(0)

0 ‖2
2 + tα2L2

2αt

where L = ∑i Li.

Analysis for diminishing step-size rules can be found in, e.g. [45]. Several varia-
tions, including methods where a new ordering of the components are chosen at
random at the beginning of each outer iterations, have also been proposed [45]. It

4 Distributed Optimization and Games: A Tutorial Overview 117

turns out that the expected convergence rate is better for the randomized method
than the deterministic ones that uses the same fixed update order throughout.

Example 4.2. To illustrate the subgradient and incremental subgradient methods,
consider the problem of minimizing

f0(x) =
n

∑
k=1

k|xk|

Since the f0 has Lipschitz constant n, targeting an accuracy of ε gives a constant
step-size of α = 2ε/n2. We consider n = 4 and ε = 0.1 which gives α = 1/80.
Figure 4.3 shows how the objective function evolves for fixed (dark color) and
diminishing (light color) stepsize α(t) = 1/t . In both cases, the iterates oscillate
around the optimum: for fixed stepsize, there is a sustained oscillation with fixed
amplitude (below the target accuracy, as predicted by theory); for diminishing step-
size, the magnitude of the oscillations decreases (due to the decreasing stepsize of
the divergent step-size rules) and the best function value found during the iterations
will asymptotically converge to the optimum.

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

Iteration count

O
bj

ec
tiv

e

Fixed stepsize
Diminishing stepsize

Fig. 4.3 Comparison of subgradient method for fixed and diminishing stepsizes

4.3 Decomposition Techniques

The basic idea of decomposition techniques is to exploit problem structure to di-
vide a complex optimization problem into subproblems that are easier to solve. The
subproblems are then coordinated towards the globally optimal solution by the (re-
peated) solution of a master problem, see Figure 4.1.

One can essentially trace two different motivations for using decomposition in the
mathematical programming literature. One line of work is motivated by the need to
solve very large-scale optimization problems, e.g. [15, 4, 37, 21, 6]. Another line
of work is motivated by decentralization of decision-making in organizations or
engineering systems, e.g. [3, 65, 14, 25]. In the first line of work, subproblems are
typically easier to solve simply because they are smaller (in terms of decision vari-
ables or constraints) or because they have a special structure that can be exploited. In

118 B. Yang and M. Johansson

the other line of work, it is not the computations that complicate the original problem
but the fact that the overall problem combines variables (decisions) that belong to
separate components in an underlying system. Implementation advantages are then
obtained if we can find a problem decomposition that places the main computations
within individual components and restricts the coordination overhead among these.

In this section, we will review the basic primal and dual decomposition tech-
niques and some variations.

4.3.1 Dual Decomposition

From a large-scale optimization perspective, the basic idea with dual decomposition
is to exploit the structure of the dual optimization problem to improve computa-
tional efficiency. The theoretical foundation for this is one of Lagrangean duality .
Associated to the optimization problem (4.2) is the Lagrangean

L(x,λ ,μ) = f0(x)+∑
i
λi fi(x)+∑

i
μihi(x)

Here, the constraints of the original problem have been relaxed and are accounted
for by adding a weighted sum of the constraint functions to the objective. Note that
if λ � 0 and x ∈ X , then L(x,λ ,μ)≤ f0(x), and that the dual function

q(λ ,μ) = inf
x

L(x,λ ,μ) (4.11)

is a lower bound to the optimal value of the original problem. It is hence natural to
try to maximize this lower bound, which leads to the dual problem

maximize q(λ ,μ)
subject to λ � 0

(4.12)

The fact that the optimal value of this program is always a lower bound to the orig-
inal problem is called weak duality . For convex problems, which is the focus of
this chapter, relatively mild conditions guarantee that the optimal value of the dual
problem coincides with the optimal value of the (original) primal problem. We then
say that strong duality holds. Conditions for strong duality are known as constraint
qualification, and the most well-known result is due to Slater.

Proposition 4.5. Consider the convex optimization problem (4.2). If there exists a
strictly feasible point x̌ satisfying

fi(x̌) < 0 i = 1, . . . ,m

hi(x̌) = 0 i = 1, . . . , p

then strong duality holds.

For alternative constraint qualification theorems and stronger version of Slater’s
conditions, see e.g. [5].

4 Distributed Optimization and Games: A Tutorial Overview 119

To solve the dual problem using a first-order method, we need a gradient or sub-
gradient of the dual function at the current dual variables (λ ,μ). To this end, the
following result is useful.

Proposition 4.6. The dual function (4.11) is concave in λ and μ , and a subgradient
of −q(λ ,μ) at (λ ,μ) is given by

−(f1(x�(λ ,μ)), · · · , fm(x�(λ ,μ)), h1(x�(λ ,μ)), · · · , hp(x�(λ ,μ))
)

where x�(λ ,μ) = arginfx L(x,λ ,μ). If f0(x) is strictly convex in all variables, then
the dual function is continuously differentiable.

This result tells us that the dual problem is always convex (in fact, it is convex even
if the original problem is not), and hence can be solved using gradient or subgradient
techniques depending on if the original problem is strictly convex or not.

As we already mentioned, the basic idea of dual decomposition is to explore
structure in the dual function to improve computational efficiency and/or ensure
decentralization of decisions. The following two examples, taken from [9], illustrate
the ideas.

Example 4.3 (Dual decomposition of coupling constraint). To illustrate the dual de-
composition technique, consider the following problem

minimize ϕ1(x1)+ϕ2(x2)
subject to x1 + x2 ≤ xtot

If it were not for the coupling constraint on the total resource, the problem would be
separable and the optimal allocations x�

1 and x�
2 could easily be found. Introducing a

dual variable λ for the total resource constraint, we find the Lagrangian

L(x,λ) = ϕ1(x1)+ϕ2(x2)+λ (x1 + x2−tot) =
= ϕ1(x1)+λx1 +ϕ2(x2)+λx2−λxtot

which is separable in x1 and x2. Hence, so is the dual

q(λ) = inf
x

L(x,λ) = inf
x1
{ϕ1(x1)+λx1

︸ ︷︷ ︸
}

q1(λ)

+ inf
x2
{ϕ2(x2)+λx2

︸ ︷︷ ︸
}

q2(λ)

−λxtot

= q1(λ)+ q2(λ)−λxtot

The dual function can thus be evaluated in parallel, by letting one decision-maker
find the x1 that minimizes ϕ1(x1)+λx1 and another decision-maker find the x2 that
minimizes ϕ2(x2)+λx2, and then compute the sum above. Coordination of the two
decision-makers is done by adjusting λ to maximize g(λ) (i.e. to solve the dual
problem), e.g. using the subgradient iteration

λ (t+1) = max
{
λ (t) +α(t)

(
xtot− x�

1(λ
(t))− x�

2(λ
(t))
)

,0
}

120 B. Yang and M. Johansson

Convergence of the Lagrange multipliers (and hence of the dual function) is guar-
anteed using the classical results on projected gradient and subgradient iterations.

The above example also illustrates why dual decomposition is sometimes referred
to as price-directive decomposition. Interpreting the dual variable as the unit price
for the common resource, the system is directed towards its optimal operation by
appropriate pricing of the common resource. Constraints on the common resource
are not explicitly enforced, but the demand is asymptotically aligned with the supply
using a simple pricing strategy: increase the prices if the resource is in shortage and
decrease the price if the resource is in excess. To exercise this pricing interpretation
further, and to be able to make a link to the game-theoretic methods descried later
in this chapter, we consider the following application to rate allocation in commu-
nication networks [30].

Example 4.4. Consider a communication system where N flows are routed through
the same bottleneck link with capacity c. To find how to optimally allocate the avail-
able bandwidth to the flows, consider the following optimization problem

maximizex ∑i ui (xi)
subject to ∑i xi ≤ c

xi ≥ 0, i = 1, · · · ,N
, (4.13)

Here, xi is the rate allocated to flow i and the constraints encode that rates are
positive and the total communication rate cannot exceed capacity. Associated to
each flow i is a concave, strictly increasing, and continuously differentiable util-
ity function with domain xi ≥ 0. The utility function ui (·) is used to represent the
degree of satisfaction when user i is allocated rate xi. Concavity here corresponds
to the assumption of elastic traffic. Note that (4.13) is a convex optimization prob-
lem that can be put into our standard form by replacing maximize∑i ui(xi) with
minimize∑i−ui(xi) and introducing fi (xi) = −ui (xi). Hence, the problem (4.13)
can be solved by dual decomposition with Lagrange multiplier λ . The associated
partial Lagrangian is

L(x,λ) =

{

∑
i
−ui (xi)+λ

(

∑
i

xi− c

)

| xi ≥ 0, i = 1, . . . ,N

}

.

In the dual decomposition framework, each user is charged a common price λ per
unit flow and sets its rate to maximize ui(xi)−λxi.

One could also imagine alternative mechanisms for allocating the capacity. One
such mechanism is biding: each user i submits a bid bi ≥ 0 of the amount of money
that the user is willing to pay to get a share of the bandwidth. Each user is charged
the same price μ per unit flow, leading to a rate allocation of xi = bi/μ . In this case,
given a price μ ≥ 0, user i acts to maximize the following payoff function over
bi ≥ 0 :

wi (bi,μ) = ui

(
bi

μ

)
−bi. (4.14)

4 Distributed Optimization and Games: A Tutorial Overview 121

It was shown in [30] that if the link manager sets price to ”clear the market”, i.e.

μ = ∑i bi

c
. (4.15)

there is a pair (b,μ) solving (4.14)− (4.15) , which also solves (4.13). In the above
situation, user is assumed to be a price taker, i.e. the payoff function wi (4.14) takes
the price μ as a fixed parameter. Price-anticipating users will realize that μ is set
according to (4.15). This makes the model a game between N users, which will be
discussed more detailed in Section 4.5.2.3.

The next example illustrates how dual decomposition can be used when variables
couple the objective functions in an otherwise decoupled optimization problem.

Example 4.5 (Dual decomposition of coupling variable). The dual decomposition
technique can also be used to decouple problems in which the same decision variable
appears in several objective functions. One of the simplest instances is

minimize ϕ1(x)+ϕ2(x)

To decouple the problem, introduce x1 and x2 to reflect the two decision-makers’
respective view of the optimal variable x, i.e. consider the equivalent problem

minimize ϕ1(x1)+ϕ2(x1)
subject to x1 = x2

The problem now has the same form as the previous example, and the same simple
steps yield an algorithm where decision-makers optimize there individual decision
variables, and the optimal value is found by adjusting the “consistency price” μ .

A drawback with dual decomposition is that a solution to the dual problem (4.12),
even under strong duality, only provides the optimal value of the primal problem
(4.2) but not necessarily the optimal primal decision variables. For non-optimal val-
ues of λ and μ , the primal iterates x�(λ ,μ) = arginfx L(x,λ ,μ) are typically not
even feasible to the original problem. Hence, if constraint violations cannot be tol-
erated, the dual decomposition method needs to be complemented by a method for
recovering primal feasible solutions. When the dual function is differentiable, the
primal iterates will converge to their optimal values as the dual variables approach
optimality. However, as illustrated next, the primal iterates typically do not converge
when the dual function is non-smooth.

Example 4.6. Consider the following specific instance of the problem in
Example 4.3

minimize 2|x1−2|+ 4|x2−4|
subject to x1 + x2 = 5

0≤ x1 ≤ 10, 0≤ x2 ≤ 10

122 B. Yang and M. Johansson

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 4.4 When the dual function is non-smooth, the dual objective (left, full lines) converges
while the primal iterates (right, full lines) do not. When the dual function is differentiable,
both objective and iterates converge asymptotically (dashed lines)

Clearly, the optimal solution is x�
1 = 1,x�

2 = 4 with optimal value f � = 2. The full
light blue lines in Figure 4.2 (left) show the evolution of the dual function for the
step-size rule α(t) = 1/(1 + t). Note that the dual function is a lower bound to the
optimal value and that the dual problem converges to the optimal value. However,
as revealed in Figure 4.2(right), the primal variables do not converge but oscillate,
in this case, between their minimal value and unconstrained optimum.

For comparison, we change the objective function to

2(x1−2)2 + 4(x2−4)2

which is smooth and strictly convex. The optimal solution is now x�
1 = 4/3, x�

2 =
11/3 and the optimal value is f � = 4/3. The dashed lines in Figure 4.2(left) show
how the dual objective converges. In contrast to the non-smooth example, the iterates
now also converge to their optimal values, see Figure 4.2(right).

Techniques for recovering primal optimal solutions are developed and reviewed
in [35, 46]. Since differentiability of the dual function gives several advantages,
many techniques have been proposed to ensure dual differentiability. A simple ap-
proach is to regularize the objective function, e.g. to replace f0(x) by f0(x)+ ε‖x‖2

2
for some small positive constant. A more elegant approach is to use proximal opti-
mization or augmented Lagrangian techniques described next.

4.3.2 Augmented Lagrangian and Proximal Point Methods

The basic idea of the proximal point method is to ensure strict convexity by intro-
ducing an artificial variable y and re-write the original problem (4.1) as

minimize f0(x)+ 1
2c‖x− y‖2

2

subject to x ∈ X , y ∈ R
n (4.16)

for some positive constant c > 0. This problem can be considered as one in y only:

4 Distributed Optimization and Games: A Tutorial Overview 123

minimize fc(y)
where fc(y) = infx∈X f0(x)+ 1

2c‖y− x‖2
2

(4.17)

Now, fc(y) is continuously differentiable with

∇ fc(y) =
1
c

(y− x�(y))

where

x�(y) = arg inf
x∈X

f0(x)+
1
2c
‖y− x‖2

2

so the problem is readily solved using the gradient iteration

y(t+1) = y(t)− c∇ fc(y(t)) = x�(y(t))

A related technique is the method of augmented Lagrangians, which is most readily
explained on convex problems with equality constraints

minimize f (x)
subject to Ax = b

(4.18)

We re-write the problem as

minimize f (x)+ 1
2c‖Ax−b‖2

2
subject to Ax = b

(4.19)

Introduce multipliers μ for the constraints and form the augmented Lagrangian

La(x,μ) = f (x)+ μT (Ax−b)+
1
2c
‖Ax−b‖2

2

Now, the method of multipliers is essentially dual decomposition applied to (4.19),
i.e. we run the iterations

x(t+1) = argmin
x

La(x,μ (t))

μ (t+1) = μ (t) + c(Ax(t+1)−b)

It is possible to show that these iterations are equivalent to what would have been
derived using proximal minimization of the dual of (4.18), see e.g. [6, Ch. 3]. Next,
we illustrate how the techniques work on simple problem from Example 4.5.

Example 4.7. Consider the problem from Example 4.5, introduce an auxillary vari-
able y, and re-write the problem as

minimize ϕ1(x1)+ϕ2(x2)
subject to x1 = y

x2 = y

124 B. Yang and M. Johansson

The augmented Lagrangian is thus

La(x,y,μ)=ϕ1(x1)+ϕ2(x2)+ μ1(x1− y)+ μ2(x2− y)+
1
2c

(
(x1− y)2 +(x2− y)2)

and performing alternating minimization of the primal variables, we find

x(t+1)
i = argmin

z
ϕi(z)+ μ (t)

i z+
1
2c

(z− y)2, i = 1,2

y(t+1) =
x(t+1)

1 + x(t+1)
2

2
− c

μ (t)
1 + μ (t)

2

2

μ (t+1)
i = μ (t)

i +(x(t+1)
i − y(t+1)), i = 1,2

In fact, the iterations can be simplified by noting that at optimality, μ�
1 + μ�

2 = 0

and that if we initialize the multipliers such that μ(0)
1 + μ (0)

2 = 0, it will hold that

μ (t)
1 + μ (t)

2 = 0 for all t. Thus, the simplified iterations can be written as

x(t+1)
i = argmin

z

{
ϕi(z)+ μ (t)

i z+
1
2c

(z− x(t))2
}

, i = 1,2

μ (t+1)
i = μ (t)

i +(x(t+1)
i − x(t+1)), i = 1,2

where x(t) = (x(t)
1 + x(t)

2)/2.

Although the proximal and augmented Lagrangian techniques are guaranteed to
converge for all values of c, the choice of c influences both the numerical condi-
tioning of the subproblems and the converge speed of the method, see [6].

4.3.3 Primal Decomposition

Primal decomposition is also called resource-directive decomposition. Rather than
introducing a pricing scheme for the common resources, the primal decomposition
approach sequentially updates the resource allocation to minimize the global system
objective. Contrary to dual decomposition, the iterates generated by primal decom-
position techniques are always feasible (by construction) and converge asymptoti-
cally to their optimal values.

The theory for primal decomposition is built around the concept of primal func-
tion of an optimization problem. The primal function p(u) of the problem (4.2) is
the optimal value of the perturbed problem

minimize f0(x)
subject to fi(x)≤ ui, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
(4.20)

The domain of p is the set of perturbations u for which there is a feasible primal
solution x and, hence, p(u) < ∞. We denote the domain of p by P:

4 Distributed Optimization and Games: A Tutorial Overview 125

P = {u | p(u) < ∞}

Contrary to the dual function (which is always concave), convexity of the primal
function and its domain requires convexity of the original problem:

Proposition 4.7. Consider the convex optimization problem (4.2) and assume that
p(u) >−∞ for all u ∈ P. Then P is a convex set and p(u) is convex over P.

In order to minimize p(u) we also need to be able to compute (at least) a subgradient.
The following characterization is then useful.

Proposition 4.8. Consider the convex optimization problem (4.2) with optimal dual
variables (λ �,μ�). Then

p(0)≤ p(u)+ uTλ �

i.e., −λ � is a subgradient of p at u = 0.

Next, we demonstrate how primal decomposition can be applied to Example 4.3.

Example 4.8. The key trick in applying primal decomposition to a problem with a
complicating constraint such as Example 4.3 is to introduce variables ri that rep-
resent the amount of the common resource allocated to subproblem i and re-write
it as

minimize ϕ1(x1)+ϕ2(x2)
subject to x1 ≤ r1, x2 ≤ r2

r1 + r2 ≤ xtot

For notational simplicity, introduce the constant rtot = xtot and define functions
νi(ri) = inf{ϕi(xi) |xi ≤ ri}. The problem can then be equivalently written as

minimize ∑i νi(ri)
subject to ∑i ri ≤ rtot

(4.21)

Now, from the results on the primal function, νi is a convex, possibly non-smooth
function and a subgradient of νi at ri is given by the optimal dual variable λ �

i (ri)
associated with the inequality constraint of the primal minimization problem

minimize ϕi(xi)
subject to xi ≤ ri

Hence, (4.21) is a convex optimization problem that can be solved using a projected
subgradient method

r(t+1) = PR{r(t) +α(t)λ �(r(t))}

where r(t) = (r(t)
1 , r(t)

2), λ �(r(t)) = (λ �
1 (r(t)

1), λ �
2 (r(t)

2)) and PR{·} denotes projection
onto the total budget constraint r1 + r2 ≤ rtot.

126 B. Yang and M. Johansson

It is useful to compare the solution mechanisms suggested by primal and dual de-
composition. In primal decomposition, the master problem assigns resources to the
subsystems. The subsystems then optimize their operation to “perform their best”
with the amount of resources they have been assigned (compute the optimal xi and
the associated value of νi(ri) above), and return a Lagrange multiplier vector back
to the coordinator. It is well-known from sensitivity theory that the Lagrange mul-
tipliers indicate the potential cost reduction that can be achieved by an additional
amount of resource. In our case, if we assume that ϕi are (in addition to convex)
smooth and decreasing, and ri are scalar variables, then the first-order optimality
conditions yield that λi(ri) =−ϕ ′i (ri). In other words, the Lagrange multipliers sig-
nal exactly the amount of cost reduction that a subsystem could generate if it would
obtain a small additional amount of resource. When the master problem updates
the resource allocation via the projected (sub)gradient iteration, it effectively shifts
resources from subsystems with small predicted cost reduction to subsystems with
large predicted cost reduction. The local decisions (iterates xi) taken by nodes are,
by construction, feasible to the original problem.

In the dual decomposition method, on the other hand, the coordinator announces
a dual variable λ which, by similar reasoning as above, can be interpreted as the unit
cost of the common resource. Subsystems then optimize their operation accounting
both for their operational cost (ϕi(xi)) and the resource cost (λxi). The coordinator
then updates the price to align supply and demand: increase the price if the resource
is overbooked and decrease the price otherwise. The iterates are, in general, not
guaranteed to be feasible to the original problem.

4.4 Networked Optimization

With a basic understanding of first-order methods and decomposition techniques,
we are ready to consider networked optimization problems. Contrary to decomposi-
tion techniques, in which the problem structure determines how the original problem
is divided into subproblems, networked optimization problems arise when the com-
munication structure (which decision-makers are allowed to coordinate with each
other) is fixed and the computation structure has to be tailored to match. This class
of optimization algorithms have also been termed multi-user optimization, since
the set-up can be used to model a multi-agent system in which agents cooperate
and exchange information with neighbors to find a globally optimal decision [33].
Although decomposition techniques will turn out to be useful also in this context,
decomposition does not necessarily yield distributed optimization algorithms unless
the master- and sub-problems can be distributed.

To study networked optimization, we consider problems on the form

minimize ∑v∈V fv(xv,θ)
subject to xv ∈ Xv, θ ∈Θ (4.22)

with an associated communication graph G = (V ,E); see Figure 4.1. The vertices
of the graph represent decision-makers, and the edges encode which agents can

4 Distributed Optimization and Games: A Tutorial Overview 127

exchange information to coordinate their decisions. Each node has a set of local
(private) decision variables xv. These variables are under exclusive control of node
v and only influences the local loss function fv(xv,θ). The global variables θ , on
the other hand, impact the loss functions of multiple nodes. We focus on convex
problems and assume that the constraint sets Xv and Θ are non-empty, closed and
convex and that the local loss functions fv(xv,θ) are convex in (xv,θ).

We can eliminate the local variables by introducing new loss functions

νv(θ) = inf
xv∈Xv

fv(xv,θ)

and reformulate (4.22) as

minimize ∑v∈V νv(θ)
subject to θ ∈Θ (4.23)

Clearly, under our assumptions νv : R
n �→ R are convex but possibly non-smooth.

4.4.1 Networked Optimization via Dual Decomposition

The most direct approach to networked optimization is dual decomposition. First,
introduce local decision variables θv at each node v ∈ V and rewrite (4.23) as

minimize ∑v∈V νv(θv)
subject to θv = θw ∀(v,w) ∈ E

θv ∈Θ ∀v ∈V

The problem would be separable if it were not for the edge-wise coupling con-
straints. It is thus natural to relax these constraints by dual decomposition. To this
end, introduce multipliers μ(v,w) for all (v,w) ∈ E and form the partial Lagrangean

L(θ ,μ) = {∑
v
νv(θv)+ μ(v,w)(θv−θw) | θv ∈Θ}

with associated dual function

g(μ) = inf
θv∈Θv

∑
v
νv(θv)+θv∑

w
(μ(v,w)− μ(w,v))

Since the problem is equality-constrained, the dual problem is unconstrained and
can be solved using a standard subgradient optimization

μ (t)
(v,w) = μ (t)

(v,w) +α(t)(θ �
v (μ (t))−θ �

w(μ (t))) (4.24)

where θ �(μ (t)) = arginfθ L(θ ,μ (t)). The following example illustrates how the
technique applies to a networked least-squares problem.

128 B. Yang and M. Johansson

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of iterations

O
b
j
e
c
t
i
v
e

Fig. 4.5 Distributed least-squares: gradient (full) and accelerated gradient (dashed)

Example 4.9. Consider a networked least-squares problem, where

fv(xv,θ) =
1
2
(θ − zv)2

Introducing local variables θv and following the procedure outlined above, we find

νv(θv) =
1
2
(θv− zv)2

In this case, it is also possible to find an explicit expression for θ �
v (μ (t)),

θ �
v (μ (t)) = zv−∑

w
(μ (t)

(v,w)− μ
(t)
(w,v))

This expression, together with the iteration (4.24), defines a networked optimization
algorithm that is guaranteed to find the optimal solution, provided that the step-
length sequence {α(t)} is chosen appropriately.

To implement the algorithm, note that each link needs information about θ �
v and

θ �
w, i.e. the current version of the local decision variables of the two nodes connected

to the link. To compute these decisions, on the other hand, nodes need to know the
Lagrange multipliers of all links that they are connected to.

Since the optimization problem is strictly convex, the dual function is smooth
we can use a higher-order method to accelerate convergence. We omit the details
here but evaluate both the direct and the accelerated method to a ring network of
N = 100 nodes. Figure 4.5 shows how the methods converge, with a significant
speed-up advantage of the accelerated method.

While dual decomposition is classical, the first applications to networked optimiza-
tion (and estimation) in the spirit above the authors are aware of are the work by

4 Distributed Optimization and Games: A Tutorial Overview 129

Fawal, Georges and Bornard [18] and the one by Rabbat and Nowak [54] (who also
analyze convergence of the method for time-varying graphs). For ease of exposi-
tion, we have introduced one Lagrange multiplier for every edge in the graph, but
it is possible to only introduce dual variables for a subset of links (as long as the
underlying graph is connected) [60]. Finally, it is also possible to apply alternative
decomposition techniques, such as the augmented Lagrangian method, to networked
optimization [18, 60].

4.4.2 Consensus-Subgradient Schemes

In the dual decomposition approach, asymptotic agreement on the global decision
variable is enforced by adjusting Lagrange multipliers. However, agreement among
nodes in a network can be achieved by many different techniques [50, 52, 68], indi-
cating that there could be a rich family of algorithms for networked optimization. We
will consider one such class of algorithms which combines subgradient optimization
and consensus algorithms. Although consensus algorithms are described in depth in
other chapters in this book, we will give a brief overview for completeness.

The consensus problem considers the design of protocols that ensure that all
nodes in a network agree on a common quantity. In the area of multi-agent sys-
tem, a lot of attention has been focused on conditions where linear iteration on the
form

xv(t + 1) = xv(t)− ∑
w:(v,w)∈E

W(vw)(xv− xw) (4.25)

converges so that all node variables equal the average of the initial values, i.e.

lim
t→∞xv(t)→ 1

|V |∑v
xv(0)

It is convenient to write the iterations in matrix form:

x(t + 1) = Wx(t), (4.26)

where the i-th element of the vector x(t) corresponds to the local value at node i,
xi(t). We make the following assumptions on W .

Assumption 4.1 (Consensus Matrix Properties). The weight matrix W satisfies

i) [W]i j = 0, if (i, j) /∈ E and i �= j,

ii) W1N = 1N , ρ
(

W − 1N1T
N

N

)
< 1,

iii) W = W T ,

where ρ(·) is the spectral radius and 1N ∈ R
N is the column vector of all ones.

The first assumption restricts nodes to only communicate with their immediate
neighbors, while iii) encodes the assumption that the underlying graph is undirected

130 B. Yang and M. Johansson

(or that all links are bidirectional) and that the same weight is used in the consen-
sus iterations for both directions of the same link. Finally, the second assumption
ensures asymptotic average consensus:

Lemma 4.1. If the weight matrix W ∈ R
N×N is symmetric, then the limit

lim
k→∞

W k =
1N1T

N

N
(4.27)

holds if and only if Assumption 4.1 ii) holds for W.

Proof. See, e.g., [68, Theorem 1].

There are many ways of selecting W to satisfy the above conditions using either
centralized or decentralized information, see e.g. the chapter by Garin and Schenato
in this book or references [50, 8]. We will only present one example, namely the
Metropolis-Hastings scheme [23, 8]:

Lemma 4.2 (Metropolis-Hastings). If the graph G is connected, then W fulfills
Assumption 4.1 if the elements of W are set to

[W]vw =

⎧
⎪⎨

⎪⎩

min{d−1
v ,d−1

w } if (v,w) ∈ E and v �= w

∑(v,w)∈E max{0,d−1
v −d−1

w } if v = w

0 otherwise.

(4.28)

where dv denotes the degree (number of neighbors) of node v.

Note that the iteration (4.25) is simply a method for distributed computation of a
network-wide average. To make use of the algorithm for networked optimization,
we must first compute the local quantity that should be averaged across nodes and
then execute one or more iterations of the consensus algorithm. As an example,
consider the consensus-subgradient method from [44] and further developed in [27].
The basic idea of this algorithm is to interpret the gradient of the objective function

∂
∂θ

ν(θ) = N
1
N ∑v

ν ′v(θ)

as (N times) the average of the gradients of the individual node objective functions.
Hence, for smooth objectives with Θ = R

n it is natural to consider the algorithm

θ (t+1)
v = ∑

w∈V

[Wϕ]vw

(
θ (t)

w −α(t)ν ′w(θ (t)
w)

)

Here, Wϕ denotes that the consensus iteration is performed ϕ times. Hence, every
node v maintains a vector of θv of local variables, and computes a desired next
iterate by accounting only for the local gradient. Nodes then perform consensus
iterations to agree on the next iterate and execute this one. Clearly, if all nodes

4 Distributed Optimization and Games: A Tutorial Overview 131

start with the equal initial values, θv(0) = θw(0) for all (v,w) ∈ E and we let ϕ →
∞ we recover the classical gradient iteration. More surprisingly, the method still
works when nodes start with different initial values and perform a finite number of
iterations, even when the objective functions are not differentiable and θ is subject
to (convex) constraints. The constrained non-smooth version of algorithm reads

θ (t+1)
v = PΘ

[

∑
w

[Wϕ]vw

(
θ (t)

w −α(t)gw(θ (t)
w)

)]
, (4.29)

where θ (0)
v ∈ Θ for all v ∈ V , gv(θ

(t)
v) ∈ ∂ fv(θ

(t)
v), ϕ ∈ N, and [Wϕ]vw denotes

the element of Wϕ in the v-th row and w-th column. Hence, using this scheme,

agents maintain their local variable vector θ (t)
v and compute a desired next iterate

θ (t)
v −α(t)gv(θ

(t)
w). They then announce this desired iterate to their neighbors and

update their own decision taking the neighbors desires into account. More specifi-
cally, (4.29) implies that each agent runs ϕ number of consensus iterations with its
neighbors defined by (4.26) to determine its next iterate. The total number of itera-
tions in the algorithm up to step t is therefore tϕ . To give the flavor of the method,
we give the following result

Theorem 4.2. Consider Problem (4.23) with Θ = R
n and assume that ‖gv‖2 ≤ L

for all gv ∈ ∂νv and all v ∈ V . Let {θ̄v(t)}∞t=0 be the Cesàro averages

θ̃ (t)
v =

∑t
k=0α(k)θ (k)

v

∑t
k=0α(k)

of the iterates θ (t)
v produced by (4.29) with a consensus matrix satisfying Assump-

tion 4.1. Define

γ = ρ
(

W − 11T

N

)

and β (0) such that ‖θ (0)
v −|V |−1∑w∈V θ (0)

w ‖ ≤ β (0). Then, under diminishing step-
sizes satisfying α(t+1)/α(t) > μ , if

ϕ ≥ log(μβ (0))− log(4
√|V |n(β (0) +α(0)L2)

log(γ)

we have that

lim
t→∞ν(θ̃ (t)

v) = ν�, ∀v ∈ V .

More extensive analysis results for several variants of the method can be found
in [27].

132 B. Yang and M. Johansson

4.4.3 Networked Incremental Subgradient Methods

The use of classical incremental subgradient methods in a networked setting would
suggest a message-passing solution where in each iteration, one node receive a to-
ken that contains the most recent iterate from another node in the network, computes
the next iterate by taking a step in the negative subgradient of its own local objective
function, and then passes the token to another node. A drawback with the incremen-
tal subgradient method is that the analysis assumes that the token is passed around
in a ring (i.e. it performs cyclic rounds in which each component is updated once).

An alternative approach, tailored to the networked setting, was proposed and an-
alyzed in [28]. Here, nodes pass their updated iterate to a random neighbor and the
need for organizing the nodes into an underlying logical ring is removed. The algo-
rithm is shown to converge as long as each component of the objective function is
updated with equal probability. In other words, the token should perform an unbi-
ased random walk on the graph. To design such a random walk, consider a Markov
chain in which each state is associated to a node in the underlying network. To en-
sure that the token is passed only between neighboring nodes, the transition matrix
W must fulfill the sparsity constraint that Wvw = 0 if (v,w) �∈ E . Furthermore, the
analysis requires that the Markov chain is irreducible, aperiodic, and its stationary
distribution is uniform. It turns out that matrices W constructed using Lemma 4.2
satisfy these assumptions. Now, the algorithm takes the form

θ (t+1) = PΘ
{
θ (t)−αgw

}
, (4.30)

where w(t) is the state of Markov Chain in iteration t, α is a fixed step-length pa-

rameter and gw ∈ ∂ fw(θ (t)
w). The following result establishes its convergence

Proposition 4.9. Let {θ (t)}∞t=0 be generated by (4.30). With probability 1

⎧
⎨

⎩

liminft→∞ ν
(
θ (t)

)
= ν�, if f � =−∞

liminft→∞ ν
(
θ (t)

)
≤ ν� + αL2K

2 , if ν� >−∞.

where K is an upper bound on the second moment of the recurrence time for all
states in the Markov Chain.

Several variations and extensions of the basic method are given in [28], including
stronger results (limsup rather than liminf) for the running average of the iterate that
a specific node sees during the course of the algorithm. The same paper also com-
pares the predicted convergence rates for the networked incremental subgradient
method with the provable convergence for the classical (deterministic or random-
ized) incremental subgradient method on several classes of graphs. Extensions to
time-varying graph topologies and diminishing step-sizes can be found in [55].

4 Distributed Optimization and Games: A Tutorial Overview 133

4.5 Game Theory in Distributed Optimization

Game theory is typically used to model and counteract selfish behaviors in dis-
tributed systems. However, there are several reasons for us to introduce game the-
ory in this chapter. First, networked optimization usually consists of multiple agents
who can observe and react to their environment. Game theory offers a powerful
tool set to analyze interactions between such intelligent entities. Second, although
network components or agents would like to cooperate, it might be impractical or
impossible to exchange the information required to implement any of the distributed
optimization techniques described so far. It might then be better for agents to op-
timize their local or private objective and react to limited network information. In
these cases, we use non-cooperation to capture limited information. The third rea-
son is that game theory provides a way to predict, analyze or even to improve the
outcome of a non-cooperative interaction, e.g. the notation of equilibrium.

4.5.1 Basics of Game Theory

We will mainly focus on the discussion of non-cooperative game model with com-
plete information1 and finite number of players. Formally, a normal or strategic
form 2 of a game Ξ is given by Ξ =

{
V ,{Sv}v∈V ,{wv}v∈V

}
, where V is the set

of agents or players; Sv is the set of strategiesof player v and wv is its payoff func-
tion3, which is a function of the strategy xv chosen by player v and the strategies

chosen by other players, denoted as x−v. We will use S =Π |V |v=1Sv to denote the
Cartesian product of sets and use x = [xv,x−v] =

[
x1,x2, · · · ,x|V |

]
, ∀v ∈ V to refer

to a vector. Based on this model, the Nash equilibrium steady-state of a game can be
defined. The definition is based on the concept of a best response correspondence.

Definition 4.2. Let Ξ =
{
V ,{Sv}v∈V ,{wv}v∈V

}
be a strategic game. For any

x−v ∈S−v we define the best response correspondence BRv (x−v) as,

BRv (x−v) =
{

xv ∈Sv|wv (xv,x−v)≥ wv
(
x′v,x−v

)
for all x′v ∈Sv

}
.

A strategy profile x∗ is a Nash equilibrium if and only if x∗v ∈BRv
(
x∗−v

)
for all v∈ V .

The above definition is referred to pure Nash equilibrium. As seen in the above
definition, the pure Nash equilibrium consists of selecting one element from each
player’s possible action sets and is also stable for each player to deviate from the
equilibrium. A mixed strategy consists of selecting multiple elements from each

1 The complete information means that every player knows the payoff of the others.
2 When a game is presented in normal form or strategic form, it is presumed that each player

acts simultaneously or, at least, without knowing the actions of the other. If players have
some information about the choices of other players, the game is usually presented in
extensive form.

3 Hereafter, we consider each player chooses strategy to maximize its payoff. The game can
be defined accordingly if each play chooses strategies to minimize its own cost function.

134 B. Yang and M. Johansson

player’s action set and run the series of actions with some probability. The associ-
ated equilibrium is then called a mixed Nash equilibrium. In the following we will
assume the strategic game Ξ is static, i.e. it is played in one-shot with complete
information of payoffs, with a finite number of players and finite strategy sets. As
shown later, although best response and gradient methods are usually adopted to up-
date players’ strategies to optimize the current payoff in reaction to other players’
strategies, the game is still called a static game. If players choose their strategies to
maximize their payoff functions averaged over the whole game duration, the game
is called a repeated game.

4.5.2 Properties of Nash Equilibria

4.5.2.1 Existence of Nash Equilibria

The strategy tuples corresponding to Nash equilibria are consistent predictions of
the outcome of a game. The first question after defining a game is whether there
exists an equilibrium. Generally, proving the existence of an equilibrium involves
proving the existence of a solution to a fixed-point problem [7]. However, a number
of sufficient conditions for the existence of Nash equilibria have been developed for
games with particular structure of strategy sets and payoff functions.

Theorem 4.3 (Debreu, Glicksberg, Fan [20]). Let Ξ =
{
V ,{Sv}v∈V ,{wv}v∈V

}

be a strategic game, where V is a finite set. If ∀v ∈ V , Sv is a non-empty compact
and convex subset of a finite-dimensional Euclidean space; wv (x) is a continuous
function in the profile of strategies x and quasi-concave in xv; then the game has at
least one pure Nash equilibrium.

The power control game in [22] has been shown to be a quasi-concave game with a
compact convex strategy set and hence has at least one pure Nash equilibrium. The
multiple access game in [71] has a concave payoff function, which is a special case
of the above theorem and thus it has a pure Nash equilibrium.

If a game does not have quasi-concave payoffs, one may turn to supermodular
games [66] and potential games [43] to argue about the existence of Nash equilibria.
Let us first look at the definition of supermodular game.

Definition 4.3 ([66]). The strategic form game Ξ is called supermodular if: ∀v∈ V ,
Sv is a compact subset of R; wv is upper semi-continuous in x; ∀v ∈ V , ∀x−v � x′−v
the quantity wv (x)−wv

(
xv,x′−v

)
is non-decreasing in xv.

Intuitively, the definition means that the marginal payoff of increasing a player’s
strategy rises with increases in the other players’ strategies. This implies that the
best response of a player is a non-decreasing function of other players’ strategies.
Supermodular games are interesting for several reasons. First, many applied models
satisfy the assumptions of supermodular games. Second, they have the remarkable
property that many solution concepts yield the same predictions. Finally, they tend
to be analytically appealing – they have nice comparative statical properties and
behave well under various learning rules.

4 Distributed Optimization and Games: A Tutorial Overview 135

Theorem 4.4 ([66]). If Ξ is an supermodular game, it has at least one pure Nash
equilibrium.

Applications of supermodular games include the pricing-based power control algo-
rithm designed in [26] for solving a sum utility maximization problem. In [26], each
wireless transmitter adapts transmission power and charges interference price to in-
terfering transmitters based on best response update in an implicit supermodular
game. Sum rate maximization, which is a special case in [26], has been solved by
[13] using gradient algorithm based on dual decomposition. As opposed to gradient
methods that might need a small stepsize to converge to the optimum at the price
of slow convergece, the convergence of the best response algorithm in the fictitious
game [26] is ensured by supermodular game theory without appealing to stepsize.

Another particular game possessing equilibrium is the potential game.

Definition 4.4 ([43]). A strategic game Ξ is called

1. an exact potential game if there exists a function Φ : S → R such that for all
v ∈ V , and (xv,x−v) ∈S , x′v ∈Sv :

wv (xv,x−v)−wv
(
x′v,x−v

)
=Φ (xv,x−v)−Φ

(
x′v,x−v

)
. (4.31)

If the payoff function wv is continuously differentiable, then (4.31) is equivalent
to

∂wv (xv,x−v)
∂xv

=
∂Φ (xv,x−v)

∂xv
, ∀v ∈ V . (4.32)

2. an ordinal potential game if there exists a function Φ : S → R such that
for all v ∈ V , and (xv,x−v) ∈ S , x′v ∈ Sv : sgn(wv (xv,x−v)−wv (x′v,x−v)) =
sgn(Φ (xv,x−v)−Φ (x′v,x−v))).

For definitions of min-max potential games and state-based potential games, please
refer to [56] and [41], respectively.

Theorem 4.5. If Ξ is a potential game with a finite number of players, compact
strategy sets, and continuous payoffs, then it has at least one pure Nash equilibrium.

One good example of potential game is the application to cooperative control, where
multiple agents interact with each other to achieve a common target, e.g. the con-
sensus problem [51] and vehicle formation problem [56]. There are two advantages
when the cooperative control is modelled as a potential game. First, for coopera-
tive control each agent updates its strategy by evaluating its effects on the com-
mon objective function. This evaluation will require to observe the decisions of all
agents [40]. In the potential game formulation, each player has local payoff function
that captures the player’s marginal contribution to the potential function, which is
the common objective of cooperative control. The implementation overhead is re-
duced in the game setting. Thus, one critical point in applying potential game to co-
operative control is to assign each player a reasonable payoff function that is aligned
with the potential function. Secondly, in cooperative control problems formulated as
a potential game, there are many learning algorithms adaptive to time-varying envi-
ronment with guaranteed convergence to Nash equilibria.

136 B. Yang and M. Johansson

4.5.2.2 Uniqueness of Nash Equilibrium

After establishing the existence of a Nash equilibrium the next issue is to study its
uniqueness. Uniqueness of Nash equilibria is both critical for predicting outcome
of a game and important for convergence issues. A general result is given by Rosen
[58] to ensure that a game has a unique Nash equilibrium. Another value of [58] is
that it points out a way to select one equilibrium if there are multiple equilibria. See
[36] and the references therein for more discussions. The sufficient conditions in
[58] change the structure of a game and restrict the payoff and strategy sets. When
the best response of a game can be explicitly expressed, there are some weaker
conditions that guarantee uniqueness of Nash equilibrium. The first result is based
on properties of contraction mapping.

Definition 4.5 ([67]). M (·) : X → X , where X is a subset of R
|V |, is a contraction

mapping if there exists ε ∈ (0,1) such that ‖M (x)−M (y)‖ ≤ ε ‖x− y‖4, ∀x,y∈X .

Theorem 4.6. Suppose that M (·) : X → X is a contraction mapping and X be a
closed subset of R

|V |. Then M has a unique fixed point x∗ that is globally asymptot-
ically stable.

When the contraction mapping theorem is applied, the best response correspondence
is presumed to be a mapping. In the context of game theory, if the best response

mapping BR(·) : S →S is a contraction mapping, the sequence
{

x(k)
}

generated

by x(k+1) = BR
(

x(k)
)

converges to a unique fixed point x∗ from any initial strategy

profiles x(0) ∈S . According to the definition of Nash equilibrium, this fixed point
x∗ is the unique Nash equilibrium. The application of contraction mapping theorem
to study uniqueness of Nash equilibrium can be found in [69] for scalar strategies
and in [63] for vector strategies.

In addition to contraction mapping, if the best response correspondences satisfy
some nice properties there can be a unique intersection in the strategy space. One of
such functions or correspondences is called standard function [72], which was gen-
eralized by [64] to include type-II standard function. Together this type of function
is called two-sided scalable function.

Definition 4.6 ([64]). A vector function I (·) : X → X with X a subset of R, is said
to be two-sided scalable, if for all β > 1, ∀x ∈ X , ∀x′ ∈ X , (1/β)x≤x′ ≤ βx implies

1
β

I (x) < I
(
x′
)

< β I (x) .

Theorem 4.7 ([64]). If I (·) : X → X is two-sided scalable and a fixed point exists,
then I (·) has a unique fixed point, which is globally asymptotically stable.

Once again, if the best response mapping BR(·) : S →S of a strategic game is
two sided scalable it converges to the unique Nash equilibrium when there is a Nash

4 Here ‖·‖ is some norm.

4 Distributed Optimization and Games: A Tutorial Overview 137

equilibrium of the game. Note that the above theorem can not guarantee the exis-
tence of Nash equilibrium. To study existence of Nash equilibrium one has to invoke
Theorem 2 in [20] or turn to Brouwer’s Fixed-Point Theorem in [7].

4.5.2.3 Efficiency of Nash Equilibrium

The Nash equilibrium discussed above provides a solution to multi-objective opti-
mization problem where no agent can increase its performance through individual
effort. Thus, it is an outcome of distributed decision making which could be less ef-
ficient than a possible scheme through cooperation between agents and/or as a result
of centralized optimization. Equilibrium efficiency is also a criterion to select one
from multiple equilibria, if there are more than one equilibrium.

A well known efficiency criterion is Pareto optimality. An outcome of a game
is Pareto optimal if there is no other outcome that makes every player at least
as well off and at least one player strictly better off. In other words, a Pareto-
optimal outcome cannot be improved upon without hurting at least one player. It
should be noted that a Nash equilibrium solving a social optimal problem is Pareto-
optimal. However, in reality the competitive solution is far from social optimal or
Pareto-optimal. One may expect to quantify the performance gap between the so-
cial optimal and Nash equilibria. The performance gap is known as the price of
anarchy [34], defined next.

Let us first represent the social performance achieved by all players at a given
Nash equilibrium x as

SUM (x) = ∑
v∈V

υv (xv,x−v) ,

where υv (x) denotes the utility (or payoff) of player v at equilibrium x. The social
optimum OPT is defined to be the maximum SUM (x) achieved by all players.

Definition 4.7. The price of anarchy of a game is the worst-case efficiency ratio
among all pure strategy Nash equilibria,

PoA = min
x∈S

SUM (x)
OPT

Example 4.10. Given the example considered in (4.14), in the case of price-
anticipating users the problem turns into a game. Each user chooses bi to maximize
its payoff

wi (bi,b−i) =

{
ui

(
bi

∑N
v=1 bv

c
)
−bi if bi > 0

ui (0) if bi = 0
(4.33)

over non-negative bi. Note that the payoff function in (4.33) maybe discontinuous
at bi = 0, if ∑v�=i bv = 0. This discontinuity may preclude the existence of a Nash
equilibrium [29]. The authors in [29] explore the effects of price-anticipation and
prove that the price of anarchy is a 25% efficiency loss compared with the maximum
possible aggregate utility in (4.13) or (4.14).

138 B. Yang and M. Johansson

The reason for low efficiency of Nash equilibrium in a non-cooperative game is
that each player aims to optimize its own performance without regarding the cost it
imposes on others. Pricing (or taxation) has been proven to be an efficient way to
improve efficiency. Here, we do not use price to generate revenue for the system but
use price to encourage players to use system resources more efficiently rather than
the aggressive competition of the purely non-cooperative game. A pricing scheme
is called incentive compatible if pricing enforces a Nash equilibrium that improves
social welfare. An efficient price should reflect accurately the costs of usage of a
resource and must take into account the individual player’s effects on system. In
[59], it has been shown that the utility in the energy-efficient power control game
can be improved when some players deviate somewhat from the Nash equilibrium,
i.e. the resulting equilibrium is not Pareto-optimal. To restrict interference (negative
results of selfish behaviors), the authors use a usage-based pricing to improve the
equilibrium utilities. However, this linear usage-based pricing in [59] is far from
social optimum since it does not take into account individual player’s effects on
system performance. Maximizing the sum of coupled utilities in a non-cooperative
environment usually involves some control message passing. To illustrate this, let
us consider a social optimal problem,

max
x∈S

∑
v∈V

uv (x) , (4.34)

where uv (x) is assumed to be differentiable. One of the necessary conditions for
x∗∈S to be optimal for (4.34) is

∂uv (x∗)
∂xv

+ ∑
m:m�=v

∂um (x∗)
∂xv

= λ ∗v ,∀v ∈ V (4.35)

where λ ∗v is a Lagrange multiplier used to regulate the strategy selection within the
strategy set of player v. In a non-cooperative game, where each player selfishly tries
to optimize its own payoff rather than the common objective in (4.34), the condition
(4.35) can serve as a guideline to design an incentive compatible pricing scheme.
Since each player solves

max
xv∈Sv

wv (x) , ∀v ∈ V , (4.36)

where wv (x) = uv (x)− κv (x), the unit price κv (x) that user v is charged for the

common resource should be based on ∑m:m�=v
∂um(x)
∂xv

. Specifically, κv (x), ∀v ∈ V

should be designed to guarantee that the Nash equilibrium for (4.36) also satisfies
the first order necessary conditions of (4.34) .

Applications of these techniques to communication systems can be found in, for
example, [26, 39]. To bring the competitive players to solve a social utility max-
imization problem in (4.34) , the authors in [26] duplicate the player sets into two
sets. In the first set, each player updates its decision by best response to maximize

4 Distributed Optimization and Games: A Tutorial Overview 139

its individual payoff in (4.36). In another set, each player charge prices according
to the first order necessary condition (4.35). The existence and stability of a Nash
equilibrium is guaranteed using supermodular game theory. In [39], the divisible
resource allocation is addressed by proportional auction scheme. The efficiency of
this auction is determined by the cost function, since it is related to the Lagrange
multiplier, which is used to relax the global constraint in the corresponding social
welfare maximization problem. To maximize the social welfare, the cost function is
carefully designed by comparing the first order necessary conditions of local payoff
function with those of social utility function. More discussion on pricing to improve
equilibrium efficiency can be found in [42].

The intuition behind why pricing allows to improve the efficiency of Nash equi-
libria is that it introduces an (implicit) message passing between players such that
the original interior equilibrium is driven to the Pareto frontier. In a word, the dis-
crepancy of equilibrium states between the social optimum and selfish behavior is
compensated by the price scheme.

4.6 Dynamics of Gradient Algorithms

When people propose a gradient algorithm to solve an optimization problem, one
of the basic questions to be answered is whether the algorithm will converge to the
desired equilibria. We have already provided several convergence results when the
gradient is immediately and accurately available to the decision-makers. However,
in practice, information is often delayed and sometimes distorted. To study such
information limitations, it is often useful to study the properties of the correspond-
ing differential equation under delays and perturbations. For this purpose, we next
introduce the Lyapunov stability theory, which is widely used in control theory.

Let x = 0 be an equilibrium point for

dx(t)
dt

= ϑ (x(t)) (4.37)

and B⊂R
n be a region containing 0. Let V : B→R be a continuously differentiable

function such that V (x) > 0, ∀x �= 0 and V (0) = 0. There are the following condi-
tions for various notions of stability.

(1) If dV (x(t))
dt ≤ 0, ∀x ∈ B, then the equilibrium is stable and V (x) is called a Lya-

punov function.
(2) In addition, if dV (x(t))

dt < 0, ∀x ∈ B\{0} , then the equilibrium is asymptotically
stable.
(3) In addition to (1) and (2) above, if V is radially unbounded i.e. V (x)→ ∞ as
x→ ∞ then the equilibrium is globally asymptotically stable.

Note that the above theorem also holds if the equilibrium is a nonzero x̂. In this
case, consider a system with state y = x− x̂ and the results hold immediately.

140 B. Yang and M. Johansson

4.6.1 Connection between Lyapunov Functions and Objective
Functions

In this section we first start to consider

minx∈Rn f (x) , (4.38)

where the function f : R
n → R is differentiable and strictly convex. One of the

simplest methods for solving (4.38) is the gradient descent algorithm (4.39), which
attempts to maximize the decrease of the objective function in each iteration by
updating the current iterate in the opposite direction of the gradient of f .

x(k+Δ) = x(k)−α∇ f (x) (4.39)

Let us use the gradient flow in (4.40) to approximate the sequence
{

x(k)
}

gener-

ated by (4.39) .

dx
dt

= lim
Δ→0+

x(k+Δ)− x(k)

Δ
=−α∇ f (x) . (4.40)

When people study the dynamics of gradient method, Lyapunov functions are
usually adopted to study the stability of stationary point (local or global optimum) to
which the gradient algorithm may converge. However, there is no common method
to construct a Lyapunov function, whose existence is only sufficient to guarantee the
stability of a stationary point. A Lyapunov function can be regarded as the ”energy”
of a system. If one can prove that the energy along the considered dynamics is
continuously decreasing, the system would finally settle down at the lowest-energy
state. When we study the convergence of gradient method in an optimization setting,
the convex cost function f (x) will keep decreasing until it reaches a stationary point
of the gradient dynamics, which coincides with the minimum of f (x). Thus, one
intuition of selecting Lyapunov function for ẋ := dx

dt := ϑ (x(t)) is to associate it
with the objective function. More precisely, choose

V (x(t)) := f (x∗)− f (x(t)) (4.41)

as the Lyapunov candidate, where x∗ is one optimum solution of (4.38) . It is
straightforward to see that V (x) ≥ 0, ∀x ∈ X and V (x) = 0 iff x = x∗. Furthermore
V (x) is nondecreasing along the trajectories of (4.40) by showing

dV (x(t))
dt

=
n

∑
i=1

∂V (x)
∂xi

· dxi

dt
=−α ‖∇ f (x)‖2 ≤ 0 (4.42)

with dV (x(t))
dt = 0 iff x = x∗. It follows that (4.41) is a Lyapunov function. Accord-

ing to Lyapunov stability theory, the unique minimum x∗ is globally asymptotically
stable.

For a concrete example, Kelly et al. [31] study the stability of dual-based
flow control algorithm in communication networks, where the Lyapunov function

4 Distributed Optimization and Games: A Tutorial Overview 141

coincides the concave objective function of dual network problem. For the stability
of primal algorithm in network resource allocation [2], [11], the Lyapunov function
is the same as the associated strictly concave objective function.

Similar like the direct connection between Lyapunov function and objective func-
tion in convex optimization problems, in some non-cooperative game, say potential
game, its Lyapunov function is just the potential of the game. Let’s consider a strate-
gic non-cooperative game Ξ =

{
V ,{Sv}v∈V ,{wv}v∈V

}
, where V is the set of |V |

players; Sv is the set of strategies of player v and wv is its payoff function.
Gradient based algorithm are usually adopted for each player to follow to reach

a Nash equilibrium,
dxv

dt
= α

∂wv (x(t))
∂xv

, ∀v ∈ V , (4.43)

where α > 0 is the stepsize.
One interesting property of potential games is that the Lyapunov function for the

gradient system (4.43) is just the (scaled version) of potential function Φ (x) given
in (4.32). Let’s consider the following candidate Lyapunov function [61]:

V (x) =Φmax−Φ (x) ,

where Φ (x∗) := Φmax denotes the maximum value of the potential Φ over S . It
is easy to show the positiveness of V (x) , ∀x∈S except x = x∗. Following (4.32),
V (x(t)) is non-decreasing along the trajectories of the system (4.43) ,

dV (x(t))
dt

=−∇T
x Φ (x)

(
d
dt

x(t)
)

=−α ‖∇xΦ (x)‖2 ≤ 0. (4.44)

By LaSalle’s invariance principle5 and (4.44) the trajectories of (4.43) converge to
the largest invariant set {

x∈S :
dV (x(t))

dt
= 0

}
. (4.45)

Since the set in (4.45) contains only the unique Nash equilibrium of the game Ξ
if Φ (x) is strictly concave, the dynamics (4.43) converges to such an equilibrium
asymptotically. In a potential game, although each player v selfishly maximizes its
own payoff wv (x) , it implicitly maximizes an imaginary objective, the potential
function. Thus, V (x) =Φmax−Φ (x) can be used to measure the ”energy” accumu-
lated along the trajectory (4.43).

By the discussions above, the convexity (concavity) plays an essential role in
finding a candidate Lyapunov function. The connection between Lyapunov function
and objective function may be invalidated in some cases. For example, the integra-
tion of gradient dynamics with respect to the variables does not result in a common
objective function or the potential function in a non-cooperative game is hard to
find. One may seek Lyapunov function by a more general method, the Krasovskii’s
method.

5 To be introduced afterwards.

142 B. Yang and M. Johansson

4.6.2 Krasovskii’s Method

Let us use a saddle point problem to illustrate Krasovskii’s method: find x∗ and λ ∗
such that

L(x∗,λ)≤ L(x∗,λ ∗)≤ L(x,λ ∗) , ∀x ∈ X , ∀λ ∈M,

where L : X×M→R is a strictly convex-concave function. X and M are closed con-
vex sets in R

n and R
m. The saddle point function can for example be a Lagrangian

L(x,λ) = f0 (x)+λ T f (x)

of a convex programming problem

x∗ ∈ argmin{ f0 (x) | fi (x)≤ 0, i = 1, . . . ,m, x ∈ X} .

Assuming that the function L(x,λ) is differentiable, the sufficient and necessary
conditions to be a saddle point are

x∗ = PX (x∗ −α∇xL(x∗,λ ∗)) , (4.46a)

λ ∗ = PM (λ ∗+α∇λL(x∗,λ ∗)) (4.46b)

where PX (·) and PM (·)are the projection on sets X and M, respectively. The differ-
ence between the left and right side of of (4.46), which is equal to zero at the point
x∗, λ ∗ and non-zero at an arbitrary point x, λ , specifies a mapping of the set R

n×R
m

into itself. The resultant space can be viewed as a vector field with the fixed point
x∗, λ ∗. If X = R

n, M = R
m, this problem is written as the system of

dx
dt

= −α∇xL(x,λ) (4.47a)

dλ
dt

= α∇λL(x,λ) (4.47b)

where α is the step-size. It can be checked that (4.47) admits a unique solution.
Obviously, L(x,λ) is not a Lyapunov function of (4.47) since (4.47) accounts

for the decrease in one variable x and increase in another variable λ . One alternative
Lyapunov function is constructed by Krasovskii’s method,

V (z) = żT Aż, (4.48)

where z = [x,λ]T , A = 1
2 diag

(
α−1

)
. V (z) is positive except the equilibrium z∗ =

[x∗,λ ∗]T . It can be computed that the time-derivative of (4.48) along the trajectories
of (4.47) results in

V̇ (z) =−żT

[
∂ 2L
∂x2 0

0 − ∂ 2L
∂λ 2

]

ż≤ 0. (4.49)

V̇ (z) = 0 happens only at the equilibrium point z∗ = [x∗,λ ∗]T . Hence, the trajectory
of dynamics (4.47) will tend to the saddle point of (x∗,λ ∗) asymptotically.

4 Distributed Optimization and Games: A Tutorial Overview 143

Krasovskii’s method is quite general and it can also be used to construct a Lya-
punov function for the gradient based algorithms (4.40) and (4.43). Recently it
has been used for studying stability of gradient algorithms for network resource al-
location based on convex optimization [19]. Since the time-derivative of Lyapunov
function (4.48) contains the second order global information, it can be used to prove
the global asymptotic stability of the unique Nash equilibrium in a non-cooperative
game [58], [1], [70]. However, imposing conditions on the Jacobian of pseudo-
gradient [58]-[70] may be sometimes conservative since it ignores local structure
of each player’s payoff. By exploiting the local structure of payoff in [17], the same
stability of gradient algorithm can be proved by a quadratic Lyapunov function with-
out imposing global conditions proposed by [1].

4.6.3 Non-strictly Convex Problem

So far, we only discussed the stability of gradient algorithm for strictly concave/con-
vex problem. For non-strictly convex/concave objective function, there may exist
multiple equilibria. Then the corresponding gradient algorithm is no more guar-
anteed to converge to one of the equilibria asymptotically, see [12], [38]. We will
invoke LaSalle’s invariance principle to determine the convergence of gradient al-
gorithms to multiple equilibria.

Theorem 4.8 (LaSalle’s invariance principle [32]). Consider the differential
equation in (4.37) . Let V : B→ R be a radially unbounded, continuoustly differ-
entiable, positive definite function such that V̇ (x) ≤ 0 for all x∈B. Let E be the set
of points in B such that V̇ (x) = 0. Let M be the largest invariant set6 in E . Then,
every solution of (4.37) starting in B tends to M as t→ ∞.

LaSalle’s invariance principle implies that any equilibrium point of a gradient algo-
rithm is in invariant set M . Also the domain of attraction7 of an equilibrium point
is also an invariant set. However, we do not know whether all elements in invari-
ant set are preferred in terms of stability and optimality. The key is to ensure that
the invariant set includes the global optimal equilibria exclusively. Basically, the
invariant set also gives us some insight to construct a Lyapunov function. Recall
that the invariant set should include all global optimum for the gradient algorithm
to converge to. One possible way of constructing Lyapunov function is to connect
the time-derivative of Lyapunov function with KKT conditions, i.e. any equilibrium
satisfying KKT conditions should be in the largest invariant set M . After that, one
may argue that the trajectories of gradient algorithm converge to the desired equi-
librium in M . They may also converge to non-equilibria in M if there are any.

6 A set I is an invariant set for a dynamic system dx(t)
dt = ϑ (x (t)) if every trajectory x (t)

which starts from a point in I remains in I for all time. For example, any equilibrium
point is an invarient set.

7 Let ϕ (t;x) be the solution of (4.37) that starts at initial state x at time t = 0. Then, the
domain of attraction is defined as the set of all points x such that ϕ (t;x) is defined for
t ≥ 0 and limt→∞ϕ (t;x) = 0..

144 B. Yang and M. Johansson

To achieve optimality, one usually establish conditions to exclude those undesired
points in the set M . This is done by studying the dynamics or properties of a reduced
system, which is obtained by substituting the elements in M into original gradient
systems.

Recently, a primal-dual algorithm was proposed in [73] to solve a non-strictly
concave problem, which comes from uplink resource allocation problem in OFDM
networks. The authors first established some properties that the elements in the
largest invariant set should satisfy. Based on those properties they reduced the orig-
inal primal-dual gradient-based algorithm into a set of linear differential equations.
By studying stability of the reduced linear system, they equivalently excluded the
undesired elements in M . It should be noted that LaSalle’s invariance principle can
also be used to argue the uniqueness of Lagrange multiplier to which a primal-dual
algorithm converges, although the Lagrange multiplier satisfying KKT conditions
can be multiple, see [16] for network resource allocation example.

4.7 Conclusions

We have attempted to provide a tutorial overview of distributed optimization
and games for decision-making in networked systems. Starting with a review of
first-order methods for convex optimization, we have discussed how distributed op-
timization mechanisms can be designed using mathematical decomposition, net-
worked optimization, and game theory. While decomposition methods result in very
efficient computations, they typically require central coordination of subsystems.
Networked optimization techniques, on the other hand, remove the central coordi-
nation and subsystems communicate and cooperate only with their nearest neighbors
to find the global optimum. Finally, techniques from non-cooperative games allow
to eliminate the overhead traffic for coordination of subsystems altogether, but will
in general not be able to find the global optimum (unless a pricing mechanism is
introduced that encourages entities to strive towards the common good).

Naturally, a book chapter like this has to be selective in scope. Many interesting
and useful ideas and results had to be left out. This includes, for example, optimiza-
tion of systems with stochastic parameters or noise, and analysis of decomposition
and networked optimization under information delay. For the material that we have
presented, our focus has been on basic concepts and ideas rather than the very latest
extensions and generalizations. Although many of the key results are now almost
half a century old, they have proven to be very useful in a wide range of applica-
tions, from resource allocation in communication systems to wide-area control of
infrastructures. It is our firm belief that these techniques will play an increasingly
important role in engineering, as the systems that we build become more and more
networked and interconnected, and as the requirements on their performance and
resource-efficiency continue to increase.

4 Distributed Optimization and Games: A Tutorial Overview 145

References

1. Alpcan, T., Basar, T., Dey, S.: A power control game based on outage probabilities for
multicell wireless data networks. IEEE transactions on wireless communications 5(4)
(2006)

2. Alpcan, T., Fan, X., Basar, T., Arcak, M., Wen, J.T.: Power control for multicell CDMA
wireless networks: A team optimization approach. Wireless Networks 14(5), 647–657
(2008)

3. Arrow, K.J., Hurwicz, L.: Decentralization and Computation in Resource Allocation. In:
Essays in Economics and Econometrics. University of North Carolina Press, Rayleigh
(1960)

4. Benders, J.F.: Partitioning procedures for solving mixed-variables programming. Nu-
merische Matematik 4, 238–252 (1962)

5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
6. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical meth-

ods. Prentice-Hall, Englewood Cliffs (1989)
7. Border, K.C.: Fixed point theorems with applications to economics and game theory.

Cambridge Univ. Pr., Cambridge (1989)
8. Boyd, S., Diaconis, P., Xiao, L.: Fastest mixing markov chain on a graph. SIAM Re-

view 46, 667–689 (2004)
9. Boyd, S.P.: Course material for ee364b, stanford university (2007),

http://www.stanford.edu/class/ee364b/
10. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cam-

bridge (2004)
11. Chen, L., Low, S.H., Doyle, J.C.: Joint congestion control and media access control

design for wireless ad hoc networks. In: Proceedings of IEEE Infocom, pp. 2212–2222
(2005)

12. Chen, M., Ponec, M., Sengupta, S., Li, J., Chou, P.A.: Utility maximization in peer-to-
peer systems. In: Proc. ACM Sigmetrics (2008)

13. Chiang, M.: Balancing transport and physical layers in wireless multihop networks:
Jointly optimal congestion control and power control. IEEE Journal on Selected Areas
in Communications 23, 104–116 (2005)

14. Cohen, G.: Optimization by decomposition and coordination: a unified approach. IEEE
Transactions on Automatic Control 23(2), 222–232 (1978)

15. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Re-
search 8, 101–111 (1960)

16. Eryilmaz, A., Srikant, R.: Joint congestion control, routing and mac for stability and
fairness in wireless networks. IEEE Journal on Selected Areas in Communications 24,
1514–1524 (2006)

17. Fan, X., Alpcan, T., Arcak, M., Wen, T.J., Basar, T.: A passivity approach to game-
theoretic CDMA power control. Automatica 42(11), 1837–1847 (2006)

18. Fawal, H.E., Georges, D., Bornard, G.: Optimal control of complex irrigation systems
via decomposition-coordination and the use of augmented lagrangian. In: IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, San Diego, CA, pp. 3874–3879
(November 1998)

19. Feijer, D., Paganini, F.: Krasovskiis Method in the Stability of Network Control. In:
Proceedings of the 2009 conference on American Control Conference, pp. 3292–3297.
Institute of Electrical and Electronics Engineers Inc. (2009)

20. Fudenberg, D., Tirole, J.: Game theory. MIT Press, Cambridge (1991)

http://www.stanford.edu/class/ee364b/

146 B. Yang and M. Johansson

21. Geoffrion, A.M.: Elements of large-scale mathematical programming I–II. Management
Science 16, 652–691 (1970)

22. Goodman, D., Mandayam, N.: Power control for wireless data. IEEE Personal Commu-
nications 7, 48–54 (2000)

23. Hastings, W.K.: Monte carlo sampling methods using markov chains and their applica-
tions. Biometrika 57, 97–109 (1970)

24. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Hei-
delberg (2001)

25. Holmberg, K.: Primal and dual decomposition as organizational design: price and/or re-
source directive decomposition. In: Design models for hierarchical organizations: com-
putation, information and decentralization, pp. 61–92. Kluwer Academic Publishers,
Dordrecht (1995)

26. Huang, J., Berry, R.A., Honig, M.L.: Distributed interference compensation for wireless
networks. IEEE Journal on Selected Areas in Communications 24, 1074–1084 (2006)

27. Johansson, B., Keviczky, T., Johansson, M., Johansson, K.H.: Subgradient methods and
consensus algorithms for solving convex optimization problems. In: 47th IEEE Confer-
ence on Decision and Control, CDC 2008, pp. 4185–4190 (2008)

28. Johansson, B., Rabi, M., Johansson, M.: A randomized incremental subgradient method
for distributed optimization in networked systems. SIAM Journal on Optimization 20(3),
1157–1170 (2009)

29. Johari, R., Mannor, S., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation
game: The case of elastic supply. Mathematics of Operations Research 29, 407–435
(2004)

30. Kelly, F.: Charging and rate control for elastic traffic. European transactions on Telecom-
munications 8(1), 33–37 (1997)

31. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational Research
society 49(3), 237–252 (1998)

32. Khalil, H.K.: Nonlinear systems, 3rd edn (2002)
33. Koshal, J., Nedic, A., Shanbhag, U.V.: Distributed multiuser optimization: Algorithms

and error analysis. In: Proceedings of the 48th IEEE Conference on Decision and Con-
trol, held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009., pp.
4372–4377 (2009)

34. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer Science Re-
view 3(2), 65–69 (2009)

35. Larsson, T., Patriksson, M., Strömberg, A.-B.: Ergodic primal convergence in dual sub-
gradient schemes for convex programming. Mathematical Programming 86, 283–312
(1999)

36. Lasaulce, S., Debbah, M., Altman, E., de Cachan, E.N.S., Cachan, F.: Methodologies for
analyzing equilibria in wireless games. IEEE Signal Processing Magazine 26(5), 41–52
(2009)

37. Lasdon, L.S.: Optimization Theory for Large Systems. Macmillan Co., New York (1970)
38. Lin, X., Shroff, N.B.: Utility maximization for communication networks with multipath

routing. IEEE Transactions on Automatic Control 51(5) (2006)
39. Maheswaran, R., Basar, T.: Efficient signal proportional allocation (ESPA) mechanisms:

Decentralized social welfare maximization for divisible resources. IEEE Journal on Se-
lected Areas in Communications 24(5) (2006)

40. Marden, J.R., Arslan, G., Shamma, J.S.: Cooperative control and potential games. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6), 1393–1407
(2009)

4 Distributed Optimization and Games: A Tutorial Overview 147

41. Marden, J.R., Wierman, A.: Overcoming limitations of game-theoretic distributed con-
trol. In: 48th IEEE Conference on Decision and Control (2009)

42. Mazumdar, R.R., Courcoubetis, C.A., Duffield, N., Kesidis, G., Odlyzko, A., Srikant, R.,
Walrand, J., Cosman, P.: Guest Editorial Price-Based Access Control and Economics of
Networking. IEEE Journal on Selected Areas in Communications 24(5) (2006)

43. Monderer, D., Shapley, L.S.: Potential games. Games and economic behavior 14, 124–
143 (1996)

44. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control 54(1), 48–61 (2009)

45. Nedic, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable opti-
mization. SIAM J. on Optimization 12(1), 109–138 (2001)

46. Nedić, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgra-
dient methods. SIAM Journal on Optimization 19(4), 1757–1780 (2008)

47. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Doklady AN SSSR (translated as Soviet Math. Docl.) 269, 543–
547 (1983)

48. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Program-
ming 103(1), 127–152 (1995)

49. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Springer,
Netherlands (2003)

50. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

51. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

52. Olshevsky, A., Tsitsiklis, J.N.: Convergence rates in distributed consensus and averaging.
In: Proceedings of IEEE CDC (2006)

53. Polyak, B.: Introduction to Optimization. Optimization Software (1987)
54. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Third Interna-

tional Symposium on Information Processing in Sensor Networks, IPSN 2004, pp. 20–27
(2004)

55. Ram, S.S., Nedic, A., Veeravalli, V.V.: Incremental stochastic subgradient algorithms for
convex optimization. SIAM Journal on Optimization 20(2), 691–717 (2009)

56. Rantzer, A.: Using game theory for distributed control engineering. Department of Au-
tomatic Control, Lund University, Sweden, Tech. Rep. ISRN LUTFD2/TFRT–7620–SE
(July 2008)

57. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1996)
58. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games.

Econometrica: Journal of the Econometric Society 33(3), 520–534 (1965)
59. Saraydar, C.U., Mandayam, N.B., Goodman, D.J.: Efficient power control via pricing in

wireless data networks. IEEE transactions on Communications 50(2), 291–303 (2002)
60. Schizas, I.D., Ribeiro, A., Giannakis, G.B.: Consensus in ad hoc wsns with noisy links

part i: Distributed estimation of deterministic signals. IEEE Transactions on Signal Pro-
cessing 56(1), 350–364 (2008)

61. Scutari, G., Barbarossa, S., Palomar, D.P.: Potential games: A framework for vector
power control problems with coupled constraints. In: Proceedings 2006 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 4
(2006)

62. Shor, N.Z.: Minimization methods for non-differentiable functions. Springer, Heidelberg
(1985)

148 B. Yang and M. Johansson

63. Shum, K.W., Leung, K.K., Sung, C.W.: Convergence of iterative waterfilling algorithm
for Gaussian interference channels. IEEE Journal on Selected Areas in Communica-
tions 25(6), 1091–1100 (2007)

64. Sung, C.W., Leung, K.K.: A generalized framework for distributed power control in
wireless networks. IEEE Transactions on Information Theory 51(7), 2625 (2005)

65. Takahara, Y.: Multilevel approach to dynamic optimization. Technical Report SRC-50-
C-64-18, Systems Research Center, Case Western Reserve University (1964)

66. Topkis, D.M.: Supermodularity and complementarity. Princeton Univ. Pr., Princeton
(1998)

67. Walter, R.: Principles of mathematical analysis. McGraw-Hill, New York (1976)
68. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Systems & Control

Letters 53(1), 65–78 (2004)
69. Yang, B., Feng, G., Guan, X.: Noncooperative random access game via pricing in ad

hoc networks. In: 2007 46th IEEE Conference on Decision and Control, pp. 5704–5709
(2007)

70. Yang, B., Feng, G., Shen, Y., Long, C., Guan, X.: Channel-Aware Access for Cognitive
Radio Networks. IEEE transactions on vehicular technology 58(7), 3726–3737 (2009)

71. Yang, B., Shen, Y., Johansson, M., Guan, X.: Threshold-based Multichannel Access with
Energy Constraint. In: ICC 2010 IEEE International Conference on Communications
(2010)

72. Yates, R.D.: A framework for uplink power control in cellular radio systems. IEEE Jour-
nal on Selected Areas in Communications 13(7), 1341–1347 (1995)

73. Zhang, X., Chen, L., Huang, J., Chen, M., Zhao, Y.P.: Distributed and optimal reduced
primal-dual algorithm for uplink OFDM resource allocation. In: 2009 Joint 48th IEEE
Conference on Decision and Control (CDC) and 28th Chinese Control Conference, CCC
2009 (2009)

Chapter 5
Decentralized Model Predictive Control

Alberto Bemporad and Davide Barcelli

Abstract. Decentralized and distributed model predictive control (DMPC) ad-
dresses the problem of controlling a multivariable dynamical process, composed
by several interacting subsystems and subject to constraints, in a computation and
communication efficient way. Compared to a centralized MPC setup, where a global
optimal control problem must be solved on-line with respect to all actuator com-
mands given the entire set of states, in DMPC the control problem is divided into
a set of local MPCs of smaller size, that cooperate by communicating each other a
certain information set, such as local state measurements, local decisions, optimal
local predictions. Each controller is based on a partial (local) model of the overall
dynamics, possibly neglecting existing dynamical interactions. The global perfor-
mance objective is suitably mapped into a local objective for each of the local MPC
problems.

This chapter surveys some of the main contributions to DMPC, with an emphasis
on a method developed by the authors, by illustrating the ideas on motivating exam-
ples. Some novel ideas to address the problem of hierarchical MPC design are also
included in the chapter.

5.1 Introduction

Most of the procedures for analyzing and controlling dynamical systems developed
over the last decades rest on the common presupposition of centrality. Centrality
means that all the information available about the system is collected at a single
location, where all the calculations based on such information are executed. Infor-
mation includes both a priori information about the dynamical model of the system
available off-line, and a posteriori information about the system response gathered

Alberto Bemporad
Department of Mechanical and Structural Engineering, University of Trento
e-mail: bemporad@ing.unitn.it

Davide Barcelli
Department of Information Engineering, University of Siena, Italy
e-mail: barcelli@dii.unisi.it

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 149–178.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

bemporad@ing.unitn.it
barcelli@dii.unisi.it

150 A. Bemporad and D. Barcelli

by different sensors on-line. When considering large-scale systems the presuppo-
sition of centrality fails because of the lack of a centralized information-gathering
system or of centralized computing capabilities. Typical examples of such systems
are power networks, water networks, urban traffic networks, cooperating vehicles,
digital cellular networks, flexible manufacturing networks, supply chains, complex
structures in civil engineering,and many others. In such systems the centrality as-
sumption often fails because of geographical separation of components (spatial
distribution), as the costs and the reliability of communication links cannot be
neglected. Moreover, technological advances and reduced cost of microprocessors
provide a new force for distributed computation. Hence the current trend for decen-
tralized decision making, distributed computations, and hierarchical control.

Several new challenges arise when addressing a decentralized setting, where most
of the existing analysis and control design methodologies cannot be directly ap-
plied. In a distributed control system which employs decentralized control tech-
niques there are several local control stations, where each controller observes only
local outputs and only controls local inputs. Besides advantages in controller imple-
mentation (namely reduced and parallel computations, reduced communications), a
great advantage of decentralization is maintenance: while certain parts of the over-
all process are interrupted, the remaining parts keep operating in closed-loop with
their local controllers, without the need of stopping the overall process as in case
of centralized control. Moreover, a partial re-design of the process does not nec-
essarily imply a complete re-design of the controller, as it would instead in case
of centralized control. However, all the controllers are involved in controlling the
same large-scale process, and is therefore of paramount importance to determine
conditions under which there exists a set of appropriate local feedback control laws
stabilizing the entire system.

Ideas for decentralizing and hierarchically organizing the control actions in in-
dustrial automation systems date back to the 70’s [37, 26, 27, 31, 11], but were
mainly limited to the analysis of stability of decentralized linear control of intercon-
nected subsystems, so the interest faded. Since the late 90’s, because of the advances
in computation techniques like convex optimization, the interest in decentralized
control raised again [14, 29], and convex formulations were developed, although
limited to special classes of systems such as spatially invariant systems [4]. Decen-
tralized control and estimation schemes based on distributed convex optimization
ideas have been proposed recently in [30, 20] based on Lagrangean relaxations.
Here global solutions can be achieved after iterating a series of local computations
and inter-agent communications.

Large-scale multi-variable control problems, such as those arising in the process
industries, are often dealt with model predictive control (MPC) techniques. In MPC
the control problem is formulated as an optimization one, where many different
(and possibly conflicting) goals are easily formalized and state and control con-
straints can be included. Many results are nowadays available concerning stability
and robustness of MPC, see e.g. [24]. However, centralized MPC is often unsuitable
for control of large-scale networked systems, mainly due to lack of scalability and
to maintenance issues of global models. In view of the above considerations, it is

5 Decentralized Model Predictive Control 151

Fig. 5.1 Hierarchical and decentralized/distributed model predictive control of a large-scale
process

then natural to look for decentralized or for distributed MPC (DMPC) algorithms,
in which the original large-size optimization problem is replaced by a number of
smaller and easily tractable ones that work iteratively and cooperatively towards
achieving a common, system-wide control objective.

Even though there is not a universal agreement on the distinction between “de-
centralized” and “distributed”, the main difference between the two terms depends
on the type of information exchange:

• decentralized MPC: Control agents take control decisions independently on each
other. Information exchange (such as measurements and previous control deci-
sions) is only allowed before and after the decision making process. There is no
negotiation between agents during the decision process. The time needed to de-
cide the control action is not affected by communication issues, such as network
delays and loss of packets.

• distributed MPC: An exchange of candidate control decisions may also
happen during the decision making process, and iterated until an agreement is
reached among the different local controllers, in accordance with a given stop-
ping criterion.

In DMPC M subproblems are solved, each one assigned to a different control
agent, instead of a single centralized problem. The goal of the decomposition is
twofold: first, each subproblem is much smaller than the overall problem (that is,
each subproblem has far fewer decision variables and constraints than the central-
ized one), and second, each subproblem is coupled to only a few other subproblems
(that is, it shares variables with only a limited number other subproblems). Although
decentralizing the MPC problem may lead to a deterioration of the overall closed-
loop performance because of the suboptimality of the resulting control actions, be-
sides computation and communication benefits there are also important operational
benefits in using DMPC solutions. For instance local maintenance can be carried
out by only stopping the corresponding local MPC controller, while in a centralized
MPC approach the whole process should be suspended.

A DMPC control layer is often interacting with a higher-level control layer in a
hierarchical arrangement, as depicted in Figure 5.1. The goal of the higher layer is to

152 A. Bemporad and D. Barcelli

possibly adjust set-points and constraint specifications to the DMPC layer, based on
a global (possibly less detailed) model of the entire system. Because of its general
overview of the entire process, such a centralized decision layer allows one to reach
levels of coordination and performance optimization otherwise very difficult (if not
impossible) using a decentralized or distributed action. For a recent survey on de-
centralized, distributed and hierarchical model predictive control architectures, the
reader is referred to the recent survey paper [32].

In a typical DMPC framework the steps performed by the local controllers at
each control instant are the following: (i) measure local variables and update state
estimates, (ii) solve the local receding-horizon control problem, (iii) apply the con-
trol signal for the current instant, (iv) exchange information with other controllers.
Along with the benefits of a decentralized design, there are some inherent issues
that one must face in DMPC: ensuring the asymptotic stability of the overall sys-
tem, ensure the feasibility of global constraints, quantify the loss of performance
with respect to centralized MPC.

5.2 Model Predictive Control

In this section we review the basic setup of linear model predictive control. Consider
the problem of regulating the discrete-time linear time-invariant system

{
x(t + 1) = Ax(t)+ Bu(t)

y(t) = Cx(t) (5.1)

to the origin while fulfilling the constraints

umin ≤ u(t)≤ umax (5.2)

at all time instants t ∈ Z0+ where Z0+ is the set of nonnegative integers, x(t) ∈
R

n,u(t) ∈ R
m and y(t) ∈ R

p are the state, input, and output vectors, respectively,
and the pair (A,B) is stabilizable. In (5.2) the constraints should be interpreted
component-wise and we assume umin < 0 < umax.

MPC solves such a constrained regulation problem as described below. At each
time t, given the state vector x(t), the following finite-horizon optimal control problem

V (x(t)) = min
U

x′t+NPxt+N +
N−1

∑
k=0

x′kQxk + u′kRuk (5.3a)

s.t. xk+1 = Axk + Buk, k = 0, . . . ,N−1 (5.3b)

yk = Cxk, k = 0, . . . ,N (5.3c)

x0 = x(t) (5.3d)

umin ≤ uk ≤ umax, k = 0, . . . ,Nu−1 (5.3e)

uk = Kxk, k = Nu, . . . ,N−1 (5.3f)

5 Decentralized Model Predictive Control 153

Table 5.1 Classification of existing DMPC approaches.

acronym submodels constraints intersampling broadcast state stability references
iterations predictions constraints constraints

ABB coupled local inputs no no no none [2, 3, 5, 1]
VRW coupled local inputs yes no no none [35, 34]
MD coupled local inputs yes yes no none [25]
DM decoupled local inputs no yes yes compatibility [15]
KBB decoupled no yes yes none [21]
JK coupled local inputs no yes yes compatibility [17, 12, 18]

is solved, where U � {u0, . . . ,uNu−1} is the sequence of future input moves, xk de-
notes the predicted state vector at time t +k, obtained by applying the input sequence
u0, . . . ,uk−1 to model (5.1), starting from x(t). In (5.3) N > 0 is the prediction hori-
zon, Nu ≤N−1 is the input horizon, Q = Q′ ≥ 0, R = R′ > 0, P = P′ ≥ 0 are square
weight matrices defining the performance index, and K is some terminal feedback
gain. As we will discuss below, P, K are chosen in order to ensure closed-loop sta-
bility of the overall process.

Problem (5.3) can be recast as a quadratic programming (QP) problem (see
e.g. [24, 9]), whose solution U∗(x(t)) � {u∗0 . . . u∗Nu−1} is a sequence of optimal
control inputs. Only the first input

u(t) = u∗0 (5.4)

is actually applied to system (5.1), as the optimization problem (5.3) is repeated
at time t + 1, based on the new state x(t + 1) (for this reason, the MPC strategy
is often referred to as receding horizon control). The MPC algorithm (5.3)-(5.4)
requires that all the n components of the state vector x(t) are collected in a (possibly
remote) central unit, where a quadratic program with mNu decision variables needs
to be solved and the solution broadcasted to the m actuators. As mentioned in the
introduction, such a centralized MPC approach may be inappropriate for control of
large-scale systems, and it is therefore natural to look for decentralized or distributed
MPC (DMPC) algorithms.

5.3 Existing Approaches to DMPC

A few contributions have appeared in recent years in the context of DMPC,
mainly motivated by applications of decentralized control of cooperating air ve-
hicles [10, 28, 22]. We review in this section some of the main contributions on
DMPC, summarized in Table 5.1, that have appeared in the scientific literature. An
application of some of the results surveyed in this chapter in a problem of distributed
control of power networks with comparisons among DMPC approaches is reported
in [13].

154 A. Bemporad and D. Barcelli

In the following sections, we denote by M be the number of local MPC con-
trollers that we want to design, for example M = m in case each individual actuator
is governed by its own local MPC controller.

5.3.1 DMPC Approach of Alessio, Barcelli, and Bemporad

In [2, 3, 5, 1] a decentralized MPC design approach for possibly dynamically cou-
pled processes was proposed. A (partial) decoupling assumption only appears in the
prediction models used by different MPC controllers. The chosen degree of decou-
pling represents a tuning knob of the approach. Sufficient criteria for analyzing the
asymptotic stability of the process model in closed loop with the set of decentralized
MPC controllers are provided. If such conditions are not verified, then the structure
of decentralization should be modified by augmenting the level of dynamical cou-
pling of the prediction submodels, increasing consequently the number and type
of exchanged information about state measurements among the MPC controllers.
Following such stability criteria, a hierarchical scheme was proposed to change the
decentralization structure on-line by a supervisory scheme without destabilizing the
system. Moreover, to cope with the case of a non-ideal communication channel
among neighboring MPC controllers, sufficient conditions for ensuring closed-loop
stability of the overall closed-loop system when packets containing state measure-
ments may be lost were given. We review here the main ingredients and results of
this approach.

5.3.1.1 Decentralized Prediction Models

Consider again process model (5.1). Matrices A, B may have a certain number of
zero or negligible components corresponding to a partial dynamical decoupling of
the process, especially in the case of large-scale systems, or even be block diagonal
in case of total dynamical decoupling. This is the case for instance of independent
moving agents each one having its own dynamics and only coupled by a global
performance index.

For all i = 1, . . . ,M, we define xi ∈ R
ni as the vector collecting a subset Ixi ⊆

{1, . . . ,n} of the state components,

xi = W ′i x =

⎡

⎢
⎣

xi
1

...
xi

ni

⎤

⎥
⎦ ∈R

ni (5.5a)

where Wi ∈ R
n×ni collects the ni columns of the identity matrix of order n corre-

sponding to the indices in Ixi, and, similarly,

ui = Z′iu =

⎡

⎢
⎣

ui
1

...
ui

mi

⎤

⎥
⎦ ∈ R

mi (5.5b)

5 Decentralized Model Predictive Control 155

as the vector of input signals tackled by the i-th controller, where Zi ∈R
m×mi collects

mi columns of the identity matrix of order m corresponding to the set of indices
Iui ⊆ {1, . . . ,m}. Note that

W ′i Wi = Ini , Z′iZi = Imi , ∀i = 1, . . . ,M (5.6)

where I(·) denotes the identity matrix of order (·). By definition of xi in (5.5a) we
obtain

xi(t + 1) = W ′i x(t + 1) = W ′i Ax(t)+W ′i Bu(t) (5.7)

An approximation of (5.1) is obtained by changing W ′i A in (5.7) into W ′i AWiW ′i and
W ′i B into W ′i BZiZ′i , therefore getting the new prediction reduced order model

xi(t + 1) = Aix
i(t)+ Biu

i(t) (5.8)

where matrices Ai = W ′i AWi ∈ R
ni×ni and Bi = W ′i BZi ∈ R

mi×mi are submatrices of
the original A and B matrices, respectively, describing in a possibly approximate
way the evolution of the states of subsystem #i.

The size (ni,mi) of model (5.8) in general will be much smaller than the size
(n,m) of the overall process model (5.1). The choice of the pair (Wi,Zi) of decou-
pling matrices (and, consequently, of the dimensions ni, mi of each submodel) is a
tuning knob of the DMPC procedure proposed in the sequel of the paper.

We want to design a controller for each set of moves ui according to prediction
model (5.8) and based on feedback from xi, for all i = 1, . . . ,M. Note that in general
different input vectors ui, u j may share common components. To avoid ambiguities
on the control action to be commanded to the process, we impose that only a sub-
set I #

ui ⊆ Iui of input signals computed by controller #i is actually applied to the
process, with the following conditions

M⋃

i=1

I#
ui = {1, . . . ,m} (5.9a)

I#
ui∩ I#

u j = /0, ∀i, j = 1, . . . ,M, i �= j (5.9b)

Condition (5.9a) ensures that all actuators are commanded, condition (5.9b) that
each actuator is commanded by only one controller. For the sake of simplicity of
notation, since now on we assume that M = m and that I#

ui = i, i = 1, . . . ,m, i.e., that
each controller #i only controls the ith input signal. As observed earlier, in general
Ixi ∩Ix j �= /0, meaning that controller #i may partially share the same feedback
information with controller # j, and Iui∩Iu j �= /0. This means that controller #i may
take into account the effect of control actions that are actually decided by another
controller # j, i �= j, i, j = 1, . . . ,M, which ensures a certain degree of cooperation.

The designer has the flexibility of choosing the pairs (Wi,Zi) of decoupling
matrices, i = 1, . . . ,M. A first guess of the decoupling matrices can be inspired
by the intensity of the dynamical interactions existing in the model. The larger
(ni,mi) the smaller the model mismatch and hence the better the performance of the
overall-closed loop system. On the other hand, the larger (ni,mi) the larger is the

156 A. Bemporad and D. Barcelli

communication and computation efforts of the controllers, and hence the larger the
sampling time of the controllers. An example of model decomposition is given later
in Section 5.4.1.

5.3.1.2 Decentralized Optimal Control Problems

In order to exploit submodels (5.8) for formulating local finite-horizon optimal con-
trol problems that lead to an overall closed-loop stable DMPC system, let the fol-
lowing assumptions be satisfied (these will be relaxed in Theorem 5.5):

Assumption 5.1. Matrix A in (5.1) is strictly Hurwitz1.

Assumption 5.1 restricts the strategy and stability results of DMPC to processes
that are open-loop asymptotically stable, leaving to the controller the mere role of
optimizing the performance of the closed-loop system.

Assumption 5.2. Matrix Ai is strictly Hurwitz, ∀i = 1, . . . ,M.

Assumption 5.2 restricts the degrees of freedom in choosing the decentralized mod-
els. Note that if Ai = A for all i = 1, . . . ,M is the only choice satisfying Assump-
tion 5.2, then no decentralized MPC can be formulated within this framework. For
all i = 1, . . . ,M consider the following infinite-horizon constrained optimal control
problems

Vi(x(t)) = min
{ui

k}∞k=0

∞

∑
k=0

(xi
k)
′W ′i QWix

i
k +(ui

k)
′Z′iRZiu

i
k = (5.10a)

= min
ui

0

(xi
1)
′Pix

i
1 + xi(t)′W ′i QWix

i(t)+ (ui
0)
′Z′iRZiu

i
0 (5.10b)

s.t. xi
1 = Aix

i(t)+ Biu
i
0 (5.10c)

xi
0 = W ′i x(t) = xi(t) (5.10d)

ui
min ≤ ui

0 ≤ ui
max (5.10e)

ui
k = 0, ∀k ≥ 1 (5.10f)

where Pi = P′i ≥ 0 is the solution of the Lyapunov equation

A′iPiAi−Pi =−W ′i QWi (5.11)

that exists by virtue of Assumption 5.2. Problem (5.10) corresponds to a finite-
horizon constrained problem with control horizon Nu = 1 and linear stable pre-
diction model. Note that only the local state vector xi(t) is needed to solve
Problem (5.10).

1 While usually a matrix A is called Hurwitz if all its eigenvalues have strictly negative
real part (continuous-time case), in this paper we say that a matrix A is Hurwitz if all the
eigenvalues λi of A are such that |λi|< 1 (discrete-time case).

5 Decentralized Model Predictive Control 157

At time t, each controller MPC #i measures (or estimates) the state xi(t) (usually
corresponding to local and neighboring states), solves problem (5.10) and obtains
the optimizer

u∗i0 = [u∗i10 , . . . ,u∗ii0 , . . . ,u∗imi
0]′ ∈ R

mi (5.12)

In the simplified case M = m and I#
ui = i, only the i-th sample of u∗i0

ui(t) = u∗ii0 (5.13)

will determine the i-th component ui(t) of the input vector actually commanded to
the process at time t. The inputs u∗i j

0 , j �= i, j ∈Iui to the neighbors are discarded,
their only role is to provide a better prediction of the state trajectories xi

k, and there-
fore a possibly better performance of the overall closed-loop system.

The collection of the optimal inputs of all the M MPC controllers,

u(t) = [u∗11
0 . . . u∗ii0 . . . u∗mm

0]′ (5.14)

is the actual input commanded to process (5.1). The optimizations (5.10) are re-
peated at time t + 1 based on the new states xi(t + 1) = W ′i x(t + 1), ∀i = 1, . . . ,M,
according to the usual receding horizon control paradigm. The degree of coupling
between the DMPC controllers is dictated by the choice of the decoupling matrices
(Wi,Zi). Clearly, the larger the number of interactions captured by the submodels,
the more complex the formulation (and, in general, the solution) of the optimization
problems (5.10) and hence the computations performed by each control agent. Note
also that a higher level of information exchange between control agents requires
a higher communication overhead. We are assuming here that the submodels are
constant at all time steps.

5.3.1.3 Convergence Properties

As mentioned in the introduction, one of the major issues in decentralized RHC is to
ensure the stability of the overall closed-loop system. The non-triviality of this issue
is due to the fact that the prediction of the state trajectory made by MPC #i about
state xi(t) is in general not correct, because of partial state and input information and
of the mismatch between u∗i j (desired by controller MPC #i) and u∗ j j (computed
and applied to the process by controller MPC # j).

The following theorem, proved in [1, 2], summarizes the closed-loop conver-
gence results of the proposed DMPC scheme using the cost function V (x(t)) �
∑M

i=1 Vi(W ′i x(t)) as a Lyapunov function for the overall system.

Theorem 5.3. Let Assumptions 5.1, 5.2 hold and define Pi as in (5.11) ∀i = 1, . . . ,M.
Define

Δui(t) � u(t)−Ziu∗i0 (t), Δxi(t) � (I−WiW ′i)x(t)
ΔAi � (I−WiW ′i)A, ΔBi � B−WiW ′i BZiZ′i

(5.15)

158 A. Bemporad and D. Barcelli

Also, let

ΔY i(x(t)) � WiW
′
i (AΔxi(t)+ BZiZ

′
iΔui(t))+ΔAix(t)+ΔBiu(t) (5.16a)

and

ΔSi(x(t)) �
(
2(AiW

′
i x(t)+ Biu

∗i
0 (t))′+ΔY i(x(t))′Wi

)
PiW

′
i ΔY i(x(t)) (5.16b)

If the condition

(i) x′
(

M

∑
i=1

WiW
′
i QWiW

′
i

)

x−
M

∑
i=1

ΔSi(x)≥ 0, ∀x ∈ R
n (5.17a)

is satisfied, or the condition

(ii) x′
(

M

∑
i=1

WiW
′
i QWiW

′
i

)

x−αx′x−
M

∑
i=1

ΔSi(x)+
M

∑
i=1

u∗i0 (x)′Z′iRZiu
∗i
0 (x)≥ 0,

∀x ∈ R
n (5.17b)

is satisfied for some scalar α > 0, then the decentralized MPC scheme defined in
(5.10)–(5.14) in closed loop with (5.1) is globally asymptotically stable.

By using the explicit MPC results of [9], each optimizer function u∗i0 : R
n �→R

mi ,
i = 1, . . . ,M, can be expressed as a piecewise affine function of x

u∗i0 (x) = Fi jx + Gi j if Hi jx≤ Ki j, j = 1, . . . ,nri (5.18)

Hence, both condition (5.17a) and condition (5.17b) are a composition of quadratic
and piecewise affine functions, so that global stability can be tested through linear
matrix inequality relaxations [19] (cf. the approach of [16]).

As umin < 0 < umax, there exists a ball around the origin x = 0 contained in one
of the regions, say {x ∈ R

n : Hi1x≤ Ki1}, such that Gi1 = 0. Therefore, around the
origin both (5.17a) and (5.17b) become a quadratic form x′(∑M

i=1 Ei)x of x, where
matrices Ei can be easily derived from (5.15), (5.16) and (5.17). Hence, local stabil-
ity of (5.10)–(5.14) in closed loop with (5.1) can be simply tested by checking the
positive semidefiniteness of the square n× n matrix ∑M

i=1 Ei. Note that, depending
on the degree of decentralization, in order to satisfy the sufficient stability criterion
one may need to set Q > 0 in order to dominate the unmodeled dynamics arising
from the terms ΔSi.

In the absence of input constraints, Assumptions 5.1, 5.2 can be removed to ex-
tend the previous DMPC scheme to the case where (A,B) and (Ai,Bi) may not be
Hurwitz, although stabilizable.

Theorem 5.4 ([1, 3]). Let the pairs (Ai,Bi) be stabilizable, ∀i = 1, . . . ,M. Let Prob-
lem (5.10) be replaced by

5 Decentralized Model Predictive Control 159

Vi(x(t)) = min
{ui

k}∞k=0

∞

∑
k=0

(xi
k)
′W ′i QWix

i
k +(ui

k)
′Z′iRZiu

i
k = (5.19a)

= min
ui

0

(xi
1)
′Pix

i
1 + xi(t)′W ′i QWix

i(t)+(ui
0)
′Z′iRZiu

i
0 (5.19b)

s.t. xi
1 = Aix

i(t)+ Biu
i
0 (5.19c)

xi
0 = W ′i x(t) = xi(t) (5.19d)

ui
k = KLQi x

i
k, ∀k ≥ 1 (5.19e)

where Pi = P′i ≥ 0 is the solution of the Riccati equation

W ′i QWi + K′LQi
Z′iRZiKLQi +(Ai + BiKLQi)

′Pi(Ai + BiKLQi) = Pi (5.20)

and KLQi = −(Z′iRZi + B′iPiBi)−1B′iPiAi is the corresponding local LQR feedback.
Let ΔY i(x(t)) and let ΔSi(x(t)) be defined as in (5.16), in which Pi is defined as
in (5.20).

If condition (5.17a) is satisfied, or condition (5.17b) is satisfied for some scalar
α > 0, then the decentralized MPC scheme defined in (5.19), (5.14) in closed-loop
with (5.1) is globally asymptotically stable.

So far we assumed that the communication model among neighboring MPC con-
trollers is faultless, so that each MPC agent successfully receives the information
about the states of its corresponding submodel. However, one of the main issues in
networked control systems is the unreliability of communication channels, which
may result in data packet dropout.

A sufficient condition for ensuring convergence of the DMPC closed-loop in the
case packets containing measurements are lost for an arbitrary but upper-bounded
number N of consecutive time steps was proved in [1, 5]. The underlying operat-
ing assumption is that if the actual number of lost packets exceeds the given N, the
decentralized controllers are turned off and u = 0 is applied persistently, so that a
number of packet drops larger than N is not considered. The results shown here are
based on formulation (5.10) and rely on the open-loop asymptotic stability Assump-
tions 5.1 and 5.2. The issue is still non-trivial, as if a set of measures for subsystem
i is lost, this would affect not only the trajectory of subsystem i because of the im-
proper control action ui, but, due to the dynamical coupling, also the trajectories of
subsystems j ∈ J, where J = { j | i ∈Ix j ∪Iu j}, and thus the closed-loop stability
of the overall system may be endangered.

By relying on open-loop stability, setting u(t) = 0 is a natural choice for backup
input moves when no state measurements are available because of a communica-
tion blackout. Different backup options may be considered, such as solving (5.10)
by replacing xi(t) with an estimate obtained through model (5.8) and the available
measurements. Of course whether one or the other approach is better strongly de-
pends on the amount of model mismatch introduced by the decentralized modeling.

160 A. Bemporad and D. Barcelli

The next theorem, proved in [1], provides conditions for asymptotic closed-loop
stability of decentralized MPC under packet loss, generalizing and unifying the re-
sults of [2, 3].

Theorem 5.5. Let N be a positive integer such that no more than N consecutive
steps of channel transmission blackout can occur. Assume u(t) = 0 is applied when
no packet is received. Let Assumptions 5.1, 5.2 hold and ∀i = 1, . . . ,M define Pi as
in (5.11), Δui(t), Δxi(t), ΔAi, ΔBi as in (5.15), ΔY i(x(t)) as in (5.16a),

ΔSi
j(x) � [2(AiW

′
i x + Biu

∗i
0 (x))′W ′i +ΔY i(x)′](A j−1)′WiPiW

′
i A j−1ΔY i(x) (5.21)

and let
ξi(x) � AiW

′
i x + Biu

∗i
0 (x)

If the condition

(i)
M

∑
i=1

(
x′WiW

′
i QWiW

′
i x + ξi(x)′(Pi−W ′i (A

j−1)′WiPiW
′
i A j−1Wi)ξi(x)−ΔSi

j(x)
)

≥ 0, ∀x ∈R
n, ∀ j = 1, . . . ,N (5.22a)

is satisfied, or the condition

(ii)
M

∑
i=1

(
x′WiW

′
i QWiW

′
i x + ξi(x)′(Pi−W ′i (A

j−1)′WiPiW
′
i A j−1Wi)ξi(x)+

−ΔSi
j(x)+ u∗i0 (x)′Z′iRZiu

∗i
0 (x)

)
αx′x≥ 0, ∀x ∈ R

n, ∀ j = 1, . . . ,N (5.22b)

is satisfied for some scalar α > 0, then the decentralized MPC scheme defined in
(5.10)–(5.14) in closed loop with (5.1) is globally asymptotically stable under packet
loss.

Note again that around the origin the conditions in (5.22) become a quadratic form
to be checked positive semidefinite, so local stability of (5.10)–(5.14) in closed loop
with (5.1) under packet loss can be tested for any arbitrary fixed N. Note also that
conditions (5.22) are a generalization of (5.17), as for j = 1 (no packet drop) matrix
Pi−W ′i (A j−1)′WiPiW ′i A j−1Wi = Pi−Pi = 0.

5.3.1.4 Extension to Set-Point Tracking

Consider the following discrete-time linear global process model
{

z(t + 1) = Az(t)+ Bv(t)+ Fd(t)
h(t) = Cz(t) (5.23)

where z ∈ R
n is the state vector, v ∈ R

m is the input vector, y ∈ R
p is the output

vector, Fd ∈ R
d is a vector of measured disturbances. Let A satisfy Assumption 5.1

and assume Fd is constant. The considered set-point tracking problem is that of h
tracking a given reference value r ∈ R

p, despite the presence of Fd . In order to

5 Decentralized Model Predictive Control 161

recast the problem as a regulation problem, assume steady-state vectors zr ∈R
n and

vr ∈R
m exist solving the static problem

{
(I−A)zr = Bvr + Fd

r = Czr
(5.24)

and let x = z− zr and u = v− vr. Input constraints vmin ≤ v≤ vmax are mapped into
constraints vmin− vr ≤ u≤ vmax− vr

2.

Proposition 5.1. Under the global coordinate transformation (5.24), the process
(5.23) under the decentralized MPC law (5.10)–(5.14) is such that h(t) converges
asymptotically to the set-point r, either under the assumption of Theorem 5.3 or, in
the presence of packet drops, of Theorem 5.5.

Note that problem (5.24) is solved in a centralized way. Defining local coordinate
transformations vir, zir based on submodels (5.8) would not lead, in general, to
offset-free tracking, due to the mismatch between global and local models. This
is a general observation one needs to take into account in decentralized tracking.
Note also that both vr and zr depend on Fd as well as r, so problem (5.24) should be
solved each time the value of Fd or r change and retransmitted to each controller.

5.3.2 DMPC Approach of Jia and Krogh

In [17, 12] the system under control is composed by a number of unconstrained
linear discrete-time subsystems with decoupled input signals, described by the
equations

⎡

⎢
⎣

x1(k + 1)
...

xM(k + 1)

⎤

⎥
⎦=

⎡

⎢
⎣

A11 . . . A1M
...

. . .
...

AM1 . . . AMM

⎤

⎥
⎦

⎡

⎢
⎣

x1(k)
...

xM(k)

⎤

⎥
⎦+

⎡

⎢
⎣

B1 0
. . .

0 BM

⎤

⎥
⎦

⎡

⎢
⎣

u1(k)
...

uM(k)

⎤

⎥
⎦ (5.25)

The effect of dynamical coupling between neighboring states is modeled in pre-
diction through a disturbance signal v, for instance the prediction model used by
controller # j is

x j(k + i+ i|k) = A j jx j(k + i|k)+ B j + u j(k + i|k)+ Kjv j(k + i|k) (5.26)

where Kj = [A j1 . . . A j, j−1 A j, j+1 . . . A jM]. The information exchanged between
control agents at the end of each sample step is the entire prediction of the local
state vector. In particular, controller # j receives the signal

2 In case vr �∈ [vmin,vmax], perfect tracking under constraints is not possible, and an alterna-
tive is to set

[zr
vr] = argmin

∥∥[I−A −B
C 0

]
[zr
vr]−

[
Fd
r

]∥∥

s.t. vmin ≤ vr ≤ vmax

162 A. Bemporad and D. Barcelli

v j(k + i|k) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x1(k + i|k−1)
...

x j−1(k + i|k−1)
x j+1(k + i|k−1)

...
xM(k + i|k−1)

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

where i is the prediction time index, from the other MPC controllers at the end of
the previous time step k−1. The signal v j(k + i|k) is used by controller # j at time k
to estimate the effect of the neighboring subsystem dynamics in (5.26).

Under certain assumptions of the model matrix A, closed-loop stability is proved
by introducing a contractive constraint on the norm of x j(k+1|k) in each local MPC
problem, which the authors prove to be a recursively feasible constraint.

The authors deal with state constraints in [18] by proposing a min-max approach,
at the price of a possible conservativeness of the approach.

5.3.3 DMPC Approach of Venkat, Rawlings, and Wright

In [35, 36, 34] the authors propose distributed MPC algorithm based on a process
of negotiations among DMPC agents. The adopted prediction model is

⎧
⎨

⎩

xii(k + 1) = Aiixii(k)+ Biiui(k) (local prediction model)
xi j(k + 1) = Ai jxi j(k)+ Bi ju j(k) (interaction model)

yi(k) = ∑M
j=1Ci jxi j(k)

The effect of the inputs of subsystem # j on subsystem #i is modeled by using an
“interaction model”. All interaction models are assumed stable, and constraints on
inputs are assumed decoupled (e.g., input saturation).

Starting from a multiobjective formulation, the authors distinguish between a
“communication-based” control scheme, in which each controller #i is optimizing
his own local performance index Φi, and a “cooperation-based” control scheme,
in which each controller #i is optimizing a weighted sum ∑M

j=1α jΦ j of all perfor-
mance indices, 0 ≤ α j ≤ 1. As performance indices depend on the decisions taken
by the other controllers, at each time step k a sequence of iterations is taken be-
fore computing and implementing the input vector u(k). In particular, within each
sampling time k, at every iteration p the previous decisions up−1

j �=i are broadcast to

controller #i, in order to compute the new iterate up
i . With the communication-based

approach, the authors show that if the sequence of iterations converges, it con-
verges to a Nash equilibrium. With the cooperation-based approach, convergence
to the optimal (centralized) control performance is established. In practical situa-
tions the process sampling interval may be insufficient for the computation time
required for convergence of the iterative algorithm, with a consequent loss of per-
formance. Nonetheless, closed-loop stability is not compromised: as it is achieved
even though the convergence of the iterations is not reached. Moreover, all iterations

5 Decentralized Model Predictive Control 163

are plantwide feasible, which naturally increases the applicability of the approach
including a certain robustness to transmission faults.

5.3.4 DMPC Approach of Dunbar and Murray

In [15] the authors consider the control of a special class of dynamically decoupled
continuous-time nonlinear subsystems

ẋi(t) = fi(xi(t),ui(t))

where the local states of each model represent a position and a velocity signal

xi(t) =
[
qi(t)
q̇i(t)

]

State vectors are only coupled by a global performance objective

L(x,u) = ∑
(i, j)∈E0

ω‖qi−q j + di j‖2 +ω‖qΣ −qd‖2 +ν‖q̇‖2 + μ‖u‖2 (5.27)

under local input constraints ui(t) ∈ U , ∀i = 1, . . . ,M, ∀t ≥ 0. In (5.27) E0 is the
set of pair-wise neighbors, di j is the desired distance between subsystems i and j,
qΣ = (q1 + q2 + q3)/3 is the average position of the leading subsystems 1,2,3, and
qd = (qc

1 + qc
2 + qc

3)/3 the corresponding target.
The overall integrated cost (5.27) is decomposed in distributed integrated cost

functions
Li(xi,x−i,ui) = Lx

i (xi,x−i)+ γμ‖ui‖2 + Ld(i)

where x−i = (x j1, . . . ,x jk) collects the states of the neighbors of agent subsystem #i,
Lx

i (xi,x−i) = ∑ j∈Ni
γω
2 ‖qi−q j + di j‖2 + γν‖q̇i‖2, and

Ld(i) =
{
γω‖qΣ −qd‖2/3 i ∈ {1,2,3}
0 otherwise

It holds that

L(x,u) =
1
γ

N

∑
i=1

Li(xi,x−i,ui)

Before computing DMPC actions, neighboring subsystems broadcast in a syn-
chronous way their states, and each agent transmits and receives an “assumed” con-
trol trajectory ûi(τ;tk). Denoting by up

i (τ;tk) the control trajectory predicted by con-
troller #i, by u∗i (τ;tk) the optimal predicted control trajectory, by T the prediction
horizon, and by δ ∈ (0,T] the update interval, the following DMPC performance
index is minimized

164 A. Bemporad and D. Barcelli

min
up

i

Ji(xi(tk),x−i(tk),u
p
i (·;tk))

= min
up

i

∫ tk+T

tk
Li(x

p
i (s;tk), x̂−i(s; tk),u

p
i (s; tk))ds+ γ‖xp

i (tk + T ; tk)− xC
i ‖2

Pi

s.t. ẋp
i (τ;tk) = fi(x

p
i (τ; tk),u

p
i (τ; tk))

˙̂xp
i (τ;tk) = fi(x̂

p
i (τ; tk), û

p
i (τ; tk))

˙̂xp
−i(τ;tk) = f−i(x̂

p
−i(τ; tk), û

p
−i(τ; tk))

up
i (τ;tk) ∈U

‖xp
i (τ;tk)− x̂i(τ;tk)‖ ≤ δ 2κ

xp
i (tk + T ;tk) ∈Ωi(εi)

The second last constraint is a “compatibility” constraint, enforcing consistency be-
tween what agent #i plans to do and what its neighbors believe it plans to do. The
last constraint is a terminal constraint.

Under certain technical assumptions, the authors prove that the DMPC problems
are feasible at each update step k, and under certain bounds on the update interval δ
convergence to a given set is also proved. Note that closed-loop stability is ensured
by constraining the state trajectory predicted by each agent to stay close enough
to the trajectory predicted at the previous time step that has been broadcasted.
The main drawback of the approach is the conservativeness of the compatibility
constraint.

5.3.5 DMPC Approach of Keviczy, Borrelli, and Balas

Dynamically decoupled submodels are also considered in [21], where the special
nonlinear discrete-time system structure

xi
k+1 = f i(xi

k,u
i
k)

is assumed, subject to local input and state constraints xi
k ∈ X i, ui

k ∈ U i, i =
1, . . . ,M. Subsystems are coupled by the cost function

l(x̃, ũ) =
Nv

∑
i=1

li(xi,ui, x̃i, ũi)

and by the global constraints

gi, j(xi,ui,x j,u j)≤ 0, (i, j) ∈A

where A is a given set. Each local MPC controller is based on the optimization of
the following problem

5 Decentralized Model Predictive Control 165

min
Ũt

N−1

∑
k=0

l(x̃k,t , ũk,t)+ lN(x̃N,t) (5.28a)

s.t. xi
k+1,t = f i(xi

k,t ,u
i
k,t) (5.28b)

xi
k,t ∈X i, ui

k,t ∈U i, k = 1, . . . ,N−1 (5.28c)

xi
N,t ∈X i

f (5.28d)

x j
k+1,t = f j(x j

k.t ,u
j
k,t),(i, j) ∈A (5.28e)

x j
k,t ∈X j, u j

k,t ∈U j,(i, j) ∈A k = 1, . . . ,N−1 (5.28f)

x j
N,t ∈X j

f ,(i, j) ∈A (5.28g)

gi, j(xi
k,t ,u

i
k,t ,x

j
k,t ,u

j
k,t)≤ 0,(i, j) ∈A k = 1, . . . ,N−1 (5.28h)

xi
0,t = xi

t , x̃
i
0,t = x̃i

t (5.28i)

where (5.28b)–(5.28d) are the local model and constraints of the agent, (5.28e)–
(5.28g) are the model and constraints of the neighbors, and (5.28h) represent inter-
action constraints of agent #i with its own neighbors.

The information exchanged among the local MPC agents are the neighbors’ cur-
rent states, terminal regions, and local models and constraints. As in (5.13), only the
optimal input ui

0,t computed by controller #i is applied; the remaining inputs u j
k,t are

completely discarded, as they are only used to enhance the prediction.
Stability is analyzed for the problem without coupling constraints (5.28h), under

the assumption that the following inequality holds

N−1

∑
k=1

2‖Q(x j, j
k,t − x j,i

k,t)‖p +‖R(u j, j
k,t −u j,i

k,t)‖p ≤ ‖Qxi
t‖p +‖Qx j

t ‖p +

‖Q(xi
t − x j

t)‖p +‖Rui,i
0,t‖p +‖Ru j,i

0,t‖p

where ‖Qx‖2 � x′Qx, and ‖Qx‖1, ‖Qx‖∞ are the standard q and ∞ norm, respec-
tively.

5.3.6 DMPC Approach of Mercangöz and Doyle

The distributed MPC and estimation problems are considered in [25] for square
plants (the number of inputs equals the number of outputs) perturbed by noise,
whose local prediction models are

{
xi(k + 1) = Aixi(k)+ Biui(k)+∑M

j=1 B ju j(k)+ wi(k)
yi(k) = Cixi(k)+ vi(k)

(5.29)

A distributed Kalman filter based on the local submodels (5.29) is used for state es-
timation. The DMPC approach is similar to Venkat et al.’s “communication-based”
approach, although only first moves u j(k) are transmitted and assumed frozen in

166 A. Bemporad and D. Barcelli

prediction, instead of the entire optimal sequences. Only constraints on local inputs
are handled by the approach. Although general stability and convergence results are
not proved in [25], experimental results on a four-tank system are reported to show
the effectiveness of the approach.

5.3.7 DMPC Approach of Magni and Scattolini

Another interesting approach to decentralized MPC for nonlinear systems has been
formulated in [23]. The problem of regulating a nonlinear system affected by dis-
turbances to the origin is considered under some technical assumptions of regularity
of the dynamics and of boundedness of the disturbances. Closed-loop stability is
ensured by the inclusion in the optimization problem of a contractive constraint.
The considered class of functions and the absence of information exchange between
controllers leads to some conservativeness of the approach.

5.4 Example of Decentralized Temperature Control in a Railcar

5.4.1 Example Description

In this section we test the DMPC approach of Alessio, Barcelli, and Bemporad for
decentralized control of the temperature in different passenger areas in a railcar [5].
The system is schematized in Figure 5.2. Each passenger area has its own heater and
air conditioner but its thermal dynamics interacts with surrounding areas (neighbor-
ing passenger areas, external environment, antechambers) directly or through win-
dows, walls and doors. Passenger areas are composed by a table and the associated
four seats. Temperature sensors are located in each four-seat area, in each antecham-
ber, and along the corridor. The goal of the controller is to adjust each passenger area
to its own temperature set-point to maximize passenger comfort. Temperature sen-
sors may be wired or wireless, in the latter case we assume that information packets
may be dropped, because of very low power transmission, simplified transmission
protocols, and no acknowledgement and retransmission and because of time-varying
communication disturbances due for example to passengers’ electronic equipment.

Let 2N be the number of four-seat areas (N = 8 in Figure 5.2), N the number
of corridor partitions, and 2 the number of antechambers. Under the assumption of
perfectly mixed fluids in each jth volume, j = 1, . . . ,n where n = 3N + 2, the heat
transmission equations by conduction lead to the linear model

dTj(τ)
dτ = ∑n

i=0 Qi j(τ)+ Qu j, Qi j(τ) = Si jKi j(Ti(τ)−Tj(τ))
CjLi j

, j = 1, . . . ,n (5.30)

where Tj(τ) is the temperature of volume # j at time τ ∈ R, T0(τ) is the ambient
temperature outside the railcar, Qi j(τ) is heat flow due to the temperature difference
Ti(τ)−Tj(τ) with the neighboring volume #i, Si j is the contact surface area, Qu j is
the heat flow of heater # j, Ki j is the thermal coefficient that depends on the materials,
Cj = K j

cVj is the (material dependent) heat capacity coefficient K j
c times the fluid

5 Decentralized Model Predictive Control 167

Fig. 5.2 Physical structure of the railcar

volume Vj, and Li j is the thickness of the separator between the two volumes #i
and # j. We assume that Qi j(τ) = 0 for all volumes i, j that are not adjacent, ∀τ ∈
R. Hence, the process can be modeled as a linear time-invariant continuous-time
system with state vector z ∈ R

3N+2 and input vector v ∈ R
2N

{
ż(τ) = Acz(τ)+ Bcv(τ)+ FT0(τ)
h(τ) = Cz(τ) (5.31)

where F ∈ R
n is a constant matrix, T0(τ) is treated as a piecewise constant mea-

sured disturbance, and C ∈ R
p×n is such that h ∈ R

p contains the components of
z corresponding to the temperatures of the passenger seat areas, p = 2N. Since we
assume that the thermal dynamics are relatively slow compared to the sampling time
Ts of the decentralized controller we are going to synthesize, we use first-order Euler
approximation to discretize dynamics (5.31) without introducing excessive errors:

{
z(t + 1) = Az(t)+ Bv(t)+ FdT0(t)

h(t) = Cz(t) (5.32)

where A = I + AcTs, B = BcTs, and Fd = FTs. We assume that A is asymptotically
stable, as an inheritance of the asymptotic stability of matrix Ac.

In order to track generic temperature references r(t), we adopt the coordinate
shift defined by (5.24). The next step is to decentralize the resulting global model.
The particular topology of the railcar suggests a decomposition of model (5.1) as
the cascade of four-seat areas. There are two kinds of four-seat areas, namely (i) the
ones next to the antechambers, and (ii) the remaining ones. Besides interacting with
the external environment, the areas of type (i) interact with another four-seat-area,
an antechamber, and a section of the corridor, while the areas of type (ii) only with
the four-seat areas at both sides and the corresponding section of the corridor. Note
that the decentralized models overlap, as they share common states and inputs. The
decoupling matrices Zi are chosen so that in each subsystem only the first component
of the computed optimal input vector is actually applied to the process.

168 A. Bemporad and D. Barcelli

0 50 100 150

4

5

6

7

8

9

10

0 50 100 150
17.7

17.8

17.9

18

18.1

Fig. 5.3 Exogenous signals used in the reported simulations

As a result, each submodel has 5 states and 2 or 3 inputs, depending whether
it describes a seat area of type (i) or (ii), which is considerably simpler than the
centralized model (5.1) with 26 states and 16 inputs.

We apply the DMPC approach (5.10) with

Q = 2

[
102I16 0

0 I10

]
, R = 105I16,vmin =−0.03 W, vmax = 0.03 W, Ts = 9 min

(5.33)
where vmin is the lower bound on the heat flow subtracted by the air-conditioners,
and vmax is the maximum heating power of the heaters (with a slight abuse of no-
tation we denoted by vmin, vmax the entries of the corresponding lower and upper
bound vectors of R

16). Note that the first sixteen diagonal elements of matrix Q cor-
respond to the temperatures of the four-seat areas. It is easy to check that with the
parameters in (5.33) condition (5.17a) for local stability is satisfied. For comparison,
a centralized MPC approach (5.3) with the same weights, horizon, and sampling
time as in (5.33) is also designed. The associated QP problem has 16 optimiza-
tion variables and 32 constraints, while the complexity of each DMPC controller
is either 2 (or 3) variables and 4 (or 6) constraints. The DMPC approach is in fact
largely scalable: for longer railcars the complexity of the DMPC controllers remains
the same, while the complexity of the centralized MPC problem grows with the in-
creased model size. Note also that, even if a centralized computation is taken, the
DMPC approach can be immediately parallelized.

5.4.2 Simulation Results

We investigate different simulation outcomes depending on four ingredients: i) type
of controller (centralized/decentralized), ii) packet-loss probability, iii) change in
reference values, iv) changes of external temperature (acting as a measured distur-
bance). Figure 5.3 shows the external temperature and reference scenarios used in
all simulations.

5 Decentralized Model Predictive Control 169

0 30 60 90 120 150
17

17.2

17.4

17.6

17.8

18

0 30 60 90 120 150

0.015

0.02

0.025

0.03

0 30 60 90 120 150
17

17.2

17.4

17.6

17.8

18

0 30 60 90 120 150

0.015

0.02

0.025

0.03

Fig. 5.4 Comparison between centralized MPC (dashed lines) and decentralized MPC (con-
tinuous lines): output h1 (upper plots) and input v1 (lower plots). Gray areas denote packet
drop intervals

In order to compare closed-loop performances in different simulation scenarios,
the following performance index

J = ∑Nsim
t=1 (z(t)− r(t))′Q(z(t)− r(t))+ (v(t)− vr)′R(v(t)− vr) (5.34)

is defined, where Nsim = 160 (one day) is the total number of simulation steps.
The initial condition is 17◦C for all seat-area temperatures, except for the an-

techamber, which is 15◦C. Note that the steady-state value of antechamber temper-
atures is not relevant for the posed control goals. The closed-loop trajectories of
centralized MPC feedback vs. decentralized MPC with no packet-loss are shown in
Figure 5.4.2 (we only show the first state and input for clarity). In both cases the
temperatures of the four-seat areas converge to the set-point asymptotically. Figure
5.4.2 shows the temperature vector h(t) tracking the time-varying reference r(t) in
the absence of packet-loss, where the coordinate transformation (5.24) is repeated
after each set-point and external temperature change.

To simulate packet loss, we assume that the probability of losing a packet depends
on the state of a Markov chain with N states (see Figure 5.6). We parameterize with
the probability parameter p, 0≤ p≤ 1 the probabilities associated with the Markov
chain: the Markov chain is in the jth state if j− 1 consecutive packets have been
lost. The probability of losing a further packet is 1− p in every state of the chain,
except for the (N + 1)th state where no packet can be lost any more.

170 A. Bemporad and D. Barcelli

0 30 60 90 120 150

0.015

0.02

0.025

0.03

0 30 60 90 120 150
17

17.2

17.4

17.6

17.8

18

0 30 60 90 120 150

0.015

0.02

0.025

0.03

Fig. 5.5 Decentralized MPC results. Upper plots: output variables h (continuous lines) and
references r (dashed lines). Lower plots: command inputs v. Gray areas denote packet drop
intervals

Fig. 5.6 Markov chain model of packet-loss probability

Let π be the stationary probability vector of the Markov chain of Figure 5.6,
obtained through the one-step probability matrix

P =

⎡

⎢
⎣

p 1−p 0 ··· 0
p 0 1−p ··· 0
...

...
...

. . .
...

p 0 0 ··· 1−p
1 0 0 ··· 0

⎤

⎥
⎦

by solving {
π ′ = π ′P
∑N

i=1πi = 1

5 Decentralized Model Predictive Control 171

Fig. 5.7 Markov chain packet-loss probability with N = 10 and p = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
4.2

10
4.9

Fig. 5.8 Performance indices of Centralized MPC (dashed line) and Decentralized MPC
(solid line)

Recalling the meaning of the Markov chain nodes, the steady-state probability πi

of the ith state is the probability of loosing consecutively exactly i−1 packets. The
packet-loss discrete probability is shown in Figure 5.7 when N = 10 maximum con-
secutive packet-losses are possible and p = 0.7.

Figure 5.7 highlights the exponential decrease of the stationary probabilities as a
function of consecutive packets lost. Such a probability model is confirmed by the
experimental results on relative frequencies of packet failure burst length observed
in [38]. Note that our model assumes that the probability of losing a packet is null
after N packets, hence satisfying the assumption of an upper-bound on the number
of consecutive drops (as mentioned earlier, we can assume for instance that if k > N
consecutive packets are lost, the control loops are shut down). The simulation results
obtained with p = 0.5 are shown in Figure 5.4.2 and Figure 5.4.2.

In case of packet loss, we also compare the performance of centralized vs. de-
centralized MPC. Note that in case packet loss occurs also on the communication
channel between the point computing the coordinate shift and the decentralized con-
trollers, the last received coordinate shift is kept. The stability condition (5.22a) of
Theorem 5.5 was tested and proved satisfied for values of j up to 160.

172 A. Bemporad and D. Barcelli

Figure 5.8 shows that the performance index J defined in Eq. (5.34) increases as
the packet-loss probability grows, implying performance to deteriorate due to the
conservativeness of the backup control action u = 0 (that is, v = vr). The results of
Figure 5.8 are averaged over 10 simulations per probability sample. As a general
consideration, centralized MPC dominates over the decentralized, although for cer-
tain values of p the average performance of decentralized MPC is slightly better,
probably due to the particular packet loss sequences that have realized. However,
the loss of performance due to decentralization, with regard to the present example,
is largely negligible.

The simulations were run on a MacBook Air 1.86 GHz running Matlab R2008a
under OS X 10.5.6 and the Hybrid Toolbox for Matlab [7]. The average CPU time
for solving the centralized QP problem associated with (5.3) is 6.0ms (11.9ms in
the worst case). For the decentralized case, the average CPU time for solving the
QP problem associated with (5.10) is 3.3ms (7.4ms in the worst case). Although
the decrease of CPU time is only a few milliseconds, we remark that for increasing
N the complexity of DMPC remains constant, while the complexity of centralized
MPC would grow with N. To quantify this aspect consider that, if one thinks to the
explicit form of the MPC controllers [9], the number of regions of the centralized
MPC is upper bounded by 316, while in decentralized case by 32 for submodels with
two inputs and by 33 for submodels with three inputs.

Note that the reference vectors vr, zr are computed globally in all simulations. In
this example the complexity of such a static calculation is negligible with respect to
solving the QP problems. Moreover, the communication burden is also negligible,
as new reference vectors are transmitted individually to each MPC agent only when
set-point and disturbances change.

5.5 Hierarchical MPC

5.5.1 Problem Description

In this section we provide some novel ideas on how to possibly couple a DMPC
layer with a higher centralized (hybrid) MPC layer in the hierarchical setting of
Figure 5.1. The idea is to design a centralized hybrid MPC controller to achieve
global coordination, namely to enforce global constraints (linear, logical, mixed lin-
ear & logical) and to optimize a global objective (such as an economically-driven
objective). To achieve the goal, we need an abstract (hybrid) model of the under-
lying closed-loop dynamics, without resorting to a global dynamical model of the
process and to the need of full state feedback.

Under the assumption that the higher MPC layer runs in real-time at a lower
sampling frequency than the underlying DMPC layer, a sensible choice is to use the
static global model

y(k + 1) = G(1)u(k)

5 Decentralized Model Predictive Control 173

M1 M2 M3 M4 M5

k1 k2 k3 k4 k5

yi=0k12 k23 k34 k35

1 2 3 4 5

u1 u2 u3 u4 u5

Fig. 5.9 Hierarchical and decentralized MPC of system composed by five dynamically-
coupled masses moving vertically

as a centralized abstract model, where G(1) is the DC-gain of (5.1), and k represents
the sampling step of the higher-level MPC controller.

Then, the centralized higher-level MPC controller solves the following problem

min
u(k)

f (y(k + 1)− rd(k),u(k))

s.t. g(u(k),y(k),rd(k))≤ 0

and defines
r(k) = G(1)u(k)

as the current setpoints for the DMPC layer. Extensions of these ideas, including
quantitative ways of choosing a suitable sampling time for the higher control layer,
have been formulated very recently in [6].

5.5.2 Illustrative Example

Consider the system depicted in Figure 5.9, composed by five dynamically-coupled
masses moving vertically. The dynamics of each mass #i is described by the
dynamics

Miÿi = ui−βiẏi− kiyi− ki j(yi− y j)︸ ︷︷ ︸
j=i−1,i+1

(5.35)

where Mi = 5 [kg], βi = 0.1 [kg/s], ki = 1 [kg/s2], ki j = 0.5 [kg/s2]. For local
prediction purposes, each DMPC controller #i neglects the velocities of the neigh-
boring masses, ẏi−1 = ẏi+1 = 0, and therefore only considers yi, ẏi,yi−1,yi+1 as local
states.

After discretizing the dynamics (5.35) with sampling time TL = 0.25 [s], each
DMPC agent solves the following on-line optimal control problem

174 A. Bemporad and D. Barcelli

min
ui(k),...,ui(k+Nu−1)

Ny−1

∑
j=0

(yi(k+ j)−ri(k))2+0.1
Nu−1

∑
j=0

(ui(k + j)−ui(k + j−1))2 + 104ε2

s.t. ui
min ≤ ui(k+ j)≤ ui

max(k) j=0, . . . ,Nu−1
yi

min− ε ≤ yi(k + j)≤ yi
max + ε j = 0, . . . ,N

ui(k + j) = ui(k + Nu−1) j = Nu, . . . ,Ny−1
(5.36)

where ui
min = yi

min = 0 [m], yi
max = 2 [m], Ny = 20 is the prediction horizon, Nu = 4 is

the control horizon, ε is a slack variable used to soften output constraints to prevent
the possible infeasibility of the quadratic program associated with (5.36). The input
bounds ui

max(k) are decided at multiple of the higher-level sampling time TH = 3
[s] by a centralized hybrid MPC, together with the local setpoint vector r(k). The
hybrid MPC controller [8, 33] is designed to enforce the following constraints:

(i) at most Ku inputs can be over a certain threshold ulim = 0.7 [m], ui(k)≥ ulim;
(ii) set-point changes are bounded by a quantity Δr=0.5 [m]

|G(1)u(k)− yi(k)| ≤ Δr (5.37)

The logical “at most” constraint (i) is enforced by defining auxiliary binary inputs
u�i(k) ∈ {0,1}, i = 1, . . . ,5, and by setting

ui
max(k) =

{
yi

max if u�i(k) = 1
ulim if u�i(k) = 0

(5.38)

By letting rd(k) = [0.2 0.5 0.75 1 0.75]′ [m] be the vector of desired vertical
positions of the masses, every TH/TL = 12 steps the hybrid MPC controller solves
the following problem

min
u(k)
‖G(1)u(k)− rd(k)‖2 +

5

∑
i=1

(u�i−1)2

subject to the linear constraints defined by (5.37) and the mixed-integer reformula-
tion of constraint (5.38) [8] to determine the reference vector r(k) = G(1)u(k) for
the DMPC layer, and the input upper limit ui

max(k), which is set either to yi
max or to

ulim, depending on the logical constraint.
We simulate the hierarchical control system from initial positions y1(0) = 1,

y2(0) = 0.4, y3(0) = 0.7, y4(0) = 0.8, y5(0) = 0.2 and null velocities. The closed-
loop results are reported in Figure 5.10. Note that in the absence of the higher-level
hybrid MPC controller the red, purple, cyan, and blue input force signals (ui(k))
overpass the limit threshold ulim(k) (Figure 5.10(a)). When the hybrid MPC con-
troller is used with Ku = 3, we obtain the plots depicted in Figure 5.10(b), where
only the red, purple, and cyan input signals are set greater than ulim(k). For Ku = 2,
we obtain the plots depicted in Figure 5.10(c), where only the red and purple input
signals get above ulim(k).

5 Decentralized Model Predictive Control 175

0 5 10 15
0

0.5

1

1.5

2
positions

0 5 10 15
0

0.5

1

1.5

2
applied forces

0 5 10 15
0

0.5

1

1.5

2
local desired positions

(a) DMPC with r(k) =
rd(k) (no hybrid MPC)

0 5 10 15
0

0.5

1

1.5

2
positions

0 5 10 15
0

0.5

1

1.5

2
applied forces

0 5 10 15
0

0.5

1

1.5

2
local desired positions

(b) hierarchical MPC,
Ku = 3

0 5 10 15
0

0.5

1

1.5

2
positions

0 5 10 15
0

0.5

1

1.5

2
applied forces

0 5 10 15
0

0.5

1

1.5

2
local desired positions

(c) hierarchical MPC,
Ku = 2

Fig. 5.10 Hierarchical and decentralized MPC results for the five-mass system. The limit
ulim is shown as a dashed black line

Both the linear DMPC and the hybrid MPC controllers were implemented in
Simulink using the Hybrid Toolbox for MATLAB [7].

5.6 Conclusions

In this chapter we have surveyed different approaches to the problem of controlling
a distributed process through the cooperation of multiple decentralized model pre-
dictive controllers. Each controller is based on a submodel of the overall process,
and different submodels may share common states and inputs, to possibly decrease
modeling errors in case of dynamical coupling, and to increase the level of co-
operativeness of the controllers. The DMPC approach is suitable for control of
large-scale systems subject to constraints: the possible loss of global optimal per-
formance is compensated by the gain in controller scalability, reconfigurability, and
maintenance. Although a few contributions have been given in the last few years, the
DMPC theory is not yet mature and homogenous. In this chapter we have tried to
highlight similarities and differences among the various approaches that have been
proposed, a little step towards the consolidation of a general theoretical framework
for DMPC design.

Open research topics in DMPC include: systematic ways to decompose the model
into local submodels, when this is not obvious from the physics of the process, deter-
mining the optimal model decomposition (i.e., the best achievable closed-loop per-
formance) for a given channel capacity and computer power available to the control
agents; better awareness of DMPC algorithms of the communication efforts, espe-
cially when operating over wireless sensor networks (for instance, to save battery

176 A. Bemporad and D. Barcelli

energy and hence increase the device life span); stochastic DMPC formulations to
take into account imperfect communication in a less conservative way than robust
approaches; output-feedback DMPC by using suitable complementary decentralized
estimation schemes; hierarchical MPC schemes, for instance combining centralized
hybrid MPC and decentralized linear MPC; design better distributed MPC algo-
rithms by taking into account the progress in distributed optimization approaches
(e.g., to handle coupled input and state constraints), as described in Chapter 3 of
this book.

Acknowledgment

The authors acknowledge the help of Bruce Krogh, Dong Jia, Francesco Borrelli, Richard
Murray, William Dunbar, Aswin Venkat, James Rawlings, Mehmet Mercangoz, and Francis
Doyle III for sharing copies of their presentations related to their papers on DMPC. Mikael
Johansson is also acknowledged for pointing out the packet loss results of [38].

References

1. Alessio, A., Barcelli, D., Bemporad, A.: Decentralized model predictive control of
dynamically-coupled linear systems. Technical report. Available upon request from the
authors

2. Alessio, A., Bemporad, A.: Decentralized model predictive control of constrained linear
systems. In: Proc. European Control Conf., Kos, Greece, pp. 2813–2818 (2007)

3. Alessio, A., Bemporad, A.: Stability conditions for decentralized model predictive con-
trol under packet dropout. In: Proc. American Contr. Conf., Seattle, WA, pp. 3577–3582
(2008)

4. Bamieh, B., Paganini, F., Dahleh, M.A.: Distributed control of spatially invariant sys-
tems. IEEE Trans. Automatic Control 47(7), 1091–1107 (2002)

5. Barcelli, D., Bemporad, A.: Decentralized model predictive control of dynamically-
coupled linear systems: Tracking under packet loss. In: 1st IFAC Workshop on Esti-
mation and Control of Networked Systems, Venice, Italy, pp. 204–209 (2009)

6. Barcelli, D., Bemporad, A., Ripaccioli, G.: Hierarchical multi-rate control design for
constrained linear systems. In: Proc. 49th IEEE Conf. on Decision and Control, Atlanta,
Georgia USA (to appear, 2010)

7. Bemporad, A.: Hybrid Toolbox – User’s Guide (December 2003),
http://www.dii.unisi.it/hybrid/toolbox

8. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and con-
straints. Automatica 35(3), 407–427 (1999)

9. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic
regulator for constrained systems. Automatica 38(1), 3–20 (2002)

10. Borrelli, F., Keviczky, T., Fregene, K., Balas, G.J.: Decentralized receding horizon con-
trol of cooperative vechicle formations. In: Proc. 44th IEEE Conf. on Decision and Con-
trol and European Control Conf., Sevilla, Spain, pp. 3955–3960 (2005)

11. Callier, F.M., Chan, W.S., Desoer, C.A.: Input-output stability theory of interconnected
systems using decomposition techniques. IEEE Trans. Circuits and Systems 23(12), 714–
729 (1976)

http://www.dii.unisi.it/hybrid/toolbox

5 Decentralized Model Predictive Control 177

12. Camponogara, E., Jia, D., Krogh, B.H., Talukdar, S.: Distributed model predictive con-
trol. IEEE Control Systems Magazine, 44–52 (February 2002)

13. Damoiseaux, A., Jokic, A., Lazar, M., van den Bosch, P.P.J., Hiskens, I.A., Alessio,
A., Bemporad, A.: Assessment of decentralized model predictive control techniques for
power networks. In: 16th Power Systems Computation Conference, Glasgow, Scotland
(2008)

14. D’Andrea, R.: A linear matrix inequality approach to decentralized control of distributed
parameter systems. In: Proc. American Contr. Conf., pp. 1350–1354 (1998)

15. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control with application to
multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)

16. Grieder, P., Morari, M.: Complexity reduction of receding horizon control. In: Proc. 42nd
IEEE Conf. on Decision and Control, Maui, Hawaii, USA, pp. 3179–3184 (2003)

17. Jia, D., Krogh, B.: Distributed model predictive control. In: Proc. American Contr. Conf.,
Arlington, VA, pp. 2767–2772 (2001)

18. Jia, D., Krogh, B.: Min-max feedback model predictive control for distributed con-
trol with communication. In: Proc. American Contr. Conf., pp. 4507–4512. Anchorage,
Alaska (2002)

19. Johannson, M., Rantzer, A.: Computation of piece-wise quadratic Lyapunov functions
for hybrid systems. IEEE Trans. Automatic Control 43(4), 555–559 (1998)

20. Johansson, B., Keviczky, T., Johansson, M., Johansson, K.H.: Subgradient methods and
consensus algorithms for solving convex optimization problems. In: Proc. 47th IEEE
Conf. on Decision and Control, Cancun, Mexico, pp. 4185–4190 (2008)

21. Keviczky, T., Borrelli, F., Balas, G.J.: Decentralized receding horizon control for large
scale dynamically decoupled systems. Automatica 42(12), 2105–2115 (2006)

22. Li, W., Cassandras, C.G.: Stability properties of a receding horizon contoller for co-
operating UAVs. In: Proc. 43th IEEE Conf. on Decision and Control, Paradise Island,
Bahamas, pp. 2905–2910 (2004)

23. Magni, L., Scattolini, R.: Stabilizing decentralized model predictive control of nonlinear
systems. Automatica 42(7), 1231–1236 (2006)

24. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive
control: Stability and optimality. Automatica 36(6), 789–814 (2000)

25. Mercangöz, M., Doyle III., F.J.: Distributed model predictive control of an experimental
four-tank system. Journal of Process Control 17(3), 297–308 (2007)

26. Michel, A.N.: Stability analysis of interconnected systems. SIAM J. Contr. 12, 554–579
(1974)

27. Michel, A.N., Rasmussen, R.D.: Stability of stochastic composite systems. IEEE Trans.
Automatic Control 21, 89–94 (1976)

28. Richards, A., How, J.P.: Decentralized model predictive control of cooperating UAVs.
In: Proc. 43rd IEEE Conf. on Decision and Control, Paradise Island, Bahamas (2004)

29. Rotkowitz, M., Lall, S.: A characterization of convex problems in decentralized control.
IEEE Trans. Automatic Control 51(2), 1984–1996 (2006)

30. Samar, S., Boyd, S., Gorinevsky, D.: Distributed estimation via dual decomposition. In:
Proc. European Control Conf., Kos, Greece, pp. 1511–1516 (2007)

31. Sandell, N.R., Varaiya, P., Athans, M., Safonov, M.G.: Survey of decentralized control
methods for large scale systems. IEEE Trans. Automatic Control 23(2), 108–128 (1978)

32. Scattolini, R.: Architectures for distributed and hierarchical model predictive control – a
review. Journal of Process Control 19, 723–731 (2009)

33. Torrisi, F.D., Bemporad, A.: HYSDEL — A tool for generating computational hybrid
models. IEEE Trans. Contr. Systems Technology 12(2), 235–249 (2004)

178 A. Bemporad and D. Barcelli

34. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., Wright, S.J.: Distributed MPC strategies
with application to power system automatic generation control. IEEE Transactions on
Control Systems Technology 16(6), 1192–1206 (2008)

35. Venkat, A.N., Rawlings, J.B., Wright, J.S.: Stability and optimality of distributed model
predictive control. In: Proc. 44th IEEE Conf. on Decision and Control and European
Control Conf., Seville, Spain (2005)

36. Venkat, A.N., Rawlings, J.B., Wright, J.S.: Implementable distributed model predictive
control with guaranteed performance properties. In: Proc. American Contr. Conf., Min-
neapolis, MN, pp. 613–618 (2006)

37. Wang, S., Davison, E.J.: On the stabilization of decentralized control systems. IEEE
Trans. Automatic Control 18(5), 473–478 (1973)

38. Willig, A., Mitschke, R.: Results of bit error measurements with sensor nodes and ca-
suistic consequences for design of energy-efficient error control schemes. In: Römer,
K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 310–325. Springer,
Heidelberg (2006)

Chapter 6
Decentralized Control

John Swigart and Sanjay Lall

Abstract. Decentralized control has been a large area of open research for over
forty years. To cover every aspect of it would require a vast knowledge of applied
mathematics and considerable time. Consequently, in this tutorial we will attempt to
restrict our attention to optimal control of systems which are linear with Gaussian
random noise and disturbances, where the objective is a quadratic cost function. This
encompasses a very general, and commonly encountered, class of systems. While
the results herein will be aimed at this class, much of our discussion may be applied
more generally to other problems. Most of the results in this chapter are, of course,
not new and can be found in the references.

To begin our discussion we will highlight some of the key features of decentral-
ized control with a few motivating examples. From there, we will address what will
be called static systems, and show that decentralized problems of this nature admit
tractable solutions. Our discussion will then turn to the class of dynamic problems,
involving feedback. Decentralized feedback problems in general are known to be
difficult. Nevertheless, there exist some problems for which optimal solutions may
be obtained. We will end our discussion with some methods for solving these types
of problems.

6.1 Motivating Examples

Control problems come in all shapes and sizes. At the lowest level we classify them
as either centralized or decentralized. In a centralized problem, we tend to think of
such systems as involving a single decision maker. This may be because there is only

John Swigart
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
e-mail: jswigart@stanford.edu

Sanjay Lall
Department of Electrical Engineering and Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305, USA
e-mail: lall@stanford.edu

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 179–201.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

jswigart@stanford.edu
lall@stanford.edu

180 J. Swigart and S. Lall

one system involved, or because multiple systems might communicate their sensor
measurements to a central processor which interprets the data of every system and
relays decisions back.

By contrast, decentralized problems are basically defined as any system which
is not centralized. Intuitively, one might think of this as multiple systems in which
each system has its own processing unit and makes its own decisions based on its
own measurements.

To illustrate the types of decentralized problems that one might encounter and
some of the questions that we might ask about these systems, consider the following
examples.

6.1.1 Vehicle Spacing

Consider the following vehicle control problem. There are N vehicles in a line,
with vehicle i located at position qi, shown in Figure 6.1. Suppose each vehicle is
displaced a distance xi from its original unit spacing. Each vehicle has sensors which
measure the relative displacements of its neighbors plus noise; for example,

y2 =
[

x2− x1

x3− x2

]
+
[

w3

w4

]

q1 q2 q3 q4 q5

Fig. 6.1 Vehicle Spacing Example

Within this framework, it may be possible for vehicles to communicate their sensor
data to other vehicles. Several such information constraints are possible, including:

• Every vehicle receives the output of every sensor
• Every vehicle sees only its own sensor data
• Each vehicle i receives the sensor data of vehicles i−1, i, and i+ 1

While the first information structure would be considered a centralized structure,
the last two information patterns are called decentralized.

Based on whatever information is available, each vehicle chooses ui to move from
xi to xi + ui. The questions that we might consider here include:

• Is there a strategy that will restore unit spacing between the vehicles?
• If not, is there a strategy which minimizes the mean square relative position

error?

E
N−1

∑
i=1

(xi+1− xi)2

6 Decentralized Control 181

• Can we trade-off the position error with the mean square distance traveled?

E
N−1

∑
i=1

(xi+1− xi)2 +λ
N

∑
i=1

u2
i (6.1)

• Are such optimal policies linear, and can we easily compute them?

With a centralized information structure, answers to these types of questions are
straightforward, and optimal policies can be readily obtained. However, under de-
centralized information constraints, these questions become far more difficult to
answer. We will return to answer these questions later in this chapter.

6.1.2 Witsenhausen’s Counterexample

To illustrate some of the difficulties surrounding decentralized problems, which
were alluded to in the previous example, consider the following example problem
posed by Witsenhausen in 1968 [21]. The block diagram in Figure 6.2 admits con-
trollers of the form

u1 = γ1(x0) u2 = γ2(x1 + v)

where x0 and v are independent random inputs with a zero mean Gaussian distribu-
tion. Thus, this problem has a decentralized information structure, because player 1
and player 2 have access to different measurements. The objective is to minimize
the cost function

E(k2u2
1 + x2

2)

In other words, player 1 attempts to keep u1 small while player 2 attempts to estimate
x1 given a corrupted signal of it. In the case where v = 0, we see that player 2 can
perfectly estimate x1, regardless of player 1’s decision; this implies that the cost
function can be made equal to zero. However, when noise is present at v, the problem
is far more difficult.

x0

γ1
u1

+

+ x1

+

+ γ2

v

+

−

u2

x2

Fig. 6.2 Witsenhausen’s Counterexample

Without going into the details of this problem, it can be shown that this problem
admits nonlinear controllers γ1, γ2 whose cost is less than that of any possible linear
controllers. In other words, every linear pair γ1, γ2 is a strictly suboptimal policy.
Moreover, the optimal nonlinear policy is still unknown.

This example is a classical result which demonstrates the difficulties arising
from decentralization. Thus, the question becomes: Is every decentralized control

182 J. Swigart and S. Lall

problem difficult to solve? If not, under what conditions can decentralized control
problems be solved? These are the questions that we focus on in this chapter.

6.2 Static Problems

Let us return to the vehicle spacing problem considered in Section 6.1.1. Suppose
there are 4 vehicles, and 3 sensor outputs

y1 = x2− x1 + w1

y2 = x3− x2 + w2

y3 = x4− x3 + w3

Let us restrict our attention to finding the best linear policy for the cost function
in (6.1), where each vehicle only receives information about its neighbors. We will
later show that such a linear policy is in fact optimal. Linear controllers correspond
to matrices K, such that

u = Ky

In this setting, decentralized linear controllers correspond to sparse matrices of the
form ⎡

⎢⎢
⎣

u1

u2

u3

u4

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

K11

K21 K22

K32 K33

K43

⎤

⎥⎥
⎦

⎡

⎣
y1

y2

y3

⎤

⎦

The set of matrices with this sparsity structure is a subspace S, called the information
constraint . Letting H be the matrix

H =

⎡

⎢
⎢
⎢
⎣

−1 1
−1 1

. . .
−1 1

⎤

⎥
⎥
⎥
⎦

this problem can be represented by the block diagram in Figure 6.3. Here, e = H(x+
u) is the final position error, y = Hx + w are the sensor outputs, and u = Ky are the
position updates.

+

H I
H
I

K

H 0
0 0

[
x
w

][
e
u

]

yu

Fig. 6.3 Vehicle Block Diagram

6 Decentralized Control 183

+

P21P12 K

P11 wz

yu

Fig. 6.4 General Static Problem Structure

The problem considered here is a special case of a more general class of prob-
lems, depicted in Figure 6.4. In this general framework, we assume that w is Gaus-
sian, and we attempt to minimize the mean square norm of z (that is, E‖z‖2), subject
to the constraint K ∈ S. Here, P11,P12,P21 are matrices, though, in general, they
could be more general operators.

From the block diagram, we have

z = (P11 + P12KP21)w

If w∼N (0, I), then the mean square norm of z is

E‖z‖2 = ‖P11 + P12KP21‖2
F

where the Frobenius norm satisfies

‖A‖2
F =∑

i, j
A2

i j = traceAAT

Consequently, the optimization of the general one-step decentralized control prob-
lem can be written as

minimize ‖P11 + P12KP21‖2
F

subject to K ∈ S
(6.2)

Note that this is a linearly constrained convex quadratic program. As a result, there
exist optimization techniques which can efficiently solve this problem, even when
K has millions of variables [3].

Lemma 1. Suppose P11, P12, P21 are matrices of appropriate dimensions, and S is a
subspace. Define A and b so that

A = PT
21⊗P12 b =−vecP11

and choose C such that
C vecK = 0

if and only if K ∈ S. Then, K is optimal in (6.2) if and only if

x = vecK

184 J. Swigart and S. Lall

and x, λ satisfy [
ATA CT

C 0

][
x
λ

]
=
[

AT b
0

]

Proof. Using the definition of the Frobenius norm, (6.2) is equivalent to

minimize ‖AvecK−b‖2
2

subject to C vecK = 0

The result follows from the KKT conditions for this problem.

6.2.1 Solution of the Multi-vehicle Problem

Returning to our sample problem of Section 6.1.1, suppose that x and w are inde-
pendent Gaussian vectors, with distributions

x∼N (0,Σx) w∼N (0,Σw)

Using the general framework above, the cost in (6.1) can be written as

E‖e‖2
2 +λ E‖u‖2

2 = ‖P11 + P12KP21‖2
F

where
P11 =

[
HΣ

1
2

x 0
0 0

]
P12 =

[
H

λ
1
2 I

]
P21 =

[
HΣ

1
2

x Σ
1
2

w
]

Let Σx = 0.1I and assume Σw≈ 0, indicating a high signal-to-noise ratio. By varying
the parameter λ , the optimal trade-off curves for both centralized and decentralized
solutions are plotted in Figure 5(a), when there are three vehicles, and in Figure 5(b),
when there are ten vehicles. In these figures, the bottom-right ends of the curves
represent the do-nothing policies, which is why the centralized and decentralized
costs are the same. Conversely, the upper left corners represent the minimum mean
square error (MMSE) policies. In the three vehicle case, it is possible to achieve
zero mean square error, though the decentralized policy requires more effort than

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

J1 = mean square relative position error

J2
 =

 m
ea

n
sq

ua
re

 d
is

ta
nc

e
m

ov
ed

decentralized
centralized

(a) Three Vehicles

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

J1 = mean square relative position errorJ
2

 =
 m

e
a

n
 s

q
u

a
re

 d
is

ta
n

c
e

 m
o

v
e

d

decentralized
centralized

(b) Ten Vehicles

Fig. 6.5 Optimal Trade-off Curves

6 Decentralized Control 185

the centralized one. However, in the ten vehicle problem, no policy will achieve
zero error.

This result can be formalized by noting that the mean square error can be writ-
ten as

E‖e‖2 = ‖H(KH + I)Σ
1
2

x ‖2
F +‖HKΣ

1
2

w ‖2
F

Thus, in this noise-free case, the mean square error is zero if and only if

H(KH + I) = 0

The final question to address for this problem is the form of the optimal MMSE
policies. Using Lemma 1, the optimal decentralized K for the three vehicle problem
has the form

u =

⎡

⎣
1 0
0 0
0 −1

⎤

⎦y

which implies that the new position of the vehicles are given by

qnew =

⎡

⎣
0 1 0
0 1 0
0 1 0

⎤

⎦q +

⎡

⎣
−1
0
1

⎤

⎦+ Kw

Hence, in the optimal MMSE policy, vehicle 2 does not move and vehicles 1 and 3
position themselves one unit away from 2. Contrast this policy with the centralized
solution wherein vehicle 2 moves to the centroid of the three vehicles and the other
vehicles position themselves relative to 2.

As the number of vehicles increases, it can be shown that the optimal decentral-
ized policy tends toward positioning the vehicles at

qnew
i =

1
10

(3qi−1 + 4qi + 3qi+1)+ noise term.

6.2.2 Nonlinear Policies

Let us generalize these results for the one-step decentralized problem by consider-
ing nonlinear policies. Suppose we have a two-player problem where each player
receives information yi and uses the policy γi(yi) to make decision ui. The objective
function that they must minimize is of the form

J =
∫

c
(
γ1(y1),γ2(y2),x

)
dμ

where c(u1,u2,x) is a convex quadratic function and μ is a probability density on
x,y1,y2. Thus, we let

186 J. Swigart and S. Lall

c(u1,u2,x) =

⎡

⎣
u1

u2

x

⎤

⎦

⎡

⎣
M11 M12 M13

MT
12 M22 M23

MT
13 MT

23 M33

⎤

⎦

⎡

⎣
u1

u2

x

⎤

⎦

where M ≥ 0.

Theorem 2. Suppose M ≥ 0, and Fi is the set of Borel measurable functions map-
ping R

pi → R
mi for i = 1,2. Let J : F1×F2→ R satisfy

J(γ1,γ2) =
∫
⎡

⎣
γ1(y1)
γ2(y2)

x

⎤

⎦

T ⎡

⎣
M11 M12 M13

MT
12 M22 M23

MT
13 MT

23 M33

⎤

⎦

⎡

⎣
γ1(y1)
γ2(y2)

x

⎤

⎦ dμ

where μ is a probability distribution of x,y1,y2. Then, (γ∗1 ,γ∗2) satisfies

J(γ∗1 ,γ∗2)≤ J(γ1,γ2) for all γ1 ∈ F1,γ2 ∈ F2

if and only if

M11γ∗1 (y1) =−M13 E(x|y1)−M12 E(γ∗2 (y2)|y1) (6.3)

M22γ∗2 (y2) =−M23 E(x|y2)−MT
12 E(γ∗1 (y1)|y2) (6.4)

Proof. An outline of the proof is as follows. Since J is convex, and sufficiently
smooth, optimal points are those at which the directional derivatives are zero. Pro-
ceeding formally, to find player 1’s optimal policy, we take a functional derivative.

J(γ1 + hΓ ,γ2) = J(γ1,γ2)

+ 2h
∫
Γ (y1)T (M11γ1(y1)+ M12γ2(y2)+ M13x

)

×Prob(x,y1,y2)dx dy1dy2

+ h2 . . .

= J(γ1,γ2)

+ 2h
∫
Γ (y1)T (M11γ1(y1)+ M12 E(γ2(y2)|y1)+ M13 E(x|y1)

)

×Prob(y1)dy1

+ h2 . . .

Consequently, the functional derivative is the term linear in h above. Thus, player
1’s policy is optimal if and only if

∫
Γ (y1)T (M11γ1(y1)+ M12 E(γ2(y2)|y1)+ M13 E(x|y1)

)
Prob(y1)dy1 = 0

for all Γ ∈ F1, which holds if and only if

M11γ1(y1) =−M12 E(γ2(y2)|y1)−M13 E(x|y1)

The same argument, applied to player 2, produces (6.4).

6 Decentralized Control 187

Notice in Theorem 2 that the optimal strategies involve estimating the decision that
the other player will make. This is commonly referred to as second-guessing .

Consider the following problem: two players are provided with some measure-
ments y1 and y2 of a random variable x. Their goal is then to choose numbers u1 and
u2 which minimize

E(u1 + u2− x)2

That is, they try to pick values whose sum is close to x. Clearly, in the centralized
case, this problem is trivial. However, in the decentralized case in which player 1
only has access to y1 and player 2 only has access to y2, what is the optimal strategy?
Is there an optimal linear strategy? We can answer that with the following lemma.

Lemma 3. Suppose J satisfies the conditions of Theorem 2, where

M =

⎡

⎣
I I −I
I I −I
−I −I I

⎤

⎦

Also, suppose that y1 and y2 satisfy

y1 = A1x + w1

y2 = A2x + w2

where x,w1,w2 are independent random vectors with normal distributions

x∼N (0,Σx) Σx ≥ 0

wi ∼N (0,Σwi) Σwi > 0 i = 1,2

Then, the optimal γ1,γ2 which minimizes J is linear.

Proof. From the definitions of y1 and y2, it is straightforward to show that

E(x|yi) = Hiyi i = 1,2

E(y2|y1) = A2H1y1

E(y1|y2) = A1H2y2

where
Hi = ΣxAT

i (AiΣxAT
i +Σwi)

−1 i = 1,2

From Theorem 2, the optimality conditions become

γ1(y1) = E(x|y1)−E(γ2(y2)|y1)
γ2(y2) = E(x|y2)−E(γ1(y1)|y2)

We will now show that linear controllers satisfy these equations. Suppose that γ1,γ2

satisfy
γ1(y1) = K1y1 γ2(y2) = K2y2

188 J. Swigart and S. Lall

Substituting into the optimality conditions yields

K1y1 = H1y1−K2A2H1y1

K2y2 = H2y2−K1A1H2y2

Since these expressions are true for every y1,y2, this implies that

[
K1 K2

]
[

I A1H2

A2H1 I

]
=
[
H1 H2

]

or, equivalently,

[
K1 K2

]([Σw1 0
0 Σw2

]
+
[

A1

A2

]
Σx
[
AT

1 AT
2

])
= Σx

[
AT

1 AT
2

]
(6.5)

Since the matrix on the left side is invertible, then there exist matrices K1, K2 which
satisfy the optimality conditions. Hence, there exist optimal linear policies γ1,γ2.

Let us briefly examine the optimal controller obtained in (6.5). It can be shown that
the optimal K in this problem is in fact the optimal centralized MMSE policy, which
has the form

u = E(x | y1,y2) = K1y1 + K2y2

Thus, since the objective of our decentralized problem is to estimate x with the sum
of u1 and u2, the optimal decentralized policy is to let u1 = K1y1 and u2 = K2y2.

Notice of course that Lemma 3 applies more generally [8]. In fact, this same
method of proof can be used to show that our multiple vehicle problem has an op-
timal linear solution, as we had assumed. For static problems in general, optimal
decentralized controllers satisfy some type of second-guessing criterion. In most
cases, linear controllers may be found, via convex optimization, which satisfy these
optimality conditions.

6.3 Dynamic Problems

In Section 6.2, we only considered static/one-step problems; that is, problems in
which players simultaneously make a single decision, and the cost is some func-
tion of the resulting state and the decisions. These problems had the nice feature
that they could be written as convex optimization problems which involved sparsity
constraints on the controllers.

Unfortunately, the dynamic case, which we will now discuss, is considerably
more difficult. What makes it harder is the addition of feedback in the dynamics;
that is, the decisions made by some players may affect the measurements that other
players receive. The general framework looks like Figure 6.6. Contrast this block
diagram with Figure 6.4 for the static problem. Thus, we see that the static problem
is a special case of the dynamic problem where P22 = 0.

6 Decentralized Control 189

+

+

P21P12 K

P11

P22

wz

yu

Fig. 6.6 General Feedback Structure

In this feedback framework, the mapping w �→ z may be written as

z =
(
P11 + P12K(I−P22K)−1P21

)
w

whenever (I−P22K)−1 exists. This is the well-posedness condition, and it is suffi-
cient to assume that P22 is strictly proper. As a result, the control problem that we
wish to solve is

minimize ‖P11 + P12K(I−P22K)−1P21‖
subject to K is stabilizing

K ∈ S

(6.6)

where S is a subspace representing the decentralized information structure.
Some example subspaces would be block diagonal constraints, so that K ∈ S if

and only if

K =

⎡

⎢
⎢
⎣

K1

K2

K3

K4

⎤

⎥
⎥
⎦

Here, S would be considered fully decentralized, where each player makes decisions
based solely on their own measurements. Another type of subspace S might involve
both sparsity and delay constraints; for instance, requiring K to be of the form

K =

⎡

⎢⎢
⎣

K11 DK12

DK21 K22 DK23

DK32 K33 DK34

DK43 K44

⎤

⎥⎥
⎦

where D is a delay operator. In this case, S allows communication between neigh-
boring players with a communication delay of D.

Note that in (6.6), if the constraint K ∈ S is removed, the problem becomes cen-
tralized, and solutions can be readily obtained.

However, with the subspace constraint in place, no known solutions exist for the
general problem. The Witsenhausen counterexample of Section 6.1.2 is sufficient

190 J. Swigart and S. Lall

evidence of this. As a result, much research in decentralized control is aimed toward
characterizing cases where solutions to (6.6) can be found [2, 9, 5, 6, 7, 1, 20].

For convenience, let G = P22. Suppose that P is stable, and define

h(K) =−K(I−GK)−1

This mapping is bijective. Hence, using the change of variables, Q = h(K), results
in the equivalent problem

minimize ‖P11−P12QP21‖
subject to Q is stable

h(Q) ∈ S

(6.7)

Although the objective function is now affine in Q and every stable Q produces a
stabilizing K, the constraint h(Q) ∈ S is no longer convex.

6.3.1 Quadratic Invariance

Since this is a large area of open research, we will restrict our attention to a class
of systems which are shown to admit convex problems in (6.7). This set of systems,
which has been shown to be quite general, are classified by a property known as
quadratic invariance [13] .

A subspace S is called quadratically invariant under G if

KGK ∈ S for all K ∈ S

The result can be stated in the following theorem.

Theorem 4. Suppose

• U and Y are Banach spaces
• G : U → Y is compact
• S⊂ L(Y ,U) is a closed subspace
• Let M =

{
K ∈ L(Y ,U) ; (I−GK) is invertible

}

Then the subspace S is quadratically invariant under G if and only if

h(S∩M) = S∩M

Proof. We provide an outline of the proof [14]. If S is quadratically invariant, then
we’ll show that for all K ∈ S and all n≥ 0,

K(GK)n ∈ S

By definition, this holds for n = 0,1. Hence, suppose it holds for some n ≥ 1, and
consider the fact that

2K(GK)n+1 =
(
K + K(GK)n)G

(
K + K(GK)n)−KGK−K(GK)nGK(GK)n

6 Decentralized Control 191

Since S is a subspace, each term on the right is in S, and consequently, K(GK)n+1 ∈
S. By induction this holds for all n.

Now, consider the resolvent set ρ(GK) = {λ ∈C | (λ I−GK) is invertible}. For
sufficiently large λ ∈C, λ ∈ ρ(GK) and

K

(
I− GK

λ

)−1

= K +
KGK
λ

+
K(GK)2

λ 2 + . . .

Since each term K(GK)n ∈ S and S is a closed subspace, we have

K(λ I−GK)−1 ∈ S

Without going into the details, there exists an analytic function q : ρ(GK)→ C

which satisfies q(λ) = 0 whenever K(λ I −GK)−1 ∈ S. Since q(λ) = 0 for suf-
ficiently large λ , it follows that q(λ) = 0 for all λ in the unbounded connected
component of ρ(GK). Since G is compact, GK has a countable spectrum, and the
result follows.

Using Theorem 4, if S is quadratically invariant under G, then (6.7) is equivalent to

minimize ‖P11−P12QP21‖
subject to Q is stable

Q ∈ S

(6.8)

This is now a convex program and can be efficiently solved. Note that quadratic
invariance is an algebraic condition; hence, it applies to continuous and discrete
time systems as well as any norm. It also applies to systems represented by transfer
functions though some additional technical conditions and a slightly different proof
are needed. In addition, it can be shown that systems which are quadratically in-
variant have optimal linear solutions [10]; hence, the convex problem above can be
solved to find a linear policy which is optimal with respect to every nonlinear policy.
More recently, quadratic invariance has also been extended to unstable systems and
nonlinear systems [12].

Quadratic invariance is a powerful result, since it unifies and generalizes many
known classes of tractable problems which had previously been discovered. Such
constraint classes include systems on strings and arrays, group symmetries, Her-
mitian symmetries, one-step-delay problems, funnel-causal systems, and partially-
nested systems. We will highlight a few of these results in the following sections.

6.3.2 Skyline Information Structures

Quadratic invariance is one of the most general classes of problems which is cur-
rently known. To illustrate the scope of this class, we will provide some examples
of quadratically invariant systems.

192 J. Swigart and S. Lall

Suppose that G and S have the following sparsity patterns

G∼

⎡

⎢⎢
⎢
⎢
⎣

• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

⎤

⎥⎥
⎥
⎥
⎦

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K | K ∼

⎡

⎢⎢
⎢
⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ •

⎤

⎥⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where the empty circles represent those elements of the matrix constrained to be
zero. This is known as a vertical skyline information structure. For a finite horizon
problem, this corresponds to any causal plant and a controller that receives measure-
ments which are not in the same order that they were made. This would correspond
to problems involving multiple sensors with different delays, or systems with packet
delays/drops. In problems of this nature, S is quadratically under G since

KGK ∼

⎡

⎢
⎢
⎢⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ •

⎤

⎥
⎥
⎥⎥
⎦

Hence, we can find solutions to problems of this form via convex optimization (6.8).
In an analogous fashion, we can show that a horizontal skyline information structure
is also quadratically invariant under this G. A sample horizontal skyline structure for
S might be

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K | K ∼

⎡

⎢
⎢
⎢
⎢
⎣

• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Such a system is an interesting case in which measurements can be forgotten in later
time steps.

To illustrate quadratic invariance in the vertical skyline case, consider the follow-
ing numerical example [12]. Suppose G is given by

G(s) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1
s+1 0 0 0 0

1
s+1

1
s−1 0 0 0

1
s+1

1
s−1

1
s+1 0 0

1
s+1

1
s−1

1
s+1

1
s+1 0

1
s+1

1
s−1

1
s+1

1
s+1

1
s−1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

6 Decentralized Control 193

1 2 3 4 5 6 7
5

6

7

8

9

structurestructure

optimal
cost

Fig. 6.7 Optimal Vertical Skyline Costs

Let the P matrices be defined as follows.

P11 =
[

G 0
0 0

]
P12 =

[
G
I

]
P21 =

[
G I

]
P22 = G

Suppose we have the following sequence of quadratically invariant sparsity
structures
⎡

⎢
⎢
⎢
⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ •

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • ◦ ◦ •

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ •

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ •

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ •

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

⎤

⎥
⎥
⎥
⎥
⎦

Notice that these information structures become increasingly more informative; that
is, there is more information for making decisions with each successive structure.
By solving the resulting convex optimization problem (6.8) for each structure, we
obtain the following histogram of optimal H2 costs. As expected, as the amount of
information increases, the optimal cost drops.

6.3.3 Control of Networks

As another example, consider the networked control problem shown in Figure 6.8.
In this system, there are three subsystems connected in a line. The plants are con-
nected with a propagation delay of p, and the controllers are restricted to communi-
cate with a delay of c. In other words, G and K have the following structures.

G =

⎡

⎢
⎢⎢
⎢
⎣

∗ Dp∗ D2p∗
Dp∗ ∗ Dp∗
D2p∗ Dp∗ ∗

⎤

⎥
⎥⎥
⎥
⎦

K =

⎡

⎢
⎢⎢
⎢
⎣

∗ Dc∗ D2c∗
Dc∗ ∗ Dc∗
D2c∗ Dc∗ ∗

⎤

⎥
⎥⎥
⎥
⎦

194 J. Swigart and S. Lall

G1 G2 G3

K1 K2 K3

p

p

c

c

c

p

p

c

c

c

Fig. 6.8 Sample Network Problem

Consequently, if c≤ p, then this system is quadratically invariant since

KGK =

⎡

⎢⎢
⎢
⎣

∗ Dr∗ D2r∗
Dr∗ ∗ Dr∗
D2r∗ Dr∗ ∗

⎤

⎥⎥
⎥
⎦

where r = min{c, p}. As an example, consider the finite horizon problem with p = 2
and c = 1. This problem has G and K with the following sparsity structures.

G∼

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦
• • ◦ ◦ • • • • • • ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • • ◦
◦ ◦ ◦ ◦ • • ◦ ◦ • • • •

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

K ∼

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • ◦ • • ◦ ◦ • ◦ ◦ ◦
• • • • • • • ◦ • • ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦
• • ◦ ◦ • • • ◦ • • ◦ ◦
• • • ◦ • • • • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦
• ◦ ◦ ◦ • • ◦ ◦ • • • ◦
• • ◦ ◦ • • • ◦ • • • •

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

As a result, we see that KGK has the same structure as K; hence, S is quadratically
invariant under G.

These results apply to more general networks [11], like the lattice network in
Figure 6.9. In this lattice network, the system is quadratically invariant if c≤ p.

In general networked systems, there are two underlying graph structures, one rep-
resenting the interconnection of the plants, and the other representing the allowable
communication channels between controllers. Ignoring delays, it can be shown that
the controller subspace is quadratically invariant if and only if the transitive closure
of the plant graph is contained in the transitive closure of the controller graph [17].
Here, the term transitive closure refers to the set of paths of any length in the graph.
Interestingly, this does not require the two graphs to be equal. For instance, consider
Figure 6.10. These graph structures satisfy the conditions for quadratic invariance,
implying that optimal controllers communicating with the graph structure in Fig-
ure 6.10 can be found.

6 Decentralized Control 195

Dt Dt Dt

Dt

Dt Dt

Dt

Dt

Dt

Dt

Dt

DtK11 K12 K13

K23K22K21

K31 K32 K33

G11 G12 G13

G23G22G21

G31 G32 G33

Dp

Dp

Dp

Dp

Dp

Dp

Dp

Dp Dp

Dp Dp

Dp

Fig. 6.9 Two-dimensional Lattice

Plant Structure

1

2 3

4

5

Controller Structure

1

2 3

4

5

Fig. 6.10 Multiple Graphs Example

6.3.4 Non-convex Systems

In contrast to the above quadratically invariant systems, consider the following
systems which remain intractable. Suppose G and S have the following sparsity
structure.

G∼
⎡

⎣
◦ ◦ ◦
• ◦ ◦
◦ • •

⎤

⎦ S =

⎧
⎨

⎩
K | K ∼

⎡

⎣
◦ ◦ ◦
• ◦ ◦
◦ • •

⎤

⎦

⎫
⎬

⎭

Direct computation shows that

KGK ∼
⎡

⎣
◦ ◦ ◦
◦ ◦ ◦
• • •

⎤

⎦

which implies that the system is not quadratically invariant, despite the plant and
controller having similar sparsity structures. Consequently, the optimization prob-
lem remains non-convex.

In should be clear by now that Witsenhausen’s counterexample is not a
quadratically invariant system; otherwise, it would have a known solution. In ad-
dition, considering the networked control problems of the previous section, suppose
that the controllers are fully decentralized; that is, there is no communication be-
tween controllers. From the results of Section 6.3.3, this implies that this system

196 J. Swigart and S. Lall

is quadratically invariant if and only if the plants are also decoupled, so that the
system reduces to independent subsystems. Thus, this supports the well-known fact
that decentralized problems, in general, are intractable.

6.3.5 Unstable Plants

Before concluding our discussion on quadratic invariance, we note that the results
obtained above can also be applied when the plant is unstable [12].

In this case, one requires any stable and stabilizing controller Knom ∈ S. Then,
using the following change of variables

K = Knom + Q(I−GKnom + GQ)−1(I−GKnom)

and assuming that S is quadratically invariant under G, the optimization prob-
lem (6.6) may be equivalently posed as

minimize ‖T1−T2QT3‖
subject to Q is stable

Q ∈ S

where T1,T2,T3 are constructed from P and Knom.

6.4 Solving the Optimization Problem

While quadratic invariance achieves a convex formulation in (6.8) for previously
intractable problems, these convex problems are infinite-dimensional. Thus, actually
computing an optimal solution for (6.8) is a non-trivial step.

Several methods exist to find optimal solutions to this problem. The parameter
Q itself is a linear stable system, and we can parameterize it via a basis for the
impulse response function. In other words, this is similar to solving for the first n
coefficients to the impulse response function. Computing a solution in this manner is
efficient since it is now a finite-dimensional optimization problem. However, there
exist some drawbacks to this approach. Since we must work in a finite basis, the
solution is inherently approximate. Moreover, to obtain high precision requires very
high-dimensional optimization problems. Lastly, any structure or interpretation of
the optimal controller is lost; in particular, determining the dimension of the optimal
controller is impossible. Nevertheless, this method is most commonly used due to
its efficiency and generality.

Dynamic programming approaches have also been considered [16]. While these
have the advantage of being efficient and provide intuition to the optimal solutions,
few decentralized control problems seem to lend themselves nicely to solution with
this method. Nevertheless, some approximation schemes have been suggested via
dynamic programming [4].

6 Decentralized Control 197

Semidefinite programming is another alternative approach. While this approach
is efficient and finite-dimensional, it still lacks analytic results which provide impor-
tant insights to the structure of the optimal controllers. Moreover, only a few special
cases have yet been solved with this approach [22, 15, 9].

Another approach has already been alluded to in Lemma 1. That is, in the H2 op-
timization problem, the objective function may be vectorized to achieve a linearly
constrained least-squares type of problem [10]. In fact, in many cases the constraint
set may be subsumed into the objective function resulting in an unconstrained H2

optimization problem, for which well-known solutions exist. The advantage here
is that the resulting solution is optimal. However, like the basis parametrization
method, the resulting problem can be very high-dimensional, and loses the struc-
ture associated with the problem.

This is in contrast to the centralized case, for which there are explicit state-space
formulae. Such formulae offer the practical advantages of computational reliability
and simplicity, as well as providing understanding and interpretation of the con-
troller structure, such as the separation into controller and estimator as well as de-
termining the state dimension of the optimal controller. It is an open area of research
to find general state-space formulae for quadratically invariant systems. One promis-
ing approach has been the method of spectral factorization, which we now describe.

6.4.1 Spectral Factorization

The common disadvantage to most techniques described above is the loss of intrin-
sic structure in the solution. By this, we mean that these approaches seek to solve
the optimization problem (6.8) element by element in the parameter Q, rather than
optimize over elements in S. This is a subtle point which might be made more clear
by an example. Consider the problem (6.8) where S is the set of lower triangular
matrices. By vectorizing this problem, one can arrive at the equivalent optimization
problem

minimize ‖b−Ax‖2

Here, x is the vectorization of Q ∈ S, where we’ve dropped all elements of Q con-
strained to be zero by eliminating columns of PT

21⊗P12 to construct A. While the re-
sulting least-squares problem may now be efficiently solved, reconstructing Q from
the optimal x is a very difficult problem, even in this centralized example.

In spectral factorization, we recognize that there exists an optimality condition
which must be satisfied for the H2 optimization problem (6.8), which is given by

PT
12P11PT

21 + PT
12P12QP21PT

21 ∈ S⊥ (6.9)

where S⊥ is the set of strictly upper triangular matrices in this example. Visually,
this equation has the following form.

[]

︸ ︷︷ ︸
C

+
[]

︸ ︷︷ ︸
A

[]

︸ ︷︷ ︸
Q

[]

︸ ︷︷ ︸
B

=
[]

︸ ︷︷ ︸
Λ

198 J. Swigart and S. Lall

where Λ is some matrix in S⊥. Of course, this optimality condition can be solved
via vectorization in the same manner as above. However, we can solve for Q∈ S as a
whole by recognizing that A may be factorized into an upper triangular matrix times
a lower triangular matrix, A = UALA, and similarly for B = LBUB. Consequently, we
can preserve the structure of (6.9) by multiplying it on the left by U−1

A and on the
right by U−1

B . The resulting equation now looks like

[]

︸ ︷︷ ︸
D

+
[]

︸ ︷︷ ︸
LA

[]

︸ ︷︷ ︸
Q

[]

︸ ︷︷ ︸
LB

=
[]

︸ ︷︷ ︸
Ω

where Ω ∈ S⊥. Now, by partitioning D into its lower and strictly upper triangular
components, D = LD +UD, we can directly solve for Q ∈ S as

Q =−L−1
A LDL−1

B

Notice that the resulting Q is lower triangular, as desired, and can be computed
analytically. At no point during this solution was the structure of Q altered.

Of course, this example is simply a centralized problem. Nevertheless, it high-
lights some of the key features of spectral factorization. Moreover, recent study has
shown that this method can be applied to many decentralized problems.

Consider, for instance, the skylinestructures of Section 6.3.2. In this case, though
the constraint set S has changed, the optimality condition may still be expressed
as (6.9). While triangular factorizations may no longer work in this setting, there
exist other factorizations which allow us to solve for Q while preserving its
structure [18].

Similarly, the networked control problems of Section 6.3.3 lend themselves
nicely to spectral factorization schemes. Preliminary results have further demon-
strated the importance of this method, since the optimal controllers have been shown
to separate nicely into control and estimation problems, and the state dimension of
the optimal controllers may be obtained [19].

6.4.2 Solution of the Two-Player Problem

To illustrate the effectiveness of the spectral factorization approach described above
on a networked control problem, consider the following two-player system in
Figure 6.11. In this problem, player 1 may communicate to player 2, but not vice
versa. The resulting sparsity constraint is that K ∈ S if and only if K12 = 0. The
overall dynamics are given by

1 2

Fig. 6.11 Two-player System

6 Decentralized Control 199

[
x1(t + 1)
x2(t + 1)

]
=
[

A11 0
A21 A22

][
x1(t)
x2(t)

]
+
[

B11 0
B21 B22

][
u1(t)
u2(t)

]
+ v(t)

where xi,ui are the state and inputs of player i, and v is exogenous noise. Note
that the dynamics of player 1 may propagate to player 2’s dynamics, but not vice
versa. This represents the simplest possible decentralized and quadratically invariant
network structure. By using a spectral factorization approach and without going into
too many details, the optimal solutions may be expressed as follows [19].

• Controller 1 has realization

q1(t + 1) = AKq1(t)+ BKx1(t)
u1(t) =−K12q1(t)−K11x1(t)

• Controller 2 has realization

q2(t + 1) = AKq2(t)+ BKx1(t)

u2(t) =
(
J−K22

)
q2(t)−K21x1(t)− Jx2(t)

where K and J are constructed from the solutions of two different Riccati equations,
and

AK = A22−B21K12−B22K22

BK = A21−B21K11−B22K21

With the inclusion of q1 and q2, the optimal controller is not a static gain, despite
the fact that we have state feedback in each subsystem and player two has complete
state information. Contrast this result with the classical LQR controller in which the
optimal centralized controller would be the static gain K. In fact, both controllers
have dynamics, and each has the same number of states as system 2.

It can be shown that q1 and q2 in the optimal controllers are in fact the minimum-
mean square error estimate of x2 given the history of x1’s. In other words, letting
η(t) = E

(
x2(t) | x1(t), . . . ,x1(0)

)
the optimal control policy can be written as

u1(t) =−K11x1(t)−K12η(t)

u2(t) =−K21x1(t)−K22η(t)+ J
(
η(t)− x2(t)

)

Thus, the optimal policy is, in fact, attempting to perform the optimal centralized
policy, though using η instead of x2. However, there is an additional term in u2

which represents the error between x2 and its estimate η . We also see that in the
case where x2 is deterministic, so that η = x2, then the optimal distributed controller
reduces to the optimal centralized solution, as it should.

6.5 Summary

In this tutorial on decentralized control, we began by illustrating the types of prob-
lems that one might consider. Unfortunately, it became readily apparent that optimal

200 J. Swigart and S. Lall

decentralized control problems can be very difficult and, in some cases, intractable.
As a result, our goal became one of characterizing the types of problems that could
be solved efficiently.

To this end, we first discussed static control problems. We were able to show that
static decentralized control could be solved via convex optimization, and that linear
optimal controllers could be found in most cases. Thus, we generally view static
problems as solvable.

In progressing to dynamic problems involving feedback, we discovered that the
resulting optimization problems were not convex in general, and the goal became
classifying the tractable problems. Perhaps the most general class of problems cur-
rently found to admit convex synthesis are those systems which are quadratically
invariant. When systems are quadratically invariant, we can show that the optimal
solution is linear and may be found via a convex program. Several examples of im-
portant problems which are quadratically invariant were provided to illustrate the
generality of this result.

Lastly, it was argued that controller synthesis does not end with the formulation
of the convex program, since this problem is often infinite-dimensional. Though
many techniques are proposed to solve for the optimal controllers, the method of
spectral factorization has been shown to provide additional benefits, including com-
putational reliability, insight into the control and estimation structure, and explicit
state-space formulae. The solution to an example problem was provided to highlight
these advantages.

References

1. Bamieh, B., Voulgaris, P.G.: Optimal distributed control with distributed delayed mea-
surements. In: Proceedings of the IFAC World Congress (2002)

2. Blondel, V.D., Tsitsiklis, J.N.: A survey of computational complexity results in systems
and control. Automatica 36(9), 1249–1274 (2000)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cam-
bridge (2004)

4. Gupta, V.: Distributed Estimation and Control in Networked Systems. PhD thesis, Cali-
fornia Institute of Technology (2006)

5. Ho, Y.-C., Chu, K.C.: Team decision theory and information structures in optimal control
problems – Part I. IEEE Transactions on Automatic Control 17(1), 15–22 (1972)

6. Sandell Jr., N., Athans, M.: Solution of some nonclassical LQG stochastic decision prob-
lems. IEEE Transactions on Automatic Control 19(2), 108–116 (1974)

7. Qi, X., Salapaka, M., Voulgaris, P., Khammash, M.: Structured optimal and robust con-
trol with multiple criteria: A convex solution. IEEE Transactions on Automatic Con-
trol 49(10), 1623–1640 (2004)

8. Radner, R.: Team decision problems. Annals of mathematical statistics 33, 857–881
(1962)

9. Rantzer, A.: Linear quadratic team theory revisited. In: Proceedings of American Control
Conference, pp. 1637–1641 (June 2006)

10. Rotkowitz, M.: Information structures preserved under nonlinear time-varying feedback.
In: Proceedings of the American Control Conference, pp. 4207–4212 (2006)

6 Decentralized Control 201

11. Rotkowitz, M., Cogill, R., Lall, S.: A simple condition for the convexity of optimal con-
trol over networks with delays. In: Proceedings of the IEEE Conference on Decision and
Control, pp. 6686–6691 (2005)

12. Rotkowitz, M., Lall, S.: A characterization of convex problems in decentralized control.
IEEE Transactions on Automatic Control 51(2), 274–286 (2002)

13. Rotkowitz, M., Lall, S.: Decentralized control information structures preserved under
feedback. In: Proceedings of the IEEE Conference on Decision and Control, pp. 569–
575 (2002)

14. Rotkowitz, M., Lall, S.: Affine controller parameterization for decentralized control over
banach spaces. IEEE Transactions on Automatic Control 51(9), 1497–1500 (2006)

15. Scherer, C.W.: Structured finite-dimensional controller design by convex optimization.
Linear Algebra and its Applications 351(352), 639–669 (2002)

16. Swigart, J., Lall, S.: Dynamic programming with non-classical information structures.
In: Proceedings of Mathematical Theory of Networks and Systems, pp. 457–462 (2008)

17. Swigart, J., Lall, S.: A graph-theoretic approach to distributed control over networks. In:
Proceedings of the IEEE Conference on Decision and Control (2009)

18. Swigart, J., Lall, S.: Spectral factorization of non-classical information structures under
feedback. In: Proceedings of the American Control Conference, pp. 457–462 (2009)

19. Swigart, J., Lall, S.: An explicit state-space solution for a decentralized two-player opti-
mal linear-quadratic regulator. Submitted to American Control Conference, pp. 457–462
(2010)

20. Vouglaris, P.: Control of nested systems. In: Proceedings of the American Control Con-
ference, vol. 6, pp. 4442–4445 (2000)

21. Witsenhausen, H.S.: A counterexample in stochastic optimum control. SIAM Journal of
Control 6(1), 131–147 (1968)

22. Zelazo, D., Mesbahi, M.: H2 analysis and synthesis of networked dynamic systems. In:
Proceedings of the American Control Conference, pp. 2966–2971 (2009)

Chapter 7
Stability and Stabilization of
Networked Control Systems

W.P.M.H. Heemels and N. van de Wouw

Abstract. The presence of a communication network in a control loop induces many
imperfections such as varying transmission delays, varying sampling/transmission
intervals, packet loss, communication constraints and quantization effects, which
can degrade the control performance significantly and can even lead to instability.
Various techniques have been proposed in the literature for stability analysis and
controller design for these so-called networked control systems. The aim of this
chapter is to survey the main research lines in a comprehensive manner.

7.1 Introduction

Networked control systems (NCSs) have received considerable attention in recent
years. The interest for NCSs is motivated by many benefits they offer such as the
ease of maintenance and installation, the large flexibility and the low cost. How-
ever, still many issues need to be resolved before all the advantages of wired and
wireless networked control systems can be harvested. Part of the solution will be
formed by improvements of the employed communication networks and protocols,
resulting in increased reliability and reduction of the end-to-end latencies and packet
dropouts. However, the solution cannot be obtained in a cost-effective manner by
only improving the communication infrastructure. It is important to take a system’s
perspective to overcome these problems and also develop control algorithms that
can deal with communication imperfections and constraints. This latter aspect is

W.P.M.H. Heemels
Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
e-mail: M.Heemels@tue.nl

N. van de Wouw
Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
e-mail: N.v.d.Wouw@tue.nl

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 203–253.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

M.Heemels@tue.nl
N.v.d.Wouw@tue.nl

204 W.P.M.H. Heemels and N. van de Wouw

Fig. 7.1 Introduction of a network in a control loop

recognized widely in the control community, as evidenced by the many publications
appearing recently, see, e.g., the survey papers [40, 102, 83, 98].

Roughly speaking, the network-induced imperfections and constraints can be cat-
egorized in five types:

(i) Variable sampling/transmission intervals;
(ii) Variable communication delays;

(iii) Packet dropouts caused by the unreliability of the network;
(iv) Communication constraints caused by the sharing of the network by multiple

nodes and the fact that only one node is allowed to transmit its packet per
transmission;

(v) Quantization errors in the signals transmitted over the network due to the finite
word length of the packets.

Basically, the introduction of a communication network in a control loop (see Fig-
ure 7.1) modifies the external signals (u,y) of the plant and the controller due to
these five imperfections. Indeed, the control input û going into the plant is no longer
equal to the output u of the controller, and the measured output of the plant y is not
exactly known by the controller that only has access to a ‘networked’ version ŷ of
this output. Each of the imperfections has its own particular effect on the network-
induced differences ey := ŷ−y and eu := û−u. Obviously, the presence of these net-
work phenomena can degrade the performance of the control loop significantly and
can even lead to instability, see, e.g., [10, 14] for an illustrative example. Therefore,
it is of importance to understand how these phenomena influence the closed-loop
stability and performance properties, preferably in a quantitative manner. Since in
any practical communication network all aforementioned network-induced imper-
fections are present, there is a need for analysis and synthesis methods including all
these imperfections. This is especially of importance, considering that the design of
a NCS often requires tradeoffs between the different types. For instance, reducing
quantization errors (and thus transmitting larger or more packets) typically results in
larger transmission delays. To support the designers in making these tradeoffs in the
design of the complete NCS (plant, controller and network) in an integral fashion,
tools are needed that provide quantitative information on the consequences of each
of the possible choices in plant, controller and network design.

7 Stability and Stabilization of Networked Control Systems 205

Although the NCS field is relatively young, various major research lines are al-
ready appearing these days. Unfortunately, much of the available literature on NCS
considers only some of above mentioned types of network phenomena, while ignor-
ing the other types. The available results need to be extended and integrated to obtain
a framework in which all the network-induced imperfections can be studied simulta-
neously and tradeoffs can be made. This chapter has the aim to provide an overview
of the rapidly growing literature on NCS with a focus on methods for stability anal-
ysis that incorporate several of the above mentioned communication imperfections.
To a lesser extent we will also discuss the stabilization problem. As such, this chap-
ter strives to form the basis for further research that eventually leads to a practically
useful analysis and design framework for control over communication networks.

7.2 Overview of Existing Approaches

A categorization of the available literature on stability analysis of NCSs can be done,
firstly, on the basis of the types of network-induced imperfections considered (time-
varying sampling intervals, time-varying delays, packet dropouts, communication
constraints and quantization as mentioned in the introduction), see Section 7.2.1,
and, secondly, on the modeling and analysis approach adopted to study the stability
of the NCS under these network-induced imperfections, see Section 7.2.2.

Before categorizing the existing approaches, let us start by noting that two es-
sentially different ways exist to model network-induced uncertainties such as time-
varying sampling intervals, time-varying delays and packet dropouts. The first class
of models assumes (deterministic) bounds on the delays, sampling intervals and the
number of subsequent packet dropouts, without adopting any further assumptions on
the possibly random processes behind the generation of, e.g., sequences of delays or
packet drops. With some abuse of terminology, we will call this the deterministic ap-
proach. A second class of models exist in which information about the stochastic na-
ture of these variables is taken into account, provided this additional information is
available, which we call the stochastic approach. In this overview, we focus mainly
on deterministic approaches and refer the interested reader to [56, 94, 74, 50, 75, 97]
and the references therein for stochastic approaches. One observation is that the
cited references for the stochastic approach at present only can handle a finite or
countable number of delays or sampling intervals, while in reality this is often not
the case. Fortunately, recently results are appearing that more realistically consider
delays and sampling intervals as continuous random variables taking possibly an
uncountable number of values, see, for instance, [55, 67, 80, 2, 1, 20].

7.2.1 The Types of Network-Induced Phenomena

Many systematic approaches that analyse stability of NCSs consider only one of
these network-induced imperfections. Indeed, the effects of quantization are stud-
ied in [51, 82, 5, 62, 19, 34, 36], of packet dropouts in [78, 76], of time-varying

206 W.P.M.H. Heemels and N. van de Wouw

transmission intervals and delays in [26, 56, 60, 3], and [10, 14, 42, 48, 59, 101, 23,
33], respectively, and of communication constraints in [17, 4, 45, 71, 47].

References that simultaneously consider two types of network-induced im-
perfections are given in Table 7.1. Moreover, [63] consider imperfections of
type (i), (iv), (v), [58, 57, 9, 59, 11] study simultaneously type (i), (ii), (iii), [65] fo-
cuses on type (i), (iii), (iv), while [27] studies (ii), (iii) and (v). Also [37, 38, 7, 21]
studies three types, namely type (i), (ii), (iv). In addition some of the approaches
mentioned in Table 7.1 that study varying sampling intervals and/or varying com-
munication delays can be extended to include type (iii) phenomena as well by mod-
eling dropouts as prolongations of the maximal sampling interval or delay (cf. also
Remark 7.18 below). Another subtle though important distinction between existing
works incorporating varying delays is whether only small delays or also large delays
(delays smaller or larger, respectively, than the sampling interval) are considered. In
this chapter we will present methods dealing with both cases.

By recent unifications of the work in [63] and [37, 38] a framework is obtained
in [35] that can model and analyze the five imperfections simultaneously. Although
certain restrictive assumptions are adopted in [35] (regarding, e.g., the small delay
case and the usage of particular quantizers), it is the first framework that includes
all five of the mentioned network-induced imperfections.

Table 7.1 References that study NCS with two network-induced imperfections simultane-
ously

& (ii) (iii) (iv)

(i) [86, 85, 43] [22, 6, 66, 91, 92, 81]

(iii) [28, 32, 12, 53, 100] –

(iv) [46] -

(v) [52] [84]

7.2.2 Different Approaches in Modeling/Analysis of NCS

We distinguish three different approaches towards the modeling, stability analysis
and controller synthesis for NCS:

1. Work on the discrete-time approach, see e.g [26, 28, 43, 14, 23, 11, 86, 72, 102,
95, 70, 101, 96, 93], has mainly focussed on linear NCS. The first step is to
construct discrete-time representations of the sampled-data NCS system (which
for linear systems can be done exactly), leading to an uncertain discrete-time
system in which the uncertainties appear in an exponential form (due to dis-
cretization). The discrete-time modeling approaches can be further categorized
by time-driven or event-driven models. In time-driven models the continuous-
time model is integrated from sample/transmission time to the next sample/-
transmission time, while in event-driven models integration is done from each
event time (being control updates times, sample times, etc), see, e.g., [43] for
the latter. Here we will mainly focus on time-driven linear NCS models.

7 Stability and Stabilization of Networked Control Systems 207

Next, to construct models suitable for stability analysis, polytopic overap-
proximation or embedding techniques are used to capture the exponential un-
certainties. Various methods have been proposed to do this (some with fixed
approximation error, others with tuning parameters to make the approxima-
tion more tight). The resulting polytopic models, possibly also having norm-
bounded uncertainty, can then be used in a robust stability analysis, often based
on linear matrix inequalities (LMIs), to guarantee the stability of the discrete-
time NCS model.

The final step is to guarantee that also the intersample behavior is stable,
such that stability of the true sampled-data NCS model can be concluded. This
approach allows to consider discrete-time controllers, although by discretizing
continuous-time controllers they can be incorporated as well. Typically, this
approach is applied to NCS with linear plants and controllers since in that case
exact discrete-time models can be derived, although recently new results have
been obtained that apply to NCS with nonlinear plants and controllers based on
approximate discretizations, see [87]. We will discuss the approach for “linear
NCS” in more detail in Sections 7.3.2 and 7.4.2;

2. The sampled-data approach uses continuous-time models that describe the
sampled-data NCS dynamics in the continuous-time domain (so without ex-
ploiting any form of discretization) and perform stability analysis and con-
troller synthesis based on these sampled-data NCS models directly. Fridman
et al. [25] applied a descriptor system approach to model the sampled-data
dynamics of systems with varying sampling intervals in terms of (infinite-
dimensional) delay-differential equations (DDEs) and study their stability based
on the Lyapunov-Krasovskii functional method. In [99, 100, 27], this approach
is used for the stability analysis of NCSs with time-varying delays and con-
stant sampling intervals, using (linear) matrix inequality-based techniques. The
recent results in [27] show how varying delays, quantization and dropouts can
be formulated in one framework based on DDEs, and stability analysis and H∞
control design methods, based on LMIs, are presented. However, Mirkin [54]
showed that the use of such an approach for digital control systems neglects
the piecewise constant nature of the control signal due to the zero-order-hold
mechanism thereby introducing conservatism when exploiting such modeling
for stability analysis. More specifically, the conservatism is introduced by the
fact that the zero-order hold and delay jointly introduce a particular linearly
increasing time-varying delay within each control update interval (sometimes
indicated by the sawtooth behavior of the delay), whereas in the modeling ap-
proach mentioned above it is replaced by an arbitrary bounded time-varying
delay.

An alternative approach, proposed in [58, 60, 59, 86, 85], is based on im-
pulsive DDEs and does take into account the piecewise constant nature of the
control signal due to the zero-order-hold mechanism. It has been shown in [54]
that this approach is less conservative than the descriptor approach. More specif-
ically, the impulsive DDEs are based on introducing impulses (discontinuous
updates) at the moment new information arrives at the controller or the plant. In

208 W.P.M.H. Heemels and N. van de Wouw

this manner the true behavior of the underlying NCS is captured. As also noted
in [60], the usage of infinite-dimensional DDE models and Lyapunov function-
als to analyze the stability of essentially finite-dimensional sampled-data NCS
does not seem to offer any advantage. The approach in [58, 86] is able to deal si-
multaneously with time-varying delays and time-varying sampling intervals but
does not explicitly include packet dropouts in the model (although they might
be considered as variations in the sampling intervals or delays). Here, we will
focus mainly on the approach towards the modeling and stability analysis us-
ing impulsive DDEs. We call this the sampled-data approach, which allows the
consideration of discrete-time controllers and nonlinear plants. However, con-
structive stability conditions have only been obtained for linear NCS. We will
discuss this approach in Section 7.3.3;

3. In the so-called continuous-time or emulation approach, see [92, 91, 65, 38, 37,
17, 66], a continuous-time controller is designed to stabilize the continuous-
time plant in the absence of network-induced imperfections. Next, the stability
analysis is based on a sampled-data model of the NCS (in the form of a hy-
brid system) and allows to quantify the level of network-induced uncertainty
(in terms of, e.g., the maximal allowable sampling/transmission interval and/or
maximal allowable delay) for which the NCS inherits the stability properties
from the closed-loop system without the network. This approach is applicable
to a wide class of nonlinear NCS, since well-developed tools for the design of
(nonlinear) controllers for nonlinear plants can be employed. A drawback is the
fact that the controller is formulated in continuous time, whereas for NCS one
typically designs the controller in discrete time. We will discuss this approach
in detail in Section 7.4.1.

Summarizing, the discrete-time approach considers discrete-time controllers (or
discretized continuous-time controllers) and a discrete-time NCS model, while
the sampled-data approach also considers discrete-time controllers, but has a
continuous-time (sampled-data) NCS model. Finally, the continuous-time (emu-
lation) approach focuses on continuous-time controllers using a continuous-time
(sampled-data) NCS model. Within all these different approaches different tech-
niques towards stability analysis are used. While the discrete-time approach uses
common quadratic or parameter-dependent Lyapunov functions for the discrete-
time model, the continuous-time (emulation) approach uses continuous-time Lya-
punov functions constructed by combining separate Lyapunov functions for the
network-free closed-loop system on the hand and the network protocol on the other
hand (or, alternatively, adopting directly small gain arguments). The sampled-data
approaches exploit extensions of Lyapunov-Krasovskii function(al)s. We will dis-
cuss these methods in details in the following sections, where we start with NCS
without communication constraints and scheduling protocols (Section 7.3) and treat
the case with communication constraints in Section 7.4. In this chapter, we will
not pay any attention to quantization effects as these are extensively covered in the
chapter in this book written by Hideaki Ishii.

7 Stability and Stabilization of Networked Control Systems 209

7.3 NCS with Delays, Varying Sampling Intervals and Packet
Loss

In Section 7.3.1, we discuss a general description of a single-loop NCS with time-
varying sampling intervals, delays and packet dropouts. In Section 7.3.2, we discuss
a discrete-time approach towards the modeling, stability analysis and controller de-
sign for these NCS. Finally, in Section 7.3.3, we present a continuous-time approach
towards the modeling and stability analysis for these systems exploiting models in
terms of impulsive DDEs.

7.3.1 Description of the NCS

In this section, we present a fairly general description of a NCS including delays
larger than the uncertain and time-varying sampling intervals and packet dropouts.
It is based on the developments in [11] (see also [12, 14]). We choose this level of
generality for the reason that the application of the stability techniques presented
later can encompass all these types of network-induced phenomena.

The NCS is depicted schematically in Figure 7.2. It consists of a linear
continuous-time plant

ẋ(t) = Ax(t)+ Bu∗(t) (7.1)

with A ∈ R
n×n and B ∈ R

n×m, and a discrete-time static time-invariant controller,
which are connected over a communication network that induces network delays
(τsc and τca). The state measurements (y(t) = x(t)) are sampled resulting in the
sampling time instants sk given by:

s0 = 0 and sk =
k−1

∑
i=0

hi for k ≥ 1, (7.2)

which are non-equidistantly spaced in time due to the time-varying sampling inter-
vals hk > 0. The sequence of sampling instants s0,s1,s2, . . . is strictly increasing in
the sense that sk+1 > sk, for all k ∈ N. The notation yk := y(sk) denotes the k-th
sampled value of y, xk := x(sk) the k-th sampled value of the state and uk the control
value corresponding to yk = xk. Packet drops may occur (see Figure 7.2) and are
modeled by the parameter mk. This parameter denotes whether or not a packet is
dropped:

mk =
{

0, if yk and uk are received
1, if yk and/or uk is lost.

(7.3)

In (7.3), we make no distinction between packet dropouts that occur in the sensor-
to-controller connection and the controller-to-actuator connection in the network.
This can be justified by realizing that, for static controllers, the effect of the packet
dropouts on the control updates implemented on the plant is the same in both cases.
Indeed, for packet dropouts between the sensor and the controller no new control

210 W.P.M.H. Heemels and N. van de Wouw

Fig. 7.2 Schematic overview of the NCS with variable sampling intervals, network delays
and packet dropouts

update is computed and thus no new control input is sent to the actuator. In the case
of packet dropouts between the controller and the actuator no new control update
is received by the actuator either. Finally, the zero-order-hold (ZOH) function (in
Figure 7.2) is applied to transform the discrete-time control value uk to a continuous-
time control input u∗(t) being the actual actuation signal of the plant.

In the model, both the varying computation time (τc
k), needed to evaluate the con-

troller, and the network-induced delays, i.e. the sensor-to-controller delay (τsc
k) and

the controller-to-actuator delay (τca
k), are taken into account. The sensor is assumed

to act in a time-driven fashion (i.e., sampling occurs at the times sk defined in (7.2))
and both the controller and the actuator act in an event-driven fashion (i.e., respond-
ing instantaneously to newly arrived data). Furthermore, we consider that not all the
data is used due to packet dropouts and message rejection, i.e. the effect that more
recent control data is available before older arrives and therefore the older data is ne-
glected. Under these assumptions, all three delays can be captured by a single delay
τk := τsc

k + τc
k + τca

k , see also [68, 102]. To include these effects in the continuous-
time model, define the parameter k∗(t) that denotes the index of the most recent
control input that is available at time t as k∗(t) := max{k ∈N|sk +τk ≤ t ∧ mk = 0}.
The continuous-time model of the plant of the NCS is then given by

ẋ(t) = Ax(t)+ Bu∗(t) (7.4a)

u∗(t) = uk∗(t). (7.4b)

Here, we assume that the most recent control input remains active at the plant if a
packet is dropped. Note that in some NCS setups one also use the different policy
to set the control input to 0 in case dropout occurs instead of holding the previous
control value, see, e.g., [73].

The delays are assumed to be bounded and contained in the interval [τmin,τmax],
the sampling interval are bounded and contained in the interval [hmin,hmax] and the
number of subsequent packet dropouts is upper bounded by δ . The latter means that

k

∑
v=k−δ

mv ≤ δ , (7.5)

7 Stability and Stabilization of Networked Control Systems 211

for all k ∈ N as this guarantees that from the control inputs uk−δ , uk−δ+1, . . . ,uk

at least one is implemented. In summary, the class S of admissible sequences
{(sk,τk,mk)}k∈N can be described as follows:

S :=
{
{(sk,τk,mk)}k∈N| hmin ≤ sk+1− sk ≤ hmax,

s0 = 0, τmin ≤ τk ≤ τmax,
k

∑
v=k−δ

mv ≤ δ ,∀k ∈ N

}
,

(7.6)

which includes variable sampling intervals, small and large delays, and packet
dropouts. Note that in this case we allow for large delays in the sense that τk might
be larger than hk.

7.3.2 Discrete-Time Modeling Approaches

7.3.2.1 The Exact Discrete-Time NCS Model

To arrive at a discrete-time description of the NCS, the equation (7.4b) of the
continuous-time control input u∗(t) is reformulated to indicate explicitly which con-
trol inputs ul are active in the sampling interval [sk,sk+1). Such a reformulation is
needed to derive the discrete-time NCS model, which will ultimately be employed
in the stability analysis and controller synthesis methods.

Lemma 7.1. Consider the continuous-time NCS as defined in (7.4) and the admissi-
ble sequences of sampling instants, delays, and packet dropouts as defined in (7.6).
Define d := � τmin

hmax
, the largest integer smaller than or equal to τmin

hmax
and d := � τmax

hmin
�,

the smallest integer larger than or equal to τmax
hmin

. Then, the control action u∗(t) in
the sampling interval [sk,sk+1) is described by

u∗(t) = uk+ j−d−δ for t ∈ [sk + tk
j ,sk + tk

j+1), (7.7)

where the actuation update instants tk
j ∈ [0,hk] are defined as

tk
j = min

{
max{0,τk+ j−d−δ −

k−1

∑
l=k+ j−δ−d

hl}+ mk+ j−d−δhmax,

max{0,τk+ j−d−δ+1−
k−1

∑
l=k+ j+1−δ−d

hl}+ mk+ j−d−δ+1hmax,

. . . ,max{0,τk−d−
k−1

∑
l=k−d

hl}+ mk−dhmax,hk

}
,

(7.8)

with tk
j ≤ tk

j+1 and j ∈ {0,1, . . . ,d +δ−d} (see Figure 7.3). Moreover, 0 = tk
0 ≤ tk

1 ≤
. . .≤ tk

d+δ−d
≤ tk

d+δ−d+1
:= hk.

212 W.P.M.H. Heemels and N. van de Wouw

Fig. 7.3 Graphical interpretation of the actuation update instants tk
j

Proof. The proof is given in [11], see also [14, 9].

Note that the above lemma first of all indicates that the only control values that can
be active in the interval [sk,sk+1] are uk−d−δ , . . . ,uk−d . Secondly, (7.7) indicates that
uk+ j−d−δ is active in [sk + tk

j ,sk + tk
j+1). Note that when tk

j = tk
j+1 this essentially

means that the value uk+ j−d−δ is not active in the interval [sk,sk+1] (e.g. due to

a dropout or more recent information arriving earlier). The exact values of tk
j are

determined by the exact realization of the delays, sampling intervals and dropouts
as present in the right-hand side of (7.8).

Based on Lemma 7.1, a discrete-time NCS model can be obtained now by exact
integration of (7.4) leading to

xk+1 = eAhk xk +
d+δ−d

∑
j=0

∫ hk−tk
j

hk−tk
j+1

eAsdsBuk+ j−d−δ (7.9)

with tk
j as defined in Lemma 7.1.

Let θk denote the vector of uncertain parameters consisting of the sampling in-
terval and the actuation update instants

θk := (hk,t
k
1 , . . . ,t

k
d+δ−d

). (7.10)

Using now the lifted state vector

ξk =
(

xT
k uT

k−1 . . . uT
k−d−δ

)T

that includes the current system state and past system inputs, we obtain the lifted
model

ξk+1 = Ã(θk)ξk + B̃(θk)uk, (7.11)

where

7 Stability and Stabilization of Networked Control Systems 213

Ã(θk) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

Λ (θk) Md+δ−1(θk) Md+δ−2(θk) . . . M1(θk) M0(θk)
0 0 0 . . . 0 0
0 I 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 0

0 0 I 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

and

B̃(θk) =

⎛

⎜
⎜⎜
⎜
⎜
⎝

Md+δ (θk)
I
0
...
0

⎞

⎟
⎟⎟
⎟
⎟
⎠

with Λ(θk) = eAhk and

Mj(θk) =

⎧
⎪⎨

⎪⎩

∫ hk−tk
j

hk−tk
j+1

eAsdsB if 0≤ j ≤ d + δ −d,

0 if d + δ −d < j ≤ d + δ .

(7.12)

Remark 7.1. Essentially, the uncertainty parameters mk−d̄−δ̄ , . . . ,mk−δ are included
implicitly into the parameter θk using the expressions (7.8) for the actuation update
times. When we will derive upper and lower bounds on tk

j , this induces some con-
servatism if packet dropouts are present. However, the advantage of not including
mk−d̄−δ̄ , . . . ,mk−δ explicitly in θk is that the number of uncertainty parameters is
smaller thereby reducing the complexity of the stability analysis. Alternative mod-
els for dropouts are discussed and compared in [90] (see also Remark 7.18).

Remark 7.2. In the above model set-up a time-driven modeling paradigm (exact
integration from sample instant to sample instant) was adopted. An alternative
discrete-time modeling approach was proposed in [43], which uses an event-driven
paradigm (integrating from event instant to event instant, where the events include
sampling, updating of control values, etc.).

To illustrate the developments so far, let us consider the following example.

Example 7.1. The example consists of a second-order motion control example, ob-
tained from the document printing domain. In particular, a single motor driving a
roller-pair is considered, as depicted in Figure 7.4, which obeys the dynamics:

ẍs =
qrR

JM + q2JR
u, (7.13)

with JM = 1.95 ·10−5kgm2 the inertia of the motor, JR = 6.5 ·10−5 kgm2 the inertia
of the roller-pair, rR = 14 ·10−3 m the radius of the roller, q = 0.2 the transmission
ratio between motor and upper roller, xs the sheet position and u the motor torque.

214 W.P.M.H. Heemels and N. van de Wouw

Fig. 7.4 Schematic overview of the motor-roller example

The continuous-time state-space representation of (7.13) is given by (7.1), with

A =
[

0 1
0 0

]
, B =

[
0
b

]
, with b := qrR

JM+q2JR
= 126.7 (kgm)−1, and x(t) =

[
xs(t) ẋs(t)

]T
.

For the sake of simplicity, consider the case that the sampling interval h is constant,
the delays τk ∈ [τmin,τmax] , ∀k ∈N, τmin = 0 and τmax = h (i.e. the small delay case
with d = 1, d = 0) and δ̄ = 0 (no packet dropouts). The exact discrete-time model
can be written in the form (7.11), where the extended discrete-time state consists
of the state of the continuous-time model and the previous control action (due to
the small delay): ξk =

[
xT

k uT
k−1

]T
. Moreover, the uncertain parameter θk = tk

1 = τk

(see (7.8)), since the small delay case, a constant sampling interval and no packet
dropouts are considered. The (uncertain) matrices in (7.11) are given by

Λ = eAh =
[

1 h
0 1

]
, M0(τk) =

[
b
2

(
h2− (h− τk)2

)

b(h− (h− τk))

]
,

M1(τk) =
∫ h

0
eAsdsB−M0(τk) =

[
1
2 b(h− τk)2

b(h− τk)

] (7.14)

and the overall model (7.11) reduces to

ξk+1 = Ã(θk)ξk + B̃(θk)uk (7.15a)

=
(
Λ M0(τk)
0 0

)
ξk +

(
M1(τk)

1

)
uk (7.15b)

=

⎛

⎝
1 h b

2

(
h2− (h− τk)2

)

0 1 b(h− (h− τk))
0 0 0

⎞

⎠ξk +

⎛

⎝
1
2 b(h− τk)2

b(h− τk)
1

⎞

⎠uk. (7.15c)

The latter equalities show clearly that we are dealing with a parameter-varying linear
system, in which one can observe the basic terms h−τk and (h−τk)2 as uncertainty
terms. We will now present a general procedure how to find and overapproximate
these uncertainty terms such that the system becomes amendable for stability anal-
ysis and controller synthesis.

7 Stability and Stabilization of Networked Control Systems 215

7.3.2.2 The Polytopic Overapproximation

A first step towards the stability analysis is transforming the bounds on the delays,
sampling intervals and dropouts (τmin, τmax, hmin, hmax and δ̄) to upper and lower
bounds on tk

j . These computations are done in [9, 11] and lead to bounds t j,min,t j,max,

i.e., tk
j ∈ [t j,min,t j,max] for all k ∈ N, see [9, 11] for the exact expressions. Together

with the fact that hk ∈ [hmin,hmax], one can define the uncertainty set

Θ = {θk ∈ R
d+δ−d+1 |hk ∈ [hmin,hmax], tk

j ∈ [t j,min,t j,max],

1≤ j ≤ d + δ −d,0 ≤ tk
1 ≤ . . .≤ tk

d+δ−d
≤ hk},(7.16)

such that θk ∈Θ for all k ∈N.
The stability analysis for the uncertain system (7.11) with the uncertainty pa-

rameter θk ∈ Θ (given a discrete-time controller such as a lifted state feedback
uk = −Kξk) is now essentially a robust stability analysis problem. The obstruction
to apply various robust stability techniques directly is that the uncertainty appears in
an exponential fashion as observed from the form of Mj(θk) and Λ(θk). To render
the formulation (7.11) amendable for robust stability analysis, overapproximation
techniques can be employed to embed the original model (as tight as possible) in a
“larger” model that has useful structural properties such as discrete-time polytopic
models with (or without) additional norm-bounded uncertainties. If robust stabil-
ity (or other properties) can be proven for this polytopic overapproximation, then
this also implies the robust stability of the original discrete-time NCS model. As
these polytopic models are suitable for the application of available robust stability
methods, this provides a means to tackle the NCS stability analysis problem.

In the literature, many different ways of constructing such polytopic embeddings
of the uncertain system are proposed: overapproximation techniques are based on
interval matrices [10], the real Jordan form [11, 14, 13, 12, 69], the Taylor series
[42], gridding and norm-bounding [72, 26, 79, 77, 22], and the Cayley-Hamilton
theorem [29, 30]. There are also some approaches that are related to gridding and
norm-bounding such as [3, 23] in which essentially one grid point is taken corre-
sponding to one nominal sampling interval or nominal delay and the variation of
sampling intervals/delays is captured in the norm-bounded uncertainties. Typically,
[72, 26, 79, 77, 22] use more grid points to reduce the size of the norm-bounded
uncertainties and thereby the conservatism of the overapproximation and resulting
stability conditions. For the sake of brevity, we will only discuss one of these overap-
proximation techniques to illustrate the main ideas. We opt here to use the real Jor-
dan form approach as adopted in [11, 14, 13, 12]. For a comprehensive overview and
comparison of these overapproximation techniques we refer the interested reader
to [39].

Real Jordan Form

To derive the stability analysis and control synthesis conditions, the model (7.11) is
rewritten using the real Jordan form [44] of the continuous-time system matrix A.

216 W.P.M.H. Heemels and N. van de Wouw

Basically, the state matrix is expressed as A = T JT−1 with J the real Jordan form
and T an invertible matrix. This leads to a generic model of the form

ξk+1 =

(

F0 +
ζ

∑
i=1

αi(θk)Fi

)

ξk +

(

G0 +
ζ

∑
i=1

αi(θk)Gi

)

uk (7.17)

with θk defined in (7.10) and ζ = (d + δ − d + 1)ν the number of time-varying
functionsαi. Here, ν is the degree of the minimal polynomial qmin of A. Note that the
minimal polynomial of A is the monic polynomial p of smallest degree that satisfies
p(A) = 0. The minimal polynomial can be easily obtained [44] from the (complex)
Jordan form. Actually, ν is equal to the sum of all the maximal dimensions of the
complex Jordan blocks corresponding to all the distinct eigenvalues of A. Clearly,
ν ≤ n, where n is the dimension of the state vector x. Note that ν = n when the
geometric multiplicity of each distinct eigenvalue of A is equal to one and ν <
n when the geometric multiplicity of an eigenvalue is larger than one. A typical

function αi(θk) is of the form (hk− tk
j)

leλ (hk−tk
j), when λ is a real eigenvalue of A,

and of the form (hk−tk
j)

lea(hk−tk
j) cos(b(hk−tk

j)) or (hk−tk
j)

lea(hk−tk
j) sin(b(hk−tk

j))
when λ is a complex eigenvalue (λ = a + bi) of A with l = 0,1 . . . ,r j, where r j is
related to the size of the Jordan blocks corresponding to λ . For more details on the
use of the real Jordan form to obtain the NCS model, the reader is referred to [39]
or to Appendix B in [9].

Using bounds on the uncertain parameters θk = (hk, tk
1 , . . . ,tk

d+δ−d
) described by

the setΘ in (7.16) the set of matrix pairs

FG =

{(
F0 +

ζ

∑
i=1

αi(θ)Fi,G0 +
ζ

∑
i=1

αi(θ)Gi

)
| θ ∈Θ

}

(7.18)

can be formulated that contains all possible matrix combinations in (7.17) and thus
also in (7.11). Based on this infinite set FG of matrices, stability analysis (for a
given controller) and the design of stabilizing controllers can be carried out for the
NCS (7.4). To overcome the infinite dimension of the set FG , a polytopic overap-
proximation of the set is used. Denote the maximum and minimum value of αi(θk),
respectively, by

α i = max
θk∈Θ

αi(θk), α i = min
θk∈Θ

αi(θk) (7.19)

with Θ defined in (7.16). Then the set of matrices FG , given in (7.18), is a subset
of co(HFG), where ’co’ denotes the convex hull and HFG is the finite set of matrix
pairs given by

HFG =

{(
(F0 +

ζ

∑
i=1

αiFi),(G0 +
ζ

∑
i=1

αiGi)
)

: αi ∈ {α i,α i}, i = 1,2, . . . ,ζ

}

.

(7.20)

7 Stability and Stabilization of Networked Control Systems 217

The set of vertices HFG is written as HFG = {(HF, j,HG, j) | j = 1,2, . . . ,2ζ} for
enumeration purposes later. Hence, we have that

FG ⊆ co(HFG) := {
ζ

∑
j=1

β j(HF, j,HG, j) | β = (β1, . . . ,βζ)T ∈ B}, (7.21)

where

B := {β ∈ R
ζ |

ζ

∑
j=1

β j = 1 and β j ≥ 0 for all j = 1, . . . ,ζ}. (7.22)

Hence, we obtain the polytopic system

ξk+1 = (F0 +
ζ

∑
j=1

β k
j Fj)ξk +(G0 +

ζ

∑
j=1

β k
j G j)uk (7.23)

with β k ∈ B for each k ∈ N. Due to (7.21) any input/state trajectory generated
by (7.11) for some sequence {θk}k∈N with θk ∈ Θ , k ∈ N is also an input/state
trajectory of (7.23) for some sequence {β k}k∈N with β k ∈ B, k ∈ N.

Example 7.2. Revisit the motion control system as in Example 7.1. We take h =
0.001 constant, τmin = 0, τmax = h and δ = 0, which leads to the exact discrete-time
representation as given by (7.15). Let us now illustrate the procedure for convex
overapproximation based on the real Jordan form, as explicated above, using this
example. The exact discrete-time model (7.15) can be written in the form (7.17),
with the uncertain functions α1(τk) = h− τk and α2(τk) = (h− τk)2, and

F0 =

⎡

⎣
1 h b

2 h2

0 1 bh
0 0 0

⎤

⎦ , G0 =

⎡

⎣
0
0
1

⎤

⎦

F1 =

⎡

⎣
0 0 0
0 0 −b
0 0 0

⎤

⎦ , G1 =

⎡

⎣
0
b
0

⎤

⎦

F2 =

⎡

⎣
0 0 − 1

2 b
0 0 0
0 0 0

⎤

⎦ , G2 =

⎡

⎣
1
2 b
0
0

⎤

⎦ .

(7.24)

Hence, the number of uncertain functions αi is ζ = 2.
In order to illustrate the conservatism introduced by the overapproximation of

the set of matrices FG in (7.18) by the convex hull of the set of matrices HFG

in (7.20), it is important to realize that the only uncertain matrix in the discrete-time
system (7.15) is the matrix (2× 1)-matrix M0(τk) given in (7.14). Namely, M1(τk)
in (7.15) can be written as M1(τk) =

∫ h
0 eAsdsB−M0(τk), see (7.14). The matrix

M0(τk) can be written as follows in terms of the uncertain functions:

218 W.P.M.H. Heemels and N. van de Wouw

Fig. 7.5 Overapproximation of the set of 2×1-matrices {M0(τ) | τ ∈ [τmin,τmax]} (M0[1,1]
on the horizontal axis and M0[2,1] on the vertical axis) for h = 0.001 and τk ∈ [0,h]. The
circles indicate the vertices M0,i, i = 1,2,3,4, defined in (7.26) and the gray area the convex
hull of these vertices

M0(τk) =
[

1
2 b(h2−α2(τk))
b(h−α1(τk))

]
. (7.25)

Now, the overapproximation of FG by the convex hull of HFG basically means
overapproximating {M0(τ) | τ ∈ [τmin,τmax]}, with τmin = 0 and τmax = h, by the
convex hull of the following set of four (2ζ = 4) generators:

M0,1 =
[

1
2 b
(
h2− (h− τmax)2

)

b(h− (h− τmax))

]
=
[

1
2 bh2

bh

]

M0,2 =
[

1
2 b
(
h2− (h− τmin)2

)

b(h− (h− τmax))

]
=
[

0
bh

]

M0,3 =
[

1
2 b
(
h2− (h− τmax)2

)

b(h− (h− τmin))

]
=
[

1
2 bh2

0

]

M0,4 =
[

1
2 b
(
h2− (h− τmin)2

)

b(h− (h− τmin))

]
=
[

0
0

]
.

(7.26)

The polytopic overapproximation is visualized in Figure 7.5.

7.3.2.3 Stability Analysis

In this section, we consider the stability analysis of the NCS (7.11) (or equiva-
lently (7.17)) in closed loop with a state feedback controller. From a control design
perspective, when dealing with a system such as (7.11), it is natural to design a state
feedback controller using the full lifted state variable ξk of the model (7.11), i.e.,

7 Stability and Stabilization of Networked Control Systems 219

uk =−Kξk. (7.27)

However, from the point of view of the NCS (7.4), this is equivalent to using a
dynamical controller of the form

uk =−K0xk−K1uk−1 . . .−Kd+δuk−d−δ . (7.28)

The use of such a dynamic control law requires a reconsideration of the assumptions
made earlier that allowed, amongst others, to lump all the delays τsc

k ,τc
k and τca

k in
one parameter τk (see Section 7.3.1). Using a dynamic control law as in (7.28) actu-
ally leads to more restrictive assumptions on the network modeling setup as yk = xk

should always arrive at the controller after the moment that uk−1 is sent to the actu-
ator, i.e. sk + τsc

k > sk−1 + τsc
k−1 + τc

k−1 as otherwise special precautions are needed
to handle out-of-order arrival of measured outputs resulting in longer delays. In ad-
dition, the adopted modeling setup and controller in (7.28) require that no packet
dropouts occur between the sensors and the controller. Although modeling dropouts
alternatively as prolongations of the sampling interval (see, e.g., the comparison in
[90]) might alleviate these issues to some extent, dropouts in the channel between
the controller and the actuators introduce similar complications in this case.

The mentioned issues do not occur for genuine static state feedbacks of the form

uk =−K̄xk =−[K̄ 0
]
ξk =:−Kξk (7.29)

and the more restrictive assumptions, as mentioned above, are not needed. This
enhances its applicability. For this reason, in the controller synthesis section we will
focus on the design of a controller in the form (7.29), and we will provide references
for the design of lifted state feedbacks as in (7.27), see Remark 7.7. However, the
design of state feedbacks as in (7.29) requires the design of a structured feedback
gain K =

[
K̄ 0

]
, which is known to be a notoriously difficult problem. A solution

for this hard problem will be provided. However, we first derive stability conditions
for the NCS given a state feedback as in (7.27) or (7.29). In the stability analysis
it is assumed implicitly that in case the lifted state feedback controller (7.27) is
used the more restrictive assumptions on the network setup, as mentioned above,
are satisfied.

The closed-loop system resulting from interconnecting (7.11) and (7.27) can be
formulated as follows:

ξk+1 = Ãcl(θk)ξk with Ãcl(θk) =
(
Ã(θk)− B̃(θk)K

)
, (7.30)

with θk ∈Θ for all k ∈ N, or equivalently, after exploiting the real Jordan form as
in (7.17), as

ξk+1 = Fcl(θk)ξk, (7.31)

with

Fcl(θk) =

[

(F0−G0K)+
ζ

∑
i=1

αi(θk)(Fi−GiK)

]

ξk. (7.32)

220 W.P.M.H. Heemels and N. van de Wouw

Clearly, Fcl(θk) ∈Fcl , k ∈ N, where

Fcl =

{(
F0−G0K

)
+

ζ

∑
i=1

αi(θ)
(

Fi−GiK

)
|θ ∈Θ

}

. (7.33)

Given the fact that FG ⊆ co(HFG) with FG as in (7.18) and HFG as in (7.20), it
follows that

Fcl ⊆ co
(
HFcl

)
(7.34)

with

HFcl =

{(
F0−G0K

)
+

ζ

∑
i=1

αi

(
Fi−GiK

)
: αi ∈ {α i,α i}, i = 1,2, . . . ,ζ

}

.

(7.35)
We will also write the set of vertices HFcl as HFcl = {HFcl , j | j = 1,2, . . . ,2ζ} for
enumeration purposes. Hence,

Fcl ⊆ co{HFcl ,1, . . . ,HFcl ,2ζ
}. (7.36)

Using the finite set HFcl of 2ζ vertices, a finite number of LMI-based stability con-
ditions can be formulated using [15, 16]. The resulting stability characterization
for the closed-loop system (7.30) using parameter-dependent Lyapunov functions is
given in the following theorem in which we use the notation � and ≺ to indicate
positive definiteness and negative definiteness, respectively, of a matrix.

Theorem 7.1. Consider the discrete-time NCS model (7.11) and the state feedback
controller (7.27), with the network-induced uncertainties θk ∈ Θ , ∀k ∈ N, and Θ
defined in (7.16). If there exist matrices Pj = PT

j � 0, j = 1,2, . . . ,2ζ , that satisfy

HT
Fcl , jPlHFcl , j−Pj ≺ 0, for all j, l ∈ {1,2, . . . ,2ζ}, (7.37)

with HFcl , j ∈HFcl , j = 1,2, . . . ,2ζ , and HFcl defined in (7.35), then the origin of
the closed-loop NCS system (7.11), (7.27) is a globally exponentially stable (GES)
equilibrium point.

Proof. The proof is a direct consequence of the results in [11, 14, 41].

Remark 7.3. It can be shown that under the conditions of Theorem 7.1 also
the intersample behavior is bounded, see e.g. [10, 9, 11, 14]. Using the results
in [64], this also implies that the equilibrium point x = 0 of the sampled-data
NCS (7.4), (7.7), (7.8), (7.27) is GES.

Remark 7.4. This theorem exploits the following Lyapunov function

V (ξk,β k) = ξ T
k P(β k)ξk (7.38)

7 Stability and Stabilization of Networked Control Systems 221

based on the inclusion (7.36), which guarantees that (7.31) can be overapproxi-
mated by the polytopic system

ξk+1 = (
2ζ

∑
j=1

β k
j HFcl , j)ξk (7.39)

with β k ∈ B, k ∈ N, and B defined in (7.22). The parameter-dependent Lyapunov

function V (ξk,β k) is then given by ξ T
k P(β k)ξk = ξ T

k ∑
2ζ
j=1β k

j Pjξk. In [11, 41] it
is shown that if the LMIs in the above theorem are satisfied then they imply the
existence of a Lyapunov-Krasovskii functional (LKF) of the form

V (xk, . . . ,xk−d−δ ,θk) =
d+δ

∑
i=0

d+δ

∑
j=0

xT
k−iQ

i, j(θk)xk− j, (7.40)

which is the most general (discrete-time) LKF that can be obtained using quadratic
forms. Notice that when using this approach based on parameter-dependent
quadratic Lyapunov functions the conservative upper bounds in the difference of
the LKF, which are usually encountered in the literature to arrive at LKF-based sta-
bility conditions in LMI form, are avoided.

Remark 7.5. The case of a common quadratic Lyapunov function (CQLF) V (ξk) =
ξ T

k Pξk is a particular case of this theorem by taking Pj = P, j = 1, . . . ,2ζ .

7.3.2.4 Design of Stabilizing Controllers

As already briefly mentioned, the main difficulty to synthesize a genuine state feed-
back (7.29) is that it results in a structured control synthesis problem, i.e., a control

law (7.27) needs to be designed with a specific structure, K =
(

K 0m×(d+δ)m

)
.

A solution to this structured controller synthesis problem is to apply the approach
presented in [18]. Moreover, as was already exploited for the stability analysis prob-
lem above, such an approach allows for the use of a parameter-dependent Lyapunov
function [15] that might result in less conservative controller synthesis results than
the use of a common quadratic Lyapunov function. LMI conditions for synthesis of
state feedback controllers as in (7.29) are given in the next theorem.

Theorem 7.2. Consider the NCS model (7.4), and (7.29), and its discrete-time rep-
resentation (7.11), (7.29) for sequences of sampling instants, delays, and packet
dropouts σ ∈S with S as in (7.6). Consider the equivalent representation (7.17)
based on the Jordan form of A and the set of vertices HFG defined in (7.20).

If there exist symmetric positive definite matrices Yj ∈R
(n+(d+δ)m)×(n+(d+δ)m), a

matrix Z ∈ R
m×n, matrices Xj =

(
X1 0
X2, j X3, j

)
, with X1 ∈ R

n×n, X2, j ∈ R
(d+δ)m×n,

X3, j ∈ R
(d+δ)m×(d+δ)m, j = 1,2, . . . ,2ζ , that satisfy

222 W.P.M.H. Heemels and N. van de Wouw

(
Xj + XT

j −Yj XT
j HT

F, j−
(
Z 0

)T
HT

G, j
HF, jXj−HG, j

(
Z 0

)
Yl

)

� 0, (7.41)

for all j, l ∈
{

1,2, . . . ,2ζ
}

, then the closed-loop NCS (7.4) and (7.29) with K =

Z X
−1
1 is globally exponentially stable (GES) for sequences of sampling instants,

delays, and packet dropouts σ ∈S .

Proof. For the proof, see [11].

Note that in the above theorem the stability is directly formulated for the continuous-
time NCS model (7.4) and (7.29) using the ideas in Remark 7.3.

Remark 7.6. The case of a common quadratic Lyapunov function (CQLF) V (ξ) =
ξ T

k Pξk is a particular case of this theorem by taking Yj = Y , for all j = 1, . . . ,2ζ ,
with P = Y−1.

Remark 7.7. If one is still interested in using a lifted state feedback (7.27) despite
the mentioned disadvantages, then Theorem 7.2 can be modified by replacing the
matrices Xj j = 1,2, . . . ,ζ by a constant matrix X without a specific structure and
replacing

(
Z 0

)
by Z. The extended state feedback controller is obtained then by

K = ZX−1.

Remark 7.8. The derived discrete-time models based on polytopic overapproxima-
tions as in (7.23) are suitable for control design using model predictive control
(MPC) as well. For instance, the MPC techniques in [49] can be used for this pur-
pose as was indicated in [29, 30].

Remark 7.9. The design of output-based dynamic discrete-time controllers that re-
sult in stable closed-loop NCSs is at present an unsolved problem. Due to the
adopted polytopic overapproximations, the problem is basically a design problem
for a robustly stabilizing output-based dynamic controller for a polytopic system,
which is considered to be hard problem in the literature. The stability analysis for
these type of controllers (under small delay assumptions) is solved, even in the pres-
ence of communication constraints, see Section 7.4.2 below.

Remark 7.10. Here, we only presented results on the stability and stabilization of
NCSs. However, extensions exist that provide constructive LMI conditions guar-
anteeing input-to-state stability, see [86, 85]. In [86, 85] the input-to-state stability
property is exploited to solve the (approximate) tracking problem for linear NCS
with time-varying (small) delays and time-varying sampling intervals.

Example 7.3. Consider again Example 7.1. As a first instance, assume that the sen-
sor sampling interval h = 0.001 is constant and that the controller is given by (7.29)
with K̄ =

(
50 K2

)
. The controller gains K2 that stabilize the system with time-

varying delays τk ∈ [0,τmax], with τmax ≤ 2h, are determined using Theorem 7.1 for
the case of a common quadratic Lyapunov function, resulting in the gray area in Fig-
ure 7.6. In other words for a fixed value of K2 the NCS is stable for all τk ∈ [0,τmax]

7 Stability and Stabilization of Networked Control Systems 223

as long as τmax lies in the gray area for the corresponding value of K2. Clearly, the
large delay case is considered here. To assess the conservatism of the computed
stability region, the stability region for constant time-delays equal to τmax is de-
picted by the dash-dotted line in Figure 7.6. This comparison reveals the fact that
the stability bound is hardly conservative for this example, as the stability region
for time-varying delays should always lie within the stability region for constant de-
lays. In Figure 7.6, also a periodic delay sequence τ1, τ2, τ1, τ2, . . ., with τ1 = 0.2h
and τ2 = 0.6h, is depicted which has been shown in [10, 14] to induce instability.
The latter observation is another indicator for the fact that the stability boundary for
uncertain, time-varying delays as in Figure 7.6 is hardly conservative.

For more examples, illustrating both Theorems 7.1 and 7.2 including the case in-
cluding packet dropouts and the exploitation of parameter-dependent Lyapunov
functions, we refer the interested reader to [11, 90, 12, 9].

7.3.3 Sampled-Data Modeling Approaches

In this section, we discuss a modeling and analysis approach for NCS with delays,
time-varying sampling intervals and packet dropouts as developed in [58, 60, 59].
Herein, the sampled-data NCS model is formulated in terms of so-called impulsive
delay-differential equations (DDEs). Before going into details, we would like to
make the following observations:

• This approach studies the stability of the sampled-data NCS without exploiting
any form of discretization of a continuous-time plant model as in the discrete-
time approach;

Fig. 7.6 Stability region in terms of K2 and time-varying delays τk ∈ [0,τmax] (for h = 0.001,
K1 = 50) for Theorem 7.1, with a common quadratic Lyapunov function, and for constant
delays equal to τmax

224 W.P.M.H. Heemels and N. van de Wouw

• The model in terms of impulsive DDEs shows great similarity with the mod-
eling of the sampled-data NCS using the hybrid systems formalism, see,
e.g., [65, 66, 6, 37, 38, 35], as will be discussed in Section 7.4.1. However,
the continuous-time approach described in Section 7.4.1 is an emulation-type
approach, where controllers are designed in continuous-time, whereas here
discrete-time (state feedback) controllers are considered and included directly in
the sampled-data NCS model. Also the sampled-data approach using impulsive
DDEs has not incorporated the presence of communication constraints and the
resulting scheduling protocols as has been done in the continuous-time approach,
see [65, 66, 6, 37, 38, 35] and Section 7.4.1.

• The modeling framework of impulsive DDEs in principle allows to consider non-
linear systems for which stability results for nonlinear impulsive DDEs have been
presented, e.g., in [60, 59]. However, only for the case of linear NCS construc-
tive LMI-based stability conditions have been formulated. The continuous-time
approach in Section 7.4.1 (see [65, 66, 6, 37, 38, 35]) has stability conditions for
nonlinear NCSs as well.

Consider the linear continuous-time plant (7.1) and a discrete-time static state
feedback controller as in (7.29), i.e. uk =−K̄xk. The state measurements xk := x(sk)
are sampled at the sampling instants sk satisfying (7.2), which are non-equidistantly
spaced in time due to the time-varying sampling intervals hk > 0, with hk ∈
[hmin,hmax] for all k ∈ N. The sequence of sampling instants s0,s1,s2, . . . is strictly
increasing in the sense that sk+1 > sk, for all k∈N. As in Section 7.3.1, it is assumed
that the sensor-to-controller delay, the computational delay and the controller-to-
actuator delay can be lumped into a single delay τk, with τk ∈ [τmin,τmax] for all
k ∈N. Summarizing, {(sk,τk)}k∈N ∈ S̄ , where

S̄ :=
{
{(sk,τk)}k∈N| hmin ≤ sk+1− sk ≤ hmax,s0 = 0,τk ∈ [τmin,τmax] for all k ∈N

}

(7.42)

represents the admissible sequences of sampling times and delays. Note that packet
dropouts are not considered explicitly in this approach, but can be accounted for by
considering packet drops as an elongation of the effective sampling interval, see also
Remark 7.18 below. Let us denote by rk = sk +τk the k-th control update instant with
r0 = τ0. Both the small and large delay cases can be considered, where we allow the
delays τk to be larger than the sampling intervals hk with the understanding that
the sequence of input update times {r0,r1,r2, . . .} remains strictly increasing. In
essence, this means that if a sample arrives at the destination in an out-of-order
fashion (i.e., an old sample arrives the destination after the most recent one), it
should be rejected (and is effectively deleted from the sequence sk).

Now, the sampled-data NCS system can be formulated as
⎧
⎨

⎩

ẋ = Ax + Bu∗(t), x(0) = x0

u∗(t) = uk, rk ≤ t ≤ rk+1,
uk = −K̄xk,

. (7.43)

7 Stability and Stabilization of Networked Control Systems 225

Alternatively, the sampled-data NCS system can more compactly be formulated as

ẋ = Ax−BK̄x(sk), rk ≤ t ≤ rk+1, (7.44)

with initial condition given by x0 and x(s−1).
Let us introduce the definition v1(t) := x(sk) for t ∈ [rk,rk+1), where v1(t) rep-

resents a piece-wise constant signal reflecting a delayed version of the most re-
cently sampled state (that is not rejected). Moreover, when we introduce ζ (t) :=[
xT (t) vT

1 (t)
]T

, we can write the dynamics of the NCS (7.43) (or (7.44)) as an im-
pulsive DDE of the form

ζ̇ (t) = Fζ (t), t ∈ [rk,rk+1) (7.45a)

ζ (rk+1) =
[

x(rk+1)
x(sk+1)

]
, k ∈ N (7.45b)

with ζ (t) right-continuous, the initial condition ζ (0) :=
[
xT (0) xT (s−1)

]T
, and

F :=
[

A −BK̄
0 0

]
.

Consider the following positive-definite candidate Lyapunov functional

V :=xT Px +
∫ t

t−ρ1

(ρ1max− t + s)ẋT (s)R1ẋ(s)ds

+
∫ t

t−ρ2

(ρ2max− t + s)ẋT (s)R2ẋ(s)ds+
∫ t

t−τmin

(τmin− t + s)ẋT (s)R3ẋ(s)ds

+
∫ t−τmin

t−ρ1

(ρ1max− t + s)ẋT (s)R4ẋ(s)ds+(ρ1max− τmin)
∫ t

t−τmin

ẋT (s)R4ẋ(s)ds

+
∫ t

t−τmin

xT (s)Zx(s)ds+(ρ1max−ρ1)(x− v2)T X(x− v2)

(7.46)

with P, X , Z, Ri, i = 1, . . . ,4, positive definite matrices,

v2(t) := x(rk), ρ1(t) := t− sk, ρ2(t) := t− rk, for rk ≤ t < rk+1,

and
ρ1max := sup

t≥0
ρ1(t), ρ2max := sup

t≥0
ρ2(t).

Note that ρ1(t) and ρ2(t) are sawtooth-like functions of time representing, within a
control update interval, the elapsed time since the last (not rejected) sampling instant
and the elapsed time since the last (not rejected) control update, respectively. The
evolution of this Lyapunov functional is discontinuous at the control update times
rk, due to the jump in ζ in (7.45b), but a decrease of V over the jump is guaranteed
by construction.

226 W.P.M.H. Heemels and N. van de Wouw

The next theorem formulates LMI-based conditions for global exponential stabil-
ity of the NCS (7.45) for any sequence of sampling instants and delays taken from
the class S̄ as in (7.42).

Theorem 7.3. [58, 59] If there exist positive definite matrices P, X, Z, Ri, i =
1, . . . ,4, and not necessarily symmetric matrices Ni, i = 1, . . . ,4, satisfying the LMIs

⎡

⎣
M1 +(β − τmin)(M2 +M3) τmaxN1 τminN3

∗ −τmaxR1 0
∗ ∗ −τmaxR3

⎤

⎦≺ 0, (7.47a)

⎡

⎢
⎢⎢
⎢
⎣

M1 +(β − τmin)M2 τmaxN1 τminN3 (β − τmin)(N1 +N2) (β − τmin)N4
∗ −τmaxR1 0 0 0
∗ ∗ −τminR3 0 0
∗ ∗ ∗ −(β − τmin)(R1 +R2) 0
∗ ∗ ∗ ∗ −(β − τmin)R4

⎤

⎥
⎥⎥
⎥
⎦
≺ 0,

(7.47b)

where β := hmax + τmax, F̄ :=
[
A −BK̄ 0 0

]
,

M1 :=F̄T [P 0 0 0
]
+

⎡

⎢
⎢
⎣

P
0
0
0

⎤

⎥
⎥
⎦ F̄ + τminFT (R1 + R3)F−

⎡

⎢
⎢
⎣

I
0
−I
0

⎤

⎥
⎥
⎦X

⎡

⎢
⎢
⎣

I
0
−I
0

⎤

⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎣

I
0
0
0

⎤

⎥
⎥
⎦Z

⎡

⎢
⎢
⎣

I
0
0
0

⎤

⎥
⎥
⎦

T

−

⎡

⎢
⎢
⎣

0
0
0
I

⎤

⎥
⎥
⎦Z

⎡

⎢
⎢
⎣

0
0
0
I

⎤

⎥
⎥
⎦

T

−N1
[
I −I 0 0

]−

⎡

⎢
⎢
⎣

I
−I
0
0

⎤

⎥
⎥
⎦NT

1 −N2
[
I 0 −I 0

]−

⎡

⎢
⎢
⎣

I
0
−I
0

⎤

⎥
⎥
⎦NT

2

−N3
[
I 0 0 −I

]−

⎡

⎢
⎢
⎣

I
0
0
−I

⎤

⎥
⎥
⎦NT

3 −N4
[
0 −I 0 I

]−

⎡

⎢
⎢
⎣

0
−I
0
I

⎤

⎥
⎥
⎦NT

4 ,

M2 :=F̄T (R1 + R2 + R4)F̄ ,

M3 :=

⎡

⎢
⎢
⎣

I
0
−I
0

⎤

⎥
⎥
⎦XF̄ + F̄T X

[
I 0 −I 0

]
,

then, system (7.45) is globally exponentially stable for any sequence of delays and
sampling instants taken from the class S̄ as in (7.42).

Proof. For the proof, see [59].

Remark 7.11. The proof of Theorem 7.3 exploits stability results for nonlinear im-
pulsive DDEs as presented in [60, 59].

7 Stability and Stabilization of Networked Control Systems 227

Remark 7.12. The conditions in Theorem 7.3 do not explicitly depend on the values
of hmin. Consequently, this approach towards modeling NCSs may result in more
conservative conditions in comparison to those obtained using the discrete-time ap-
proach discussed in Section 7.3.2, when 0 hmin � hmax. The reason is that the
discrete-time approach can actually exploit the knowledge that hmin > 0.

Remark 7.13. When considering the control synthesis problem, i.e. when the control
gain K̄ is considered unknown, the LMIs in Theorem 7.3 generally become bilinear
matrix inequalities (BMIs). However, for the case without delays in [60, 61] LMI-
based control synthesis conditions for static state feedback controllers have been
proposed.

Remark 7.14. In [58], results on the stability analysis of linear NCS with
continuous-time, dynamic output feedback controllers are presented. Herein, it is
assumed that these continuous-time controllers can be evaluated exactly on the sam-
pling instants (by exact discretization and some form of time-stamping of the sam-
pled measurements).

Example 7.4. We now reconsider the motion control example of Example 7.1 and
use it to compare the discrete-time and sampled-data approach.

First consider the case of a constant sampling interval h = 0.005, but with time-
varying and uncertain delays in the set [0,τmax]. Applying Theorem 7.3 in a slightly
modified form (for the special case in which a Lyapunov functional (7.46) with
Z = Ri = 0, i = 1, . . . ,4, is exploited) leads to stability guarantee for the NCS for a
maximal delay up to τmax = 0.33h, see [86, 85]. Comparing this with the discrete-
time approach using Theorem 7.1 (for the special case of a common quadratic Lya-
punov function) shows that stability can be guaranteed up to a maximal delay of
τmax = 0.94h.

Next, we consider the case in which the sampling interval is variable, i.e., hk ∈
[hmin,hmax], k ∈N and the delay is zero. More specifically, we take hmin = hmax/1.5,
so hmin �= 0. Using the discrete-time approach in Theorem 7.1 (for the special case
of a common quadratic Lyapunov function), stability can be assured almost up to
hmax = 1.34×10−2, which is the sampling interval for which the system with a con-
stant sampling interval (and no delay) becomes unstable. This fact shows that the
proposed discrete-time stability conditions as in Theorem 7.1 are not conservative in
this example. Using the impulsive DDE approach, stability can only be guaranteed
up to hmax = 9×10−3. Hence, for this motion control example the discrete-time ap-
proach clearly outperforms the sampled-data approach as far as the characterisation
of stability is concerned.

Remark 7.15. In [86, 85], an extension of Theorem 7.3 (for the special case that
Z = Ri = 0, i = 1, . . . ,4), guarantees input-to-state stability in the face of pertur-
bations. This extension is exploited to solve the (approximate) tracking problem
for NCS with time-varying delays and sampling intervals. It is important to note
that the input-to-state stability gains from additive perturbations to the states of
the NCS provided by the impulsive DDE modeling approach are much tighter than
those obtained using the discrete-time modeling and analysis approach as shown in

228 W.P.M.H. Heemels and N. van de Wouw

[86, 85]. The conservatism in the estimates of the input-to-state stability gain using
the discrete-time approach are mainly due to the conservative upperbounding of the
intersample behavior. In this respect it seems that the impulsive DDE approach is
beneficial in studying such performance related issues.

7.4 NCS Including Communication Constraints

In this section we will discuss stability analysis approaches that incorporate com-
munication constraints. Specifically, communication is constrained in the sense that
the number of control inputs and measured outputs that can be transmitted over a
network is limited. At each transmission time only one of the nodes consisting of
particular actuators and/or sensors will obtain access to the network to communi-
cate its data. Which node obtains access is determined by a scheduling protocol.
As we will see this complicates the description and the analysis of the NCS con-
siderably. The communication constraints and protocol will actually introduce (ad-
ditional) discrete effects in the problem, which will require modeling and stability
analysis techniques from the hybrid systems domain [89, 31].

We will present a continuous-time/emulation approach in Section 7.4.1 and a
discrete-time approach in Section 7.4.2. Both approaches have their own advantages
and disadvantages as we will conclude at the end.

7.4.1 Continuous-Time (Emulation) Approaches

In this section, we introduce the continuous-time model that will be used to describe
NCSs including communication constraints as well as varying transmission inter-
vals and transmission delays. Dropouts and quantization effects can be included as
discussed in [35] and in Remark 7.18, but for the ease of exposition we will not con-
sider them below. The model that we discuss in this section was derived in [37, 38]
and forms an extension of the NCS models used before in [65] that were motivated
by the work in [92]. The emulation approach is characterized by the design pro-
cedure that, first, a stabilizing continuous-time controller for the continuous-time
plant is designed (ignoring any network effects). Next, we study under which net-
work effects (level of delays, size of sampling intervals, type of protocol used for
the communication scheduling) the NCS inherits the stability properties from the
network-free continuous-time closed-loop system.

7.4.1.1 Description of the NCS

Consider the continuous-time plant

ẋp = fp(xp, û), y = gp(xp) (7.48)

that is sampled. Here, xp ∈ R
np denotes the state of the plant, û ∈ R

nu denotes the
most recent control values available at the plant and y ∈ R

ny is the output of the
plant. The controller is given by

ẋc = fc(xc, ŷ), u = gc(xc), (7.49)

7 Stability and Stabilization of Networked Control Systems 229

Fig. 7.7 Illustration of a typical evolution of y and ŷ for 2 nodes

where the variable xc ∈ R
nc is the state of the controller, ŷ ∈ R

ny is the most re-
cent output measurement of the plant that is available at the controller and u ∈
R

nu denotes the control input. At times tk, k ∈ N, (parts of) the input u at the
controller and/or the output y at the plant are sampled and transmitted over the net-
work. The transmission times satisfy 0≤ t0 < t1 < t2 < Even stronger, we assume
that there exists a δ > 0 (which can be arbitrarily small) such that the transmission
intervals tk+1− tk satisfy δ ≤ tk+1− tk ≤ hmati for all k ∈ N, where hmati denotes
the maximally allowable transmission interval (MATI). At each transmission time
tk, k ∈N, the protocol determines which of the nodes j ∈ {1,2, . . . ,N} is granted ac-
cess to the network. Each node corresponds to a collection of sensors or actuators.
The sensors/actuators corresponding to the node, which is granted access, collect
their values in y(tk) or u(tk) that will be sent over the communication channel. They
will arrive after a transmission delay of τk time units at the controller or actuator, re-
spectively. This results in updates of the corresponding entries in ŷ or û at the arrival
times tk +τk, k ∈N, which were denoted by rk in the previous section. The situation
described above is illustrated for y and ŷ in Figure 7.7 for the situation that there are
two nodes and the nodes get access to the network in an alternating fashion.

It is assumed that there are bounds on the maximal delay in the sense that τk ∈
[0,τmad], k ∈ N, where 0 ≤ τmad ≤ hmati is the maximally allowable delay (MAD).
In particular, we will use the following standing assumption in the sequel.

Assumption 7.4. The transmission times satisfy δ ≤ tk+1− tk < hmati, k ∈N and the
delays satisfy 0≤ τk ≤min{τmad ,tk+1− tk}, k ∈N, where δ ∈ (0,hmati] is arbitrary.

This assumption implies that each transmitted packet arrives before the next sample
is taken meaning that only the small delay case is considered here1. In various
situations τk ≤ hk := tk+1− tk, k ∈N is a realistic assumption. Indeed, if two or more

1 Extensions of this continuous-time approach including large delays do not exist to this
date.

230 W.P.M.H. Heemels and N. van de Wouw

nodes are sharing one communication channel and one of the nodes is transmitting
its data, the channel is busy and hence other nodes cannot access the network, which
guarantees τk ≤ hk = tk+1− tk, k ∈N.

Remark 7.16. Compared to the notation in the previous section we have that hmax =
hmati and hmin = δ , which can actually be chosen arbitrarily close to 0. For the delays
we have that τmin = 0 and τmax = τmad . We used here the terms MATI and MAD
(hmati and τmad) as done in the literature [65, 66, 6, 37, 38, 35] on the continuous-
time approach.

The updates of ŷ and û satisfy

ŷ((tk + τk)+) = y(tk)+ hy(k,e(tk)) (7.50a)

û((tk + τk)+) = u(tk)+ hu(k,e(tk)) (7.50b)

at tk +τk, where e denotes the vector (ey,eu) := (eT
y ,eT

u)T with ey := ŷ−y, eu := û−u
and hu and hy are update functions related to the protocol. Hence, e ∈ R

ne with
ne = ny + nu. If the NCS has N nodes, then the error vector e can be partitioned as
e = (eT

1 ,eT
2 , . . . ,eT

N)T . The update functions hy and hu are related to the protocol of
which we give two well-known examples below. Typically when the j-th node gets
access to the network at some transmission time tk the corresponding values in ŷ and
û have a jump at tk + τk to the corresponding transmitted values in y(tk) and u(tk),
since the quantization effects are assumed to be negligible. For instance, when y j is
transmitted at time tk, it holds that hy, j(k,e(tk)) = 0 meaning that ŷ j((tk + τk)+) =
y j(tk). However, for reasons of generality, more freedom is allowed in the protocols
given by h = (hy,hu) := (hT

y ,hT
u)T . Two well-known examples are the Round Robin

(RR) protocol the Try-Once-Discard (TOD) protocol (sometimes also called the
maximum-error-first protocol). For 2 nodes the RR protocol is given by

h(k,e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
0

e2

)

, if k = 0,2,4,6, . . .

(
e1

0

)

, if k = 1,3,5,7, . . .

Hence, the two nodes get access to the network in an alternating fashion: When
the transmission counter is even the first node gets access, when the counter is odd
the second node can send its data. As such, the RR protocol is a static protocol in the
sense that the order in which the nodes get access to the network is fixed. In contrast,
the TOD protocol is a dynamic scheduling protocol, which is given for two nodes by

h(k,e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
0

e2

)

, if |e1| ≥ |e2|
(

e1

0

)

, if |e2|> |e1|,

7 Stability and Stabilization of Networked Control Systems 231

Here | · | denotes the Euclidean norm in R
n and later we will also use 〈·, ·〉 as the cor-

responding inner product. Hence, the TOD protocol gives access to the node with
the largest difference between the latest transmitted value of the corresponding in-
puts/outputs and the current value of these inputs/outputs. Indeed, the node with the
largest network-induced error ei is allowed to transmit its signal values. Extensions
of these protocols to more than 2 nodes are straightforward.

In between the updates of the values of ŷ and û, the network is assumed to oper-
ate in a zero-order-hold (ZOH) fashion, meaning that the values of ŷ and û remain
constant in between the updating times tk + τk and tk+1 + τk+1:

˙̂y = 0, ˙̂u = 0. (7.51)

To compute the resets of e at the update or arrival times {ti + τk}k∈N, we proceed
as follows:

ey((tk + τk)+) = ŷ((tk + τk)+)− y(tk + τk) = y(tk)+ hy(k,e(tk))− y(tk + τk)
= hy(k,e(tk))+ y(tk)− ŷ(tk)︸ ︷︷ ︸

−e(tk)

+ ŷ(tk + τk)− y(tk + τk)︸ ︷︷ ︸
e(tk+τk)

= hy(k,e(tk))− e(tk)+ e(tk + τk).

In the third equality it is used that ŷ(tsi) = ŷ(tsi + τk), which holds due to the ZOH
character of the network.

A similar derivation holds for eu, leading to the following model for the NCS:

ẋ(t) = f (x(t),e(t))
ė(t) = g(x(t),e(t))

}
t ∈ [tk, tk + τk) (7.52a)

e((tk + τk)+) = h(k,e(tk))− e(tk)+ e(tk + τk), (7.52b)

where x = (xp,xc) ∈R
nx with nx = np +nc, f , g are appropriately defined functions

depending on fp, gp, fc and gc and h = (hy,hu). See [65] for the explicit expressions
of f and g.

Remark 7.17. The model (7.52) reduces to the model used in [65, 66] in absence of
delays, i.e. τk = 0 for all k ∈ N. Indeed, then (7.52) becomes

ẋ(t) = f (x(t),e(t))
ė(t) = g(x(t),e(t))

}
t ∈ [tk, tk+1) (7.53a)

e(t+k) = h(k,e(tk)). (7.53b)

Assumption 7.5. f and g are continuous and h is locally bounded. �

Observe that the system ẋ = f (x,0) is the closed-loop system (7.48)-(7.49) without
the network (e = 0).

232 W.P.M.H. Heemels and N. van de Wouw

The stability problem that is considered is formulated as follows.

Problem 7.1. Suppose that the controller (7.49) was designed for the plant (7.48)
rendering the continuous-time closed-loop system (7.48)-(7.49) (or equivalently,
ẋ = f (x,0)) stable in some sense. Determine the value of hmati and τmad so that
the NCS given by (7.52) is stable as well when the transmission intervals and delays
satisfy Assumption 7.4. �

Remark 7.18. Of course, there are certain extensions that can be made to the above
setup. The inclusion of packet dropouts is relatively easy, if one models them as
prolongations of the transmission interval. Indeed, if we assume that there is a bound
δ̄ ∈N on the maximum number of successive dropouts, the stability bounds derived
below are still valid for the MATI given by h′mati := hmati

δ̄+1
, where hmati is the obtained

MATI for the dropout-free case.

Remark 7.19. In case h(k,e) = 0 for all k ∈ N and e ∈ R
ne , the above model es-

sentially reduces to a sampled-data systems (without communication constraints)
with a continuous-time controller. In this particular case the impulsive DDE in the
sampled-data approach of Section 7.3.3 (see Remark 7.14) and the continuous-time
NCS model as presented here are related.

7.4.1.2 Reformulation in a Hybrid System Framework

To facilitate the stability analysis, the above NCS model is transformed into the
hybrid system framework as developed in [31]. To do so, the auxiliary variables
s ∈ R

n, κ ∈ N, τ ∈ R≥0 and � ∈ {0,1} are introduced to reformulate the model in
terms of so-called flow equations and reset equations. The variable s is an auxiliary
variable containing the memory in (7.52b) storing the value h(k,e(tk))−e(tk) for the
update of e at the update instant tk + τk, κ is a counter keeping track of the number
of the transmission, τ is a timer to constrain both the transmission interval as well as
the transmission delay and � is a Boolean keeping track whether the next event is a
transmission event or an update event. To be precise, when � = 0 the next event will
be related to transmission and when � = 1 the next event will be an update. Note
that here use is made of the fact that only small delays are considered as this implies
that transmission and update events occur in an alternating manner.

The hybrid system ΣNCS is given by the flow equations

ẋ = f (x,e)
ė = g(x,e)
ṡ = 0
κ̇ = 0
τ̇ = 1
�̇ = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(� = 0∧ τ ∈ [0,hmati])∨ (� = 1∧ τ ∈ [0,τmad]) (7.54)

and the reset equations are obtained by combining the “transmission reset relations,”
active at the transmission instants {tk}k∈N, and the “update reset relations”, active at
the update instants {tk + τk}k∈N, given by

7 Stability and Stabilization of Networked Control Systems 233

(x+,e+,s+,τ+,κ+, �+) = G(x,e,s,τ,κ , �), when

(� = 0∧ τ ∈ [δ ,hmati])∨ (� = 1∧ τ ∈ [0,τmad]) (7.55)

with G given by the transmission resets (when � = 0)

G(x,e,s,τ,κ ,0) = (x,e,h(κ ,e)− e,0,κ+ 1,1) (7.56)

and the update resets (when � = 1)

G(x,e,s,τ,κ ,1) = (x,s+ e,−s− e,τ,κ ,0). (7.57)

7.4.1.3 Lyapunov-Based Stability Analysis

A Lyapunov function for ΣNCS will be constructed based on the following conditions
for the reset part (the protocol) and the flow part of the system.

Conditions on the Reset Part

Condition 7.6. The protocol given by h is UGES (uniformly globally exponentially
stable), meaning that there exists a function W : N×R

ne → R≥0 that is locally
Lipschitz in its second argument such that

αW |e| ≤W (κ ,e)≤ αW |e| (7.58a)

W (κ+ 1,h(κ ,e))≤ λW (κ ,e) (7.58b)

for constants 0 < αW ≤ αW and 0 < λ < 1. �

Additionally it is assumed here that

W (κ+ 1,e)≤ λWW (κ ,e) (7.59)

for some constant λW ≥ 1 and that for almost all e ∈ R
ne and all κ ∈N

∣∣
∣
∣
∂W
∂e

(κ ,e)
∣∣
∣
∣≤M1 (7.60)

for some constant M1 > 0. For all protocols discussed in [92, 91, 65, 6] such
Lyapunov functions and corresponding constants exist. For instance, if N is the

number of nodes in the network, for the RR protocol λRR =
√

N−1
N , αWRR

= 1,

αWRR =
√

N, λWRR =
√

N, M1,RR =
√

N and for the TOD protocol λTOD =
√

N−1
N ,

αWTOD
= αWTOD = 1, λWTOD = 1, M1,TOD = 1. In particular WTOD(i,e) = |e|. See

[38, 65] for the proofs.

Conditions on the Flow Part

The following growth condition on the flow of the NCS model (7.52) is used:

234 W.P.M.H. Heemels and N. van de Wouw

|g(x,e)| ≤ mx(x)+ Me|e|, (7.61)

where mx : R
nx → R≥0 and Me ≥ 0 is a constant. Moreover, the following is addi-

tionally used.

Condition 7.7. There exists a locally Lipschitz continuous function V : R
nx → R≥0

satisfying the bounds
αV (|x|)≤V (x)≤ αV (|x|) (7.62)

for some K∞-functions2 αV and αV , and the condition

〈∇V (x), f (x,e)〉 ≤ −m2
x(x)−ρ(|x|)+ (γ2− ε)W 2(κ ,e) (7.63)

for almost all x ∈ R
nx and all e ∈ R

ne with ρ ∈K∞, for some γ > 0 and 0 < ε <
max{γ2,1}.
Essentially, the condition above is a Lyapunov-based formulation for the system
ẋ = f (x,e) to have an L2 gain [88] from W 2(κ ,e) to m2

x(x) strictly smaller than γ
together with global asymptotic stability in case e = 0.

Stability Result

Lumping the above parameters into four new ones given by

L0 =
M1Me

αW
; L1 =

M1MeλW

λαW
; γ0 = M1γ; γ1 =

M1γλW

λ
(7.64)

we can provide the following conditions on MAD and MATI to guarantee stability
of ΣNCS. Indeed, consider now the differential equations

φ̇0 = −2L0φ0− γ0(φ2
0 + 1) (7.65a)

φ̇1 = −2L1φ1− γ0(φ2
1 +

γ2
1

γ2
0

). (7.65b)

Observe that the solutions to these differential equations are strictly decreasing as
long as φ�(τ)≥ 0, � = 0,1. Define the equilibrium set as

E := {(x,e,s,κ ,τ, �) | x = 0, e = s = 0} .

Theorem 7.8. Consider the system ΣNCS such that Assumptions 7.4 and 7.5 are sat-
isfied. Let Condition 7.6 with (7.59) and (7.60) and Condition 7.7 with (7.61) hold.
Suppose hmati ≥ τmad ≥ 0 satisfy

φ0(τ) ≥ λ 2φ1(0) for all 0≤ τ ≤ hmati (7.66a)

φ1(τ) ≥ φ0(τ) for all 0≤ τ ≤ τmad (7.66b)

2 A function α : R+→R+ is called a K -function, if it is continuous, strictly increasing and
α(0) = 0. A K -function α is called a K∞-function if α(s)→ ∞ if s→ ∞. Examples of
K∞-functions are α(s) = csλ for some c > 0 and λ > 0.

7 Stability and Stabilization of Networked Control Systems 235

0 1 2 3 4 5 6 7 8 9

x 10
−3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

τ

TOD protocol with φ
0
(0)=1.4142 and φ

1
(0)=1.6142

φ
0

φ
1

λ2φ
1
(0)

MATI = 0.008794

MAD = 0.005062

Fig. 7.8 Illustration of how the solutions φ�, � = 0,1, lead to MAD and MATI

for solutions φ0 and φ1 of (7.65) corresponding to certain chosen initial conditions
φ�(0) > 0, � = 0,1, with φ1(0)≥ φ0(0)≥ λ 2φ1(0)≥ 0 and φ0(hmati) > 0. Then for
the system ΣNCS the set E is uniformly globally asymptotically stable (UGAS). �

The proof is based on constructing Lyapunov functions U(ξ) for ΣNCS, using the
solutions φ0 and φ1 to (7.65), that satisfy U(ξ+)≤U(ξ) at reset times and U̇(ξ) < 0
during flow. See [38] for the proof and the exact definition of UGAS of E , which
implies (next to Lyapunov stability of E) that x(t)→ 0, e(t)→ 0 and s(t)→ 0, when
t→ ∞.

From the above theorem quantitative numbers for hmati and τmad can be obtained
by constructing the solutions to (7.65) for certain initial conditions. Computing the
τ value of the intersection of φ0 and the constant line λ 2φ1(0) provides hmati ac-
cording to (7.66a), while the intersection of φ0 and φ1 gives a value for τmad due
to (7.66b). In Figure 7.8 this is illustrated. Different values of the initial conditions
φ0(0) and φ1(0) lead, of course, to different solutions φ0 and φ1 of the differential
equations (7.65) and thus different hmati and τmad . As a result, tradeoff curves be-
tween hmati and τmad can be obtained that indicate when stability of the NCS is still
guaranteed. This will be illustrated below for the benchmark example of the batch
reactor. Before showing the example, a systematic procedure to determine these
tradeoff curves is provided.

Systematic Procedure for the Determination of MATI and MAD

The main steps in the procedure to compute the tradeoff curves between MATI and
MAD are given as follows:

236 W.P.M.H. Heemels and N. van de Wouw

Procedure 7.9. Given ΣNCS apply the following steps:

1. Construct a Lyapunov function W for the UGES protocol as in Condition 7.6
with the constants αW , αW , λ , λW and M1 as in (7.58), (7.59) and (7.60).
Suitable Lyapunov functions and the corresponding constants are available for
many protocols in the literature [66, 65, 38];

2. Compute the function mx and the constant Me as in (7.61) bounding g as
in (7.52);

3. Compute for ẋ = f (x,e) in the NCS model (7.52) the L2 gain from W (κ ,e) to
mx(x) in the sense that (7.62)-(7.63) is satisfied for a (storage) function V for
some small 0 < ε < max{γ2,1} and ρ ∈K∞. When f is linear, this can be done
using LMIs. Of course, here the ‘emulated’ controller should guarantee that
such a property is satisfied;

4. Use now (7.64) to obtain L0, L1, γ0 and γ1;
5. For initial conditions φ0(0) and φ1(0) with λ 2φ1(0) ≤ φ0(0) < φ1(0) compute

(numerically) the solutions φ0 and φ1 to (7.65) and find (the largest values of)
hmati and τmad such that (7.66) are satisfied. The largest values can be found by
determining the intersection of φ0 and φ1 (giving τmad) and the intersection of
φ0 with λ 2φ1(0) (giving hmati). Repeat this step for various values of the initial
conditions thereby obtaining various combinations of hmati and τmad leading to
tradeoff curves.

This procedure is systematic in nature and can consequently be applied in a straight-
forward manner.

Delay-Free Results

In the above setting taken from [38, 37] both varying hk and τk are allowed. The case
without delays (τmad = 0) has been treated in the earlier works [92, 91, 66, 65, 6].
Basically, the least conservative of them, being [6], uses slightly weaker versions of
Condition 7.6, Condition 7.7 and

〈
∂W
∂e

(κ ,e),g(x,e)
〉
≤ LW (κ ,e)+ mx(x) (7.67)

for all κ ∈ N and almost all e ∈ R
ne . Instead of four parameters as in (7.64), in [6]

only the parameters γ and L are used next to λ to determine hmati (as τmad = 0).
Also the two differential equations that are formulated in (7.65) reduce to only one
differential equation given by

φ̇ =−2Lφ − γ(φ2 + 1) (7.68)

and the initial condition is chosen as φ(0) = λ−1. The conditions (7.66) reduce to
φ(τ) ≥ λ for all 0 ≤ τ ≤ hmati to guarantee stability of ΣNCS. Hence, the value of
τ for which φ(τ) = λ determines the hmati that can be guaranteed. Interestingly,
due to the fact that there is only one differential equation, hmati can be analytically
computed and results in

7 Stability and Stabilization of Networked Control Systems 237

hmati =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Lr arctan(r(1−λ)

2 λ
1+λ (γL)+1+λ

), γ > L

1−λ
L(1+λ) , γ = L

1
Lr arctanh(r(1−λ)

2 λ
1+λ (γL)+1+λ

), γ < L,

(7.69)

where r =
√
|(γL)2−1|.

Application to the Benchmark Example of the Batch Reactor

In this part the discussed results are applied to the case study of the batch reactor,
which has developed over the years as a benchmark example in NCSs [6, 92, 65].
The functions in the NCS (7.52) for the batch reactor are given by the linear func-
tions f (x,e,w) = A11x + A12e and g(x,e,w) = A21x + A22e in which the numerical
values for Ai j, i, j = 1,2, are provided in [65, 92] and given by

A11 =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

1.3800 −0.2077 6.7150 −5.6760 0 0
−0.5814 −15.6480 0 0.6750 −11.3580 0
−14.6630 2.0010 −22.3840 21.6230 −2.2720 −25.1680

0.0480 2.0010 1.3430 −2.1040 −2.2720 0
0 1.0000 0 0 0 0

1.0000 0 1.0000 −1.0000 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

;

A12 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0 0
0 −11.3580

−15.7300 −2.2720
0 −2.2720
0 1.0000

1.0000 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

;

A21 =
(

13.3310 0.2077 17.0120 −18.0510 0 25.1680
0.5814 15.6480 0 −0.6750 11.3580 0

)
;

A22 =
(

15.7300 0
0 11.3580

)
.

The batch reactor, which is open-loop unstable, has nu = 2 inputs, ny = 2 outputs,
np = 4 plant states and nc = 2 controller states and N = 2 nodes (only the outputs are
assumed to be sent over the network). See [65, 92] for more details on this example.

For all the technical details of the application of Procedure 7.9 to this benchmark
example the reader is referred to [37, 38]. Here we show only the outcomes. Fig-
ure 7.9 shows the stability regions in terms of MAD and MATI for the TOD and the
RR protocols for the batch reactor as can be proven on the basis of the above results.
Interestingly, this shows tradeoff curves between MAD and MATI: a larger MAD
requires a smaller MATI in order to guarantee stability. In addition, the delay-free
results as obtained in [6], which improved the earlier bounds in [65], are exactly
recovered. These delay-free results amount for the TOD protocol to τmad = 0 and
hmati = 0.0108 and for the RR protocol to τmad = 0 and hmati = 0.0090. Next to

238 W.P.M.H. Heemels and N. van de Wouw

4 5 6 7 8 9 10 11

x 10
−3

0

1

2

3

4

5

6

7

8
x 10

−3

MATI

M
A

D

Tradeoff curves for the TOD and RR protocol

TOD
RR

MATI = 0.008794
MAD = 0.005062

Fig. 7.9 Tradeoff curves between MATI and MAD

finding tradeoffs between MAD and MATI, different protocols can be compared
with respect to each other. In Figure 7.9, it is apparent that for the task of stabiliza-
tion of the unstable batch reactor the TOD protocol outperforms the RR protocol in
the sense that it can allow for larger delays and larger transmission intervals. Note
that in Figure 7.9 the particular combination τmati = 0.008794 and τmad = 0.005062
corresponding to Figure 7.8 is highlighted.

Extension of these results to include guarantees on disturbance attenuation prop-
erties in the sense of Lp gains from certain disturbance inputs to to-be-controlled
outputs are reported as well in [38, 37]. In case of the batch reactor this would
yield results as depicted in Figure 7.10 for the L2 gain. This picture shows tradeoffs
between the network properties MAD and MATI on the one hand and control perfor-
mance in terms of L2 gain from a specific disturbance input to a controlled output
variable. These tradeoff curves are very useful for control and network designers to
make well founded design decisions.

7.4.2 Discrete-Time Approach

The continuous-time (emulation) approach as presented in Section 7.4.1 applies to
general continuous-time nonlinear plants and controllers. However, it does not in-
clude the possibility of allowing the controller to be formulated in discrete time. The
case of discrete-time controllers has been considered in [17], where however, a fixed
transmission interval and no delay are assumed. Another feature of the continuous-
time approach is that the lower bounds on the transmission intervals hk and delays
τk are always equal to zero (i.e., hk ∈ (δ ,hmati], τk ∈ [0,τmad], where δ could be cho-
sen arbitrarily close to 0). The ability to handle discrete-time controllers and nonzero
lower bounds on the transmission intervals and delays is highly relevant from a prac-
tical point of view, because controllers are typically implemented in a digital and,
thus, discrete-time form. Furthermore, finite communication bandwidth introduces
nonzero lower bounds on the transmission intervals and transmission delays. The
discrete-time approach surveyed here (see [22, 21]) studies these highly relevant
situations as well, although in a linear context. The linearity property is exploited

7 Stability and Stabilization of Networked Control Systems 239

0 0.002 0.004 0.006 0.008 0.01 0.012
0

1

2

3

4

5

6

7

8
x 10

−3

MATI

M
A

D
Tradeoff curves between MATI, MAD and L2 performance

2
2.5
3
5
10
200

L2 gain

Fig. 7.10 Tradeoff curves between MATI and MAD for various levels of the L2 gain of the
NCS with the TOD protocol

in the stability analysis and leads to less conservative results than the continuous-
time approach. However, note that the continuous-time approach can accommodate
for NCSs based on nonlinear plants and controllers and general (UGES) protocols,
features that the discrete-time approach does not offer.

7.4.2.1 The Exact Discrete-Time NCS Model

As mentioned, the discrete-time approach applies in a linear context, which means
that (7.48) is replaced by the linear time-invariant (LTI) continuous-time plant
given by

ẋp(t) = Apxp(t)+ Bpû(t)
y(t) = Cpxp(t), (7.70)

where xp ∈ R
np denotes the state of the plant, û ∈ R

nu the most recently received
control variable, y ∈ R

ny the (measured) output of the plant and t ∈ R
+ the time.

The controller, also an LTI system, is assumed to be given in either continuous
time by

ẋc(t) = Acxc(t)+ Bcŷ(t)
u(t) = Ccxc(t)+ Dcŷ(t), (7.71a)

240 W.P.M.H. Heemels and N. van de Wouw

Fig. 7.11 Illustration of a typical evolution of y and ŷ

or in discrete time by

xc
k+1 = Acxc

k + Bcŷk

u(tk) = Ccxc
k + Dcŷ(tk). (7.71b)

In parallel with Section 7.4.1 (only subscripts becoming superscripts, as subscripts
are used to indicate the counter k of the discrete-time step), xc ∈ R

nc denotes the
state of the controller, ŷ ∈ R

ny the most recently received output of the plant and
u ∈ R

nu denotes the controller output. At transmission instant tk,k ∈ N, (parts of)
the outputs of the plant y(tk) and controller u(tk) are sampled and are transmitted
over the network. It is assumed that they arrive at instant rk = tk + τk, called the
arrival instant, where τk denotes the communication delay. The situation described
above is illustrated in Figure 7.11. In the case of a discrete-time controller (7.71b),
the states of the controller xc

k+1 are updated using ŷk := limt↓rk ŷ(t), directly after ŷ
is updated. Note that in this case, the update of xc

k+1 in (7.71b) has to be performed
in the time interval (rk,tk+1].

The functioning of the network will now be explained in more detail by defining
these ‘most recently received’ ŷ and û exactly. As in the continuous-time (emulation)
approach in Section 7.4.1, the plant is equipped with sensors and actuators that are
grouped into N nodes. At each transmission instant tk, k ∈ N, one node, denoted
by σk ∈ {1, . . . ,N}, obtains access to the network and transmits its corresponding
values. These transmitted values are received and implemented on the controller or
the plant at arrival instant rk. As was assumed in Section 7.4.1, a transmission only
occurs after the previous transmission has arrived, i.e., tk+1 > rk � tk, for all k ∈ N.
In other words, also here the small delay case is treated in the sense that the delay is
smaller than the transmission interval τk ≤ hk := tk+1− tk. After each transmission
and reception, the values in ŷ and û are updated using the newly received values,
while the other values in ŷ and û remain the same, as no additional information has
been received for them. This leads to the constrained data exchange expressed as

{
ŷ(t) = Γ y

σk
y(tk)+ (I−Γ y

σk
)ŷ(tk)

û(t) = Γ u
σk

u(tk)+ (I−Γ u
σk

)û(tk)
(7.72)

7 Stability and Stabilization of Networked Control Systems 241

for all t ∈ (rk,rk+1], where Γσk := diag
(
Γ y
σk

,Γ u
σk

)
is the diagonal matrix given by

Γi = diag
(
γi,1, . . . ,γi,ny+nu

)
, (7.73)

where σk = i and the elements γi, j, j ∈ {1, . . . ,ny}, are equal to one, if plant output
y j is in node i, elements γi, j+ny , j ∈ {1, . . . ,nu}, are equal to one, if controller output
u j is in node i, and are zero elsewhere. Note that (7.72) is directly related to (7.50)
in the continuous-time approach with hy(k,ey(tk)) = (I−Γ y

σk
)e(tk), hu(k,e(tk)) =

(I−Γ u
σk

)eu(tk), ey(t) = ŷ(t)− y(t) and eu(t) = û(t)−u(t).
The value of σk ∈ {1, . . . ,N} in (7.72) indicates which node is given access to

the network at transmission instant tk, k ∈ N. Indeed, (7.72) reflects that the values
in û and ŷ corresponding to node σk are updated just after rk, with the correspond-
ing transmitted values at time tk, while the others remain the same. A scheduling
protocol determines the sequence (σ0,σ1, . . .) such as the Round Robin and Try-
Once-Discard protocols discussed earlier.

The transmission instants tk, as well as the arrival instants rk, k ∈ N are not
necessarily distributed equidistantly in time. Hence, both the transmission intervals
hk := tk+1− tk and the transmission delays τk := rk− tk are varying in time, as is also
illustrated in Figure 7.11. It is assumed that the variations in the transmission inter-
val and delays are bounded and are contained in the sets [hmin,hmax] and [τmin,τmax],
respectively, with hmax≥ hmin≥ 0 and τmax ≥ τmin≥ 0. Since it is assumed that each
transmission delay τk is smaller than the corresponding transmission interval hk, it
holds that (hk,τk) ∈Ψ , for all k ∈ N, where

Ψ :=
{
(h,τ) ∈ R

2 | h ∈ [hmin,hmax],τ ∈ [τmin,min{h,τmax})
}

. (7.74)

Note that in comparison with Section 7.4.1, hmati would correspond to hmax and τmad

to τmax. However, in Section 7.4.1 it was assumed that τmin = 0 and hmin = δ , where
δ could be chosen arbitrarily small, due to the emulation type of approach, while
that is not the case here. Therefore, here the different notation using hmin, hmax, τmin

and τmax is used.
To analyse stability of the NCS described above, it is transformed into a discrete-

time model. In this framework, a discrete-time equivalent of (7.70) is needed. Addi-
tionally, when a continuous-time controller is used, also a discretization of (7.71a)
is needed. To arrive at this description, define the network-induced error as

{
ey(t) := ŷ(t)− y(t)
eu(t) := û(t)−u(t).

(7.75)

By exact discretization of (7.70) and/or (7.71a) a discrete-time switched uncertain
system can be obtained that describes the evolution of the states between tk and
tk+1 = tk + hk. In order to do so, define xp

k := xp(tk), uk := u(tk), ûk := limt↓rk û(t)
and eu

k := eu(tk). This results in three different models each describing a particular
NCS. The first and the second model cover the situation where both the plant and
the controller outputs are transmitted over the network, differing by the fact that
the controller is given by (7.71a) and (7.71b), respectively. In the third model, it is

242 W.P.M.H. Heemels and N. van de Wouw

assumed that the controller is given by (7.71a) and that only the plant outputs y are
transmitted over the network and u are sent continuously via an ideal nonnetworked
connection. This particular case is included, because it is often used in examples in
NCS literature, e.g., for the benchmark example of the batch reactor as discussed
before in Section 7.4.1.

The NCS Model with Continuous-Time Controller (7.71a)

For an NCS having continuous-time controller (7.71a), the complete NCS model is
obtained by combining (7.72), (7.75) with exact discretizations of plant (7.70) and
controller (7.71a) and defining

x̄k :=
[
xp%

k xc%
k ey%

k eu%
k

]%
. (7.76)

This results in the discrete-time model

x̄k+1 =
[

Ahk + EhkBDC EhkBD−Ehk−τk BΓσk

C(I−Ahk −EhkBDC) I−D−1Γσk +C(Ehk−τk BΓσk −EhkBD)

]

︸ ︷︷ ︸
=:Ãσk,hk ,τk

x̄k (7.77)

in which Ãσk,hk,τk ∈ R
n×n, with n = np + nc + ny + nu, and

Ahk := diag(eAphk ,eAchk), B :=
[

0 Bp

Bc 0

]
,C := diag(Cp,Cc), (7.79a)

D :=
[

I 0
Dc I

]
, Eρ := diag(

∫ ρ

0
eApsds,

∫ ρ

0
eAcsds), ρ ∈R. (7.79b)

The NCS Model with Discrete-Time Controller (7.71b)

For an NCS having controller (7.71b), the complete NCS model is obtained by com-
bining (7.71b), (7.72), (7.75), and an exact discretization of the continuous-time
plant (7.70), also resulting in (7.77), in which now

Ahk := diag(eAphk ,Ac), B :=
[

0 Bp

Bc 0

]
,C := diag(Cp,Cc), (7.80a)

D :=
[

I 0
Dc I

]
, Eρ := diag(

∫ ρ

0
eApsds, I), ρ ∈ R. (7.80b)

The NCS Model if Only y is Transmitted over the Network

In this case it is assumed that only the outputs of the plant are transmitted over the
network and the controller communicates its values continuously and without delay.

7 Stability and Stabilization of Networked Control Systems 243

Therefore it holds that u(t) = û(t), for all t ∈ R
+, which allows the combination of

(7.70) and (7.71a) into
[

ẋp(t)
ẋc(t)

]
=
[

Ap BpCc

0 Ac

][
xp(t)
xc(t)

]
+
[

BpDc

Bc

]
ŷ(t). (7.81)

Since ŷ is still updated according to (7.72), the evolution of the states between tk
and tk+1 = tk + hk can also be described by exact discretization. In this case, (7.76)
reduces to

x̄k :=
[
xp%

k xc%
k ey%

k

]%
, (7.82)

resulting in (7.77), in which

Ahk := e

[
Ap BpCc

0 Ac

]
hk , B :=

[
BpDc

Bc

]
, C :=

[
Cp 0

]
, (7.83a)

D := I, Eρ :=
∫ ρ

0
e

[
Ap BpCc

0 Ac

]
s
ds, ρ ∈ R. (7.83b)

Protocols as a Switching Function

Based on the previous modeling steps, the NCS is reformulated as the discrete-time
switched uncertain system (7.77). In this framework, protocols are considered as the
switching function determiningσk. The two protocols mentioned before, namely the
Try-Once-Discard (TOD) and the Round-Robin (RR) protocol, are considered and
generalized into the classes of ‘quadratic’ and ‘periodic’ protocols, respectively.

A quadratic protocol is a protocol, for which the switching function can be
written as

σk = arg min
i=1,...,N

x̄%k Pix̄k, (7.84)

where Pi, i ∈ {1, . . . ,N}, are certain given matrices. In fact, the TOD protocol be-
longs to this class of protocols, see [22, 21].

A periodic protocol is a protocol that satisfies for some Ñ ∈N

σk+Ñ = σk (7.85)

for all k ∈ N. Ñ is then called the period of the protocol. Clearly, the RR protocol
belongs to this class.

The above modeling approach now provides a description of the NCS system in
the form of a discrete-time switched linear uncertain system given by (7.77) and one
of the protocols, characterized by (7.84) or (7.85). The system switches between N
linear uncertain systems and the switching is due to the fact that only one node ac-
cesses the network at each transmission instant. The uncertainty is caused by the fact
that the transmission intervals and the transmission delays (hk,τk) ∈Ψ are varying
over time.

244 W.P.M.H. Heemels and N. van de Wouw

Remark 7.20. If there is only one node N = 1 and Γi = I, the setting of Section 7.3.2
for the case of small delays is recovered. If in addition, τmax = 0 and hmin = hmax,
then the NCS reduces to a standard sampled-data system (in case of a continuous-
time plant and discrete-time controller), see, e.g., [24, 8].

7.4.2.2 The Polytopic Overapproximation

As in the case without communication constraints (see Section 7.3.2), also in the
NCS models derived in the previous section the uncertainty appears in an exponen-
tial manner (see the terms Ahk , Ahk−τk , Ehk and Ehk−τk in (7.77)). To convert these
descriptions into a suitable form for robust stability analysis, a polytopic overap-
proximation method is exploited. Essentially any of the available overapproxima-
tion methods (e.g., the one based on the real Jordan form discussed before) can be
applied. However, in [21], in which the above modeling is presented, a combina-
tion of gridding and norm-bounding is combined into a new and efficient method.
The gridding method in [21] has the advantage that if the exact discrete-time model
(so before the overapproximation) is exponentially stable proven by a parameter-
dependent quadratic Lyapunov function [15], then the overapproximated polytopic
system with a sufficiently dense set of grid points in Ψ also has a parameter-
dependent quadratic Lyapunov function. The Lyapunov function for the polytopic
system can then be found by LMIs. In other words, if the original NCS system is
“quadratically stable,” then the LMIs derived in [21] will prove this for a sufficiently
dense gridding. The reader is referred to [22, 21] for full details. Actually, in a recent
paper [39] a comparison was made between the various polytopic overapproxima-
tion methods and it was argued that the gridding method of [22, 21] has the most
favorable properties of the studied methods.

7.4.2.3 Application to the Batch Reactor

The exact same setup will be analyzed as for the continuous-time approach in Sub-
section 7.4.1.3 and focus on the TOD and RR protocol and assume that the controller
is directly connected to the actuator, i.e., only the (two) outputs are transmitted via
the network. Using the LMIs as in [21] the aim is to construct combinations of
hmax and τmax for which the NCS is stable, and it is assumed that τmin = 0 and
hmin = 10−4. This results in tradeoff curves, as shown in Figure 7.12. These tradeoff
curves can be used to impose or select a suitable network with certain communi-
cation delay and bandwidth requirements. Note that bandwidth is inversely propor-
tional with the transmission interval.

Moreover, in Fig 7.12, also the tradeoff curves as obtained for the continuous-
time approach (Subsection 7.4.1.3) are given. It can be observed that the discrete-
time approach provides less conservative results than the continuous-time approach
(at least for this example). More interestingly, in case there is no delay, i.e.,
τmin = τmax = 0, the maximum allowable transmission interval hmax obtained in
[6], which provide the least conservative results known in literature so far, was
hmax = 0.0108, while the discrete-time approach results in hmax = 0.066. In [92],

7 Stability and Stabilization of Networked Control Systems 245

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

RR continuous-time
TOD continuous-time
RR discrete-time
TOD discrete-time

M
ax

im
um

A
llo

w
ab

le
D

el
ay

Maximum Allowable Transmission Interval

Fig. 7.12 Tradeoff curves between allowable transmission intervals and transmission delays
for two different protocols, where “continuous-time” refers to the approach in Section 7.4.1,
while the other curves refer to the discrete-time approach as discussed in Section 7.4.2

the largest hmax for which stability can be guaranteed was estimated (using simula-
tions) to be approximately 0.08 for the TOD protocol, so the result of hmax = 0.066
as found here already approaches this value accurately. Furthermore, for the RR
protocol, [6] provides the bound hmax = 0.009 in the delay-free case, while the
discrete-time approach yields stability for hmax = 0.064. Also in [92], for a con-
stant transmission interval, i.e. hmin = hmax, the bound 0.0657 was obtained for
the RR protocol. Obviously, the case where the transmission interval is constant,
provides an upper bound on the true MATI. Therefore, one can conclude that for
this example, the discrete-time methodology reduces conservatism significantly in
comparison to existing approaches including the continuous-time approach dis-
cussed in Section 7.4.1. Furthermore, the discrete-time approach even approximates
known estimates of the true MATI (hmati = hmax) closely. In addition, the discrete-
time approach applies to situations (non-zero lower bounds and discrete-time con-
trollers, see [21] for examples) that cannot be handled by the continuous-time
methodologies.

7.4.3 Comparison of Discrete-Time and Continuous-Time
Approaches

Interestingly, both the discrete-time and the continuous-time approaches exploit a
NCS model that is intrinsically of a hybrid nature. The continuous-time (emula-
tion) approach results in hybrid inclusions with flows and resets [31], while the

246 W.P.M.H. Heemels and N. van de Wouw

discrete-time approach uses uncertain switched linear systems that are overapprox-
imated by uncertain switched polytopic systems.

There are some clear (dis)advantages of both methods. The continuous-time (em-
ulation) approach as presented in Subsection 7.4.1 applies to general continuous-
time nonlinear plants and controllers, and general (UGES) protocols. In addition,
in the continuous-time approach Lp gain analysis of the original continuous-time
NCS can be done in a straightforward manner (see [38]), while this not true for
the discrete-time approach. However, the continuous-time approach does not al-
low for discrete-time controllers and cannot handle nonzero lower bounds on the
transmission intervals hk and delays τk. The discrete-time approach as discussed in
Subsection 7.4.2 can allow for both continuous-time and discrete-time controllers
and non-zero lowerbounds on delays and transmission intervals. However, it ap-
plies to the case of linear plants and controllers and specific protocols (periodic and
quadratic protocols) only, although it can do this in a significantly less conservative
manner than the “general-purpose” continuous-time approach.

7.5 Conclusions

In this overview we discussed various approaches to the modeling, stability analysis
and stabilizing controller synthesis of NCSs with varying delays, varying transmis-
sion intervals, packet dropouts and communication constraints. The methods dis-
cussed in this chapter all assume hard bounds on the size of the varying delays,
transmission intervals and the maximal number of subsequent dropouts. Roughly
speaking, three main lines can be distinguished, as summarized below.

(i) The discrete-time approach is based on a discrete-time NCS model, which
can be used for both discrete-time and continuous-time linear controllers and
linear plants. LMI-based stability conditions are derived by using common
or parameter-dependent quadratic Lyapunov functions for an overapproxi-
mated polytopic model. Different methods are available for performing the
polytopic overapproximation of the discretized NCS model in which the de-
lay and sampling interval uncertainties appear in an exponential fashion, see
[39]. Within this research line the largest number of network-induced imper-
fections are treated in [21] that includes varying sampling intervals and delays,
dropouts and communication constraints. Both discrete-time and continuous-
time controllers can be handled. However, in [21] only delays smaller than the
sampling interval are considered. For the most comprehensive discrete-time
approach including large delays, but without communication constraints, we
refer to [14, 11].

(ii) The sampled-data approach uses (impulsive) delay-differential equations
describing continuous-time sampled-data NCS models with discrete-time con-
trollers. Extensions of the classical Lyapunov-Krasovskii functionals are ex-
ploited to give stability guarantees for linear plants and controllers. The
conditions also result in LMIs. Communication constraints have not (yet) been
treated using (impulsive) delay-differential equations.

7 Stability and Stabilization of Networked Control Systems 247

(iii) The continuous-time (emulation) approach studies continuous-time sampled-
data NCS models with continuous-time controllers and transforms these into
hybrid models. Continuous-time Lyapunov functions are constructed by com-
bining individual Lyapunov functions of the network-free closed-loop system
and the network protocol (or adopting directly small gain arguments) to assess
stability of the NCS. Typically only continuous-time controllers are treated at
present, however both controller and plant can be nonlinear.

Although already three main research lines of NCSs exist for stability analysis
(where we did not even discuss the stochastic approaches) and many papers are
available, at present there are almost no complete frameworks that can handle all
the 5 mentioned network-induced imperfections: (i) Variable sampling/transmission
intervals; (ii) variable communication delays; (iii) Packet dropouts (iv) Communica-
tion constraints; (v) Quantization errors. Only recently one approach was presented
in [35] that includes all 5 imperfections under quite restricted conditions (small de-
lay case, particular quantizers, continuous-time controllers, etc.) The availability of
a complete analysis and design frameworks based on either one of the main lines as
discussed in this chapter or possibly on a completely new line, would be desirable.
At present such a framework is not available, certainly not with the analysis and
design techniques implemented in suitable software tools. One of the goals of this
chapter was to survey the main techniques and discuss the open problems, which
will hopefully stimulate further research in this direction in order to develop this
envisioned framework and toolset in the near future.

Particular attention should be given to controller design methods, considering
that for the three main lines these methods are still rather limited and extensions
are needed. Indeed, most of the design techniques lead to static feedback con-
trollers, while in industrial practice there is a strong need for output-based dynamic
controllers. In the discrete-time approach ordinary and lifted state feedback con-
trollers could be designed using LMI conditions, while in the emulation approach,
continuous-time controllers are synthesized based on the network-free nonlinear
system using any available method for the design of stabilizing controllers for non-
linear systems, which is in general a nontrivial task. As the emulation design does
not incorporate any information on the network, it is hard to design controllers that
are stabilizing and performing for sufficiently long delays and transmission inter-
vals, although one can aim at obtaining favorable properties through the presented
stability conditions. In addition, one might wonder if continuous-time controllers are
useful in practical problems as most NCS setups will require digital discrete-time
controllers that are tailored towards non-zero lower bounds on delays and transmis-
sion intervals. Of course, one option is to implement the continuous-time controller
using numerical integration schemes, however it is unclear if these controllers will
have the desired properties in the end. Also for the sampled-data approach construc-
tive design methods seem to be missing in the literature, certainly in an efficient
form. Hence, as a final conclusion one can state that the controller design and con-
troller/protocol co-design techniques for NCSs are still in their infancy and deserve
a lot of attention in the years to come.

248 W.P.M.H. Heemels and N. van de Wouw

Acknowledgements. The authors are grateful to João Hespanha, Nick Bauer and Tijs
Donkers for giving detailed comments on an earlier version of this manuscript.

References

1. Antunes, D., Hespanha, J., Silvestre, C.: Control of impulsive renewal systems: Ap-
plication to direct design in networked control. In: IEEE Conference on Decision and
Control, pp. 6882–6887 (2009)

2. Antunes, D., Hespanha, J., Silvestre, C.: Stability of impulsive systems driven by re-
newal processes. In: Proc. Amer. Contr. Conf., pp. 4032–4037 (2009)

3. Balluchi, A., Murrieri, P., Sangiovanni-Vincentelli, A.L.: Controller synthesis on non-
uniform and uncertain discrete-time domains. In: Morari, M., Thiele, L. (eds.) HSCC
2005. LNCS, vol. 3414, pp. 118–133. Springer, Heidelberg (2005)

4. Brockett, R.: Stabilization of motor networks. In: Proc. of the 34th IEEE Conf. on
Decision and Control, vol. 2, pp. 1484–1488 (1995)

5. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE
Trans. Autom. Control 45, 1279–1289 (2000)

6. Carnevale, D., Teel, A.R., Nešić, D.: A Lyapunov proof of improved maximum al-
lowable transfer interval for networked control systems. IEEE Trans. Aut. Control 52,
892–897 (2007)

7. Chaillet, A., Bicchi, A.: Delay compensation in packet-switching networked controlled
sytems. In: IEEE Conf. Decision and Control, pp. 3620–3625 (2008)

8. Chen, T., Francis, B.A.: Optimal Sampled-data Control Systems. Springer, London
(1995)

9. Cloosterman, M.: Control over Communication Networks: Modeling, Analysis, and
Synthesis. PhD thesis Eindhoven University of Technology (2008)

10. Cloosterman, M., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: Robust stabil-
ity of networked control systems with time-varying network-induced delays. In: Proc.
IEEE Conf. on Decision and Control, San Diego, USA, December 2006, pp. 4980–4985
(2006)

11. Cloosterman, M.B.G., Hetel, L., van de Wouw, N., Heemels, W.P.M.H., Daafouz, J., Ni-
jmeijer, H.: Controller synthesis for networked control systems. Automatica 46, 1584–
1594 (2010)

12. Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M., Nijmeijer, H.: Stabiliza-
tion of networked control systems with large delays and packet dropouts. In: American
Control Conference, pp. 4991–4996 (2008)

13. Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: Stability
of networked control systems with large delays. In: 46th IEEE Conference on Decision
and Control, pp. 5017–5022 (2007)

14. Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: Stability
of networked control systems with uncertain time-varying delays. IEEE Trans. Autom.
Control 54(7), 1575–1580 (2009)

15. Daafouz, J., Bernussou, J.: Parameter dependent Lyapunov functions for discrete time
systems with time varying parametric uncertainties. Systems & Control Letters 43, 355–
359 (2001)

16. Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched
systems: A switched Lyapunov function approach. IEEE Transactions on Automatic
Control 47, 1883–1887 (2002)

7 Stability and Stabilization of Networked Control Systems 249

17. Dačić, D.B., Nešić, D.: Quadratic stabilization of linear networked control systems via
simultaneous protocol and controller design. Automatica 43, 1145–1155 (2007)

18. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability
condition. Systems & Control Letters 37, 261–265 (1999)

19. Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans.
Autom. Control 35, 916–924 (1990)

20. Donkers, M.C.F., Heemels, W.P.M.H., Bernardini, D., Bemporad, A., Shneer, V.: Sta-
bility analysis of stochastic networked control systems. In: Proc. Amer. Contr. Conf.,
pp. 3684–3689 (2010)

21. Donkers, M.C.F., Heemels, W.P.M.H., van de Wouw, N., Hetel, L.: Stability analysis
of networked control systems using a switched linear systems approach. Submitted for
journal publication

22. Donkers, M.C.F., Hetel, L., Heemels, W.P.M.H., van de Wouw, N., Steinbuch, M.: Sta-
bility analysis of networked control systems using a switched linear systems approach.
In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 150–164.
Springer, Heidelberg (2009)

23. Dritsas, L., Tzes, A.: Robust stability analysis of networked systems with varying de-
lays. International Journal of Control (2009)

24. Franklin, G.F., Powell, J.D., Workman, M.L.: Digital control of dynamic systems.
Addison-Wesley Pub. Co. Inc., Reading (1990)

25. Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear sys-
tems: an input delay approach. Automatica 40, 1441–1446 (2004)

26. Fujioka, H.: Stability analysis for a class of networked/embedded control systems: A
discrete-time approach. In: Proc. of the American Control Conf., pp. 4997–5002 (2008)

27. Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control.
Automatica 44(1), 39–52 (2008)

28. Garcia-Rivera, M., Barreiro, A.: Analysis of networked control systems with drops and
variable delays. Automatica 43, 2054–2059 (2007)

29. Gielen, R., Olaru, S., Lazar, M.: On polytopic embeddings as a modeling framework
for networked control systems. In: Proc. 3rd Int. Workshop on Assessment and Future
Directions of Nonlinear Model Predictive Control, Pavia, Italy (2008)

30. Gielen, R.H., Olaru, S., Lazar, M., Heemels, W.P.M.H., van de Wouw, N., Niculescu,
S.-I.: On polytopic inclusions as a modeling framework for systems with time-varying
delays. Automatica 46(3), 615–619 (2010)

31. Goebel, R., Sanfelice, R., Teel, A.R.: Hybrid dynamical systems. IEEE Control Systems
Magazine 29(2), 28–93 (2009)

32. Gupta, V., Chung, T.H., Hassibi, B., Murray, R.M.: On a stochastic sensor selection al-
gorithm with applications in sensor scheduling and sensor coverage. Automatica 42(2),
251–260 (2006)

33. Hea, Y., Wang, Q.-G., Wua, M., Lin, C.: Delay-range-dependent stability for systems
with time-varying delay. Automatica 43, 371–376 (2007)

34. Heemels, W.P.M.H., Gorter, R.J.A., van Zijl, A., Bosch, P.P.J.v.d., Weiland, S., Hendrix,
W.H.A., Vonder, M.R.: Asynchronous measurement and control: a case study on motor
synchronisation. Control Engineering Practice 7(12), 1467–1482 (1999)

35. Heemels, W.P.M.H., Nešić, D., Teel, A.R., van de Wouw, N.: Networked and quantized
control systems with communication delays. In: Proc. Joint 48th IEEE Conference on
Decision and Control (CDC) and 28th Chinese Control Conference, Shanghai, China,
pp. 7929–7935 (2009)

36. Heemels, W.P.M.H., Siahaan, H., Juloski, A., Weiland, S.: Control of quantized lin-
ear systems: an l1-optimal control approach. In: Proc. American Control Conference,
Denver, USA, pp. 3502–3507 (2003)

250 W.P.M.H. Heemels and N. van de Wouw

37. Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nešić, D.: Networked control sys-
tems with communication constraints: tradeoffs between sampling intervals and delays.
In: Proc. European Control Conference in Budapest, Hungary (2009)

38. Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nešić, D.: Networked control sys-
tems with communication constraints: Tradeoffs betweens transmission intervals, de-
lays and performance. IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)

39. Heemels, W.P.M.H., van de Wouw, N., Gielen, R.H., Donkers, M.C.F., Hetel, L., Olaru,
S., Lazar, M., Daafouz, J., Niculescu, S.: Comparison of overapproximation methods
for stability analysis of networked control systems. In: 13th International Workshop on
Hybrid Systems: Computation and Control, Stockholm, Sweden, pp. 181–190 (2010)

40. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked con-
trol systems. Proc. of the IEEE, 138–162 (2007)

41. Hetel, L., Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., Daafouz, J.,
Nijmeijer, H.: Comparison of stability characterisations for networked control systems.
In: Proc. Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese
Control Conference, Shanghai, China, pp. 7911–7916 (2009)

42. Hetel, L., Daafouz, J., Iung, C.: Stabilization of arbitrary switched linear systems with
unknown time-varying delays. IEEE Trans. Autom. Control 51(10), 1668–1674 (2006)

43. Hetel, L., Daafouz, J., Iung, C.: Analysis and control of LTI and switched systems
in digital loops via an event-based modeling. International Journal of Control 81(7),
1125–1138 (2008)

44. Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge
(1985)

45. Hristu, D., Morgansen, K.: Limited communication control. Systems & Control Let-
ters 37(4), 193–205 (1999)

46. Ishii, H.: H-infty control with limited communication and message losses. Systems and
Control Letters 57, 322–331 (2008)

47. Ishii, H., Francis, B.A.: Stabilization with control networks. Automatica 38, 1745–1751
(2002)

48. Kao, C.-Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays.
Automatica 40, 1429–1434 (2004)

49. Kothare, M., Balakrishnan, V., Morari, M.: Robust constrained model predictive control
using linear matrix inequalities. Automatica 32, 1361–1379 (1996)

50. Krtolica, R., Ozguner, U., Chan, H., Goktas, H., Winkelman, J., Liubakka, M.: Stability
of linear feedback systems with random communication delays. In: Proc. American
Control Conf, pp. 2648–2653 (1991)

51. Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans.
Autom. Control 48(2), 304–307 (2003)

52. Liberzon, D.: Quantization, time delays, and nonlinear stabilization. IEEE Trans. Au-
tom. Control 51(7), 1190–1195 (2006)

53. Matveev, A.S., Savkin, A.V.: The problem of state estimation via asynchronous commu-
nication channels with irregular transmission times. IEEE Trans. Autom. Control 48(4),
670–676 (2003)

54. Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold
circuits. IEEE Transactions on Automatic Control 52(6), 1109–1112 (2007)

55. Montestruque, L.A., Antsaklis, P.: Stochastic stability for model-based networked con-
trol systems. In: Proc. American Control Conf., pp. 4119–4124 (2003)

56. Montestruque, L.A., Antsaklis, P.: Stability of model-based networked control systems
with time-varying transmission times. IEEE Trans. Autom. Control 49(9), 1562–1572
(2004)

7 Stability and Stabilization of Networked Control Systems 251

57. Naghshtabrizi, P., Hespanha, J.P.: Designing an observer-based controller for a network
control system. In: Proc. of the 44th Conference on Decision and Control, and the Eu-
ropean Control Conference 2005, Seville, Spain, pp. 848–853 (December 2005)

58. Naghshtabrizi, P., Hespanha, J.P.: Stability of network control systems with variable
sampling and delays. In: Proc. of the Forty-Fourth Annual Allerton Conf. on Commu-
nication, Control, and Computing (2006)

59. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Stability of delay impulsive systems with
application to networked control systems. In: Proc. American Control Conference, New
York, USA, pp. 4899–4904 (2007)

60. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems
with application to uncertain sampled-data systems. Systems & Control Letters 57(5),
378–385 (2008)

61. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: On the robust stability and stabilization
of sampled-data systems: A hybrid system approach. In: Proc. of the 45th Conf. on
Decision and Contr. (December 2006)

62. Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback
data rates. SIAM J. Control Optim. 43, 413–436 (2004)

63. Nešić, D., Liberzon, D.: A unified framework for design and analysis of networked and
quantized control systems. IEEE Trans. Autom. Control 54(4), 732–747 (2009)

64. Nešić, D., Teel, A.R., Sontag, E.D.: Formulas relating KL-stability estimates of
discrete-time and sampled-data nonlinear systems. Systems & Control Letters 38(1),
49–60 (1999)

65. Nešić, D., Teel, A.R.: Input-output stability properties of networked control systems.
IEEE Trans. Autom. Control 49(10), 1650–1667 (2004)

66. Nešić, D., Teel, A.R.: Input-to-state stability of networked control systems. Automat-
ica 40, 2121–2128 (2004)

67. Nilsson, J., Bernhardsson, B., Wittenmark, B.: Stochastic analysis and control of real-
time systems with random time delays. Automatica 34, 57–64 (1998)

68. Nilsson, J.: Real-Time Control Systems with Delays. PhD thesis, Dept. of Automatic
Control, Lund Inst. of Techn., Lund, Sweden (1998)

69. Olaru, S., Niculescu, S.-I.: Predictive Control for Linear Systems with Delayed Input
Subject to Constraints. In: Proceedings of 17th IFAC World Congress 2008 17th IFAC
World Congress 2008, CD–ROM, Seul, Korea (2008)

70. Pan, Y.-J., Marquez, H.J., Chen, T.: Stabilization of remote control systems with un-
known time varying delays by LMI techniques. Int. Journal of Control 79(7), 752–763
(2006)

71. Rehbinder, H., Sanfridson, M.: Scheduling of a limited communication channel for
optimal control. Automatica 40(3), 491–500 (2004)

72. Sala, A.: Computer control under time-varying sampling period: An LMI gridding ap-
proach. Automatica 41(12), 2077–2082 (2005)

73. Schenato, L.: To zero or to hold control inputs with lossy links? IEEE Trans. Autom.
Control 54, 1093–1099 (2009)

74. Seiler, P., Sengupta, R.: An H∞ approach to networked control. IEEE Trans. Autom.
Control 50, 356–364 (2005)

75. Shi, Y., Yu, B.: Output feedback stabilization of networked control systems with random
delays modeled by markov chains. IEEE Trans. Autom. Control 54, 1668–1674 (2009)

76. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.:
Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9),
1453–1464 (2004)

252 W.P.M.H. Heemels and N. van de Wouw

77. Skaf, J., Boyd, S.: Analysis and synthesis of state-feedback controllers with timing
jitter. IEEE Transactions on Automatic Control 54(3) (2009)

78. Smith, S.C., Seiler, P.: Estimation with lossy measurements: jump estimators for jump
systems. IEEE Trans. Autom. Control 48(12), 2163–2171 (2003)

79. Suh, Y.S.: Stability and stabilization of nonuniform sampling systems. Automatica 44,
3222–3226 (2008)

80. Tabbara, M., Nešić, D.: Input-output stability of networked control systems with
stochastic protocols and channels. IEEE Trans. Autom. Control 53, 1160–1175 (2008)

81. Tabbara, M., Nešić, D., Teel, A.R.: Stability of wireless and wireline networked control
systems. IEEE Trans. Autom. Control 52(9), 1615–1630 (2007)

82. Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Au-
tom. Control 49, 1056–1068 (2004)

83. Tipsuwan, Y., Chow, M.-Y.: Control methodologies in networked control systems. Con-
trol Engineering Practice 11, 1099–1111 (2003)

84. Tsumura, K., Ishii, H., Hoshina, H.: Tradeoffs between quantization and packet loss in
networked control of linear systems. Automatica 45, 2963–2970 (2009)

85. van de Wouw, N., Naghshtabrizi, P., Cloosterman, M., Hespanha, J.P.: Tracking control
for networked control systems. In: Proc. of the 46th IEEE Conference on Decision and
Control, New Orleans, LA, USA, pp. 4441–4446 (December 2007)

86. van de Wouw, N., Naghshtabrizi, P., Cloosterman, M.B.G., Hespanha, J.P.: Tracking
control for sampled-data systems with uncertain sampling intervals and delays. Intern.
Journ. Robust and Nonlinear Control 20(4), 387–411 (2010)

87. van de Wouw, N., Nešić, D., Heemels, W.P.M.H.: A discrete-time framework for sta-
bility analysis of nonlinear networked control systems. (submitted, 2010)

88. van der Schaft, A.J.: L2-Gain and Passivity in Nonlinear Control, 2nd edn. Springer,
Heidelberg (1999)

89. van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical Systems.
LNCIS, vol. 251. Springer, London (2000)

90. van Schendel, J.J.C., Donkers, M.C.F., Heemels, W.P.M.H., van de Wouw, N.: On
dropout modelling for stability analysis of networked control systems. In: Proc. Amer-
ican Control Conf. (2010)

91. Walsh, G.C., Belidman, O., Bushnell, L.G.: Asymptotic behavior of nonlinear net-
worked control systems. IEEE Trans. Automat. Contr. 46, 1093–1097 (2001)

92. Walsh, G.C., Ye, H., Bushnell, L.G.: Stability analysis of networked control systems.
IEEE Trans. on Control Systems Technology 10(3), 438–446 (2002)

93. Wang, Y., Yang, G.: Multiple communication channels-based packet dropout compen-
sation for networked control systems. IET Control Theory and Applications 2, 717–727
(2008)

94. Wei, G., Wang, Z., He, X., Shu, H.: Filtering for networked stochastic time-delay sys-
tems with sector nonlinearity. IEEE Trans. Circuits and Systems II: Express Briefs 56,
71–75 (2009)

95. Wittenmark, B., Nilsson, J., Törngren, M.: Timing problems in real-time control sys-
tems. In: Proc. of the Amer. Control Conf., Seattle, USA, pp. 2000–2004 (1995)

96. Xie, G., Wang, L.: Stabilization of networked control systems with time-varying
network-induced delay. In: Proc. of the 43rd IEEE Conference on Decision and Control,
Atlantis, Paradise Island, Bahamas, pp. 3551–3556 (December 2004)

97. Yang, F., Wang, Z., Hung, Y.S., Gani, M.: H∞ control for networked systems with
random communication delays. IEEE Trans. Autom. Control 51, 511–518 (2006)

98. Yang, T.C.: Networked control system: a brief survey. IEE Proc.-Control Theory
Appl. 153(4), 403–412 (2006)

7 Stability and Stabilization of Networked Control Systems 253

99. Yu, M., Wang, L., Chu, T.: Sampled-data stabilization of networked control systems
with nonlinearity. IEE Proc.-Control Theory Appl. 152(6), 609–614 (2005)

100. Yue, D., Han, Q.-L., Peng, C.: State feedback controller design of networked control
systems. IEEE Trans. on circuits and systems 51(11), 640–644 (2004)

101. Zhang, L., Shi, Y., Chen, T., Huang, B.: A new method for stabilization of networked
control systems with random delays. IEEE Trans. Autom. Control 50(8), 1177–1181
(2005)

102. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE
Control Systems Magazine 21(1), 84–99 (2001)

Chapter 8
Feedback Control over Limited Capacity
Channels

Hideaki Ishii

Abstract. In this chapter, we present recent approaches towards networked control
systems (NCSs) motivated by capacity constraints in communication channels. Con-
sideration of such constraints is important since the channels are shared by various
system components, and thus the communication rate necessary for control-related
signals must be explicitly taken into account. The chapter consists of two main parts.
In the first part, we discuss control problems involving quantization effects. While
such problems have a long history in the control field, the characteristic aspect here
is that the problems have strong ties to the theoretical question on how much infor-
mation is necessary for the purpose of feedback control. The second part provides an
information theoretic approach to the well-known Bode’s integral formulae, where
properties of sensitivity functions are characterized by the plant poles and zeros.
We will observe the usefulness of notions such as entropy in deriving such formu-
lae. The results in both parts exhibit fundamental limitations that arise due to the
presence of capacity limited channels and are hence unique to networked control.
Moreover, we will describe the close interplay between the two fields of control and
communication.

8.1 Introduction

In recent years, the importance of the role played by communication in control sys-
tems has continuously grown. Indeed, in various control applications, we can find
systems employing real-time remote controllers using the Internet or large-scale
plants with numerous embedded components connected by shared channels. Such
developments in applications have been enabled by the vast progress in communi-
cation technologies in the last twenty years.

The impact of networked control systems (NCSs) has also brought influences
to the theoretical side of the control field. Consequently, new approaches for net-
worked control have been obtained, incorporating the characteristics and effects of
communication in the analysis and design of control systems; general references on

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 255–291.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

256 H. Ishii

this topic include [2, 1, 26]. It must be noted that different from applications in the
communications field, real-time requirements are much more strict in NCSs. This
is because communication channels are employed for the purpose of feedback con-
trol, where the overall system performance is very sensitive to any delay in signal
transmission and/or processing.

One of the main challenges in networked control is the constraint on capacity of
the communication channels. When shared channels are used by different system
components, the data rate of each signal must be counted to ensure that the total
is less than the capacity of the channel. Otherwise, the performance of the overall
system would degrade and even worse, the system may lose stability. Effects due to
capacity constraints include time delays, losses of data, scheduling of transmissions,
and encoding/quantization of signals.

In this chapter, we mainly focus on quantization, by highlighting the interplay
between the two theories on control and communication. By quantization, we mean
the conversion of real-valued signals to those taking discrete values, which is nec-
essary to send data over digital channels. The new problems that we must address
are (i) to introduce models of the capacity limited channels into control systems and
then (ii) to find how much data rate is required for each control signal. A funda-
mental question unique to these problems comes down to the following: How much
capacity is needed for the communication in control systems to guarantee certain
stability and/or performance properties? This question will be addressed in different
forms including the celebrated minimum data rate theorem.

We motivate the issue of channel capacity in NCSs through two examples.

Example 8.1. A common example of NCSs is the automotive local area networks
(LANs). In-vehicle electronic devices have dramatically increased for control of
various components including the engine, active suspensions, and cruise control. To
reduce the amount of cables, networks are used to connect sensors, actuators, and
controllers. At the plant side, electronic control units (ECUs) are placed, capable to
communicate to each other and to remotely located controllers.

Automotive LANs are usually composed of several networks, each of which is
responsible for a specific task and thus may employ a different protocol with appro-
priate capacity; see, e.g., [47]. For example, a slow network with data rate 125 kbps
can be used for body control such as the air conditioner, door locks, and meters.
For such purposes, CAN is a useful protocol. On the other hand, for the powertrain
including the engine, transmission, and steering, a much faster and more reliable
network would be necessary; a network of 5 Mbps with the FlexRay protocol may
be used.

In practice, the required data rate for each signal would be determined by en-
gineers, who find the appropriate data size and the transmission frequency. To co-
ordinate the transmissions by the many components, scheduling of the timings is
necessary as well. Then, those rates are summed up. It is critical that the total is
below the capacity of the channel. We would like to know how control theory can
take part in this type of design procedures. &

8 Feedback Control over Limited Capacity Channels 257

Example 8.2. We next consider the networked control of the familiar inverted pen-
dulum system (e.g., [17]). The objective is to keep a pendulum on top of a cart
upright by applying force to the cart and by measuring the cart position and the pen-
dulum angle. Here, we pay attention only to the angle measurement, and suppose
that this is done by an encoder with sampling period 1 ms. The encoder output goes
through an AD converter using, say, 8 bits. In this case, the transmission requires at
least 8000 bits per second (bps). Through experience (e.g., in undergraduate labs),
we know that if the controller is properly designed, such an encoder is sufficient to
stabilize the system.

Now, at the same sampling period, it may still be fine to reduce the number to 7
or 6 bits with some loss in performance. However, in the extreme case of only 2 bits
or even 1 bit, we do not have a clear answer whether a stabilizing control strategy
exists. With 1 bit, we can communicate only very coarse information such as the
pendulum being on the left or the right of the upright position, but this would clearly
be difficult. Hence, it seems that there is a threshold number of bits somewhere in
between. Is it possible to explicitly characterize this threshold? If such a threshold
exists, it is plausible that it depends on the level of instability of the plant, but how
shall we measure this? &
An interesting aspect of NCSs is that two fields become relevant, not only control but
also communication. New applications in NCSs have provided the need to explore
problems lying in the intersection of them. Though it has been long acknowledged
that the the two fields have much in common, there are certain differences that can be
summarized as follows (see, e.g., [41]). Communication or information theory deals
with general problems of reliable transmission of data and the capacity of channels
required for that purpose. However, this theory is usually not concerned with the
content of the data, as long as the stochastic properties of the data are known in
terms of the underlying probability distributions. On the other hand, in control, the
signals within systems are specifically used for feedback control; the data rate is
conventionally assumed to be infinite, enabling the signals to take real values.

In this chapter, we present results exhibiting the interplay of control and com-
munication. It consists of two parts. The first part is the main one and deals with
capacity constraints and, in particular, quantization issues in NCSs. The second part
focuses on the so-called Bode’s integral formula, where information theoretic tools
such as entropy are shown to be useful for control problems. Results in both parts
show fundamental limitations arising in NCSs. These limitations set certain theoret-
ical hard bounds on what can be achieved and cannot be overcome. In this respect,
these results are analogous in nature to Shannon’s theory, which shows that given a
stochastic model of a channel, the amount of information that can be reliably trans-
mitted over it by any coding scheme is bounded.

This chapter is organized as follows: For the first part on control under capacity
constraints, in Section 2, we provide an introduction to quantized control; the
general problem setup is given with some details on the background. Then, two
approaches for quantized control are presented. In Section 3, the minimum data rate

258 H. Ishii

Plant

Channel

EncoderController

Fig. 8.1 Control under capacity constraints

problem is addressed, while in Section 4, we discuss another approach based on the
notion of coarseness in quantization. Section 5 is devoted to the second part on an
information theoretic approach to Bode’s integral formula. Finally, in Section 6, we
provide concluding remarks.

8.2 Control under Capacity Constraints: System Setup and
Background

This section provides a general introduction for the first part of this chapter on quan-
tized control.

In the field of systems control, it has been the convention to assume that signals
within systems take real values. This assumption is fully justifiable under the situa-
tions where each signal is transmitted over its own dedicated channel, in which case
the available bandwidth is large. The fact is that in the past, most control systems
were designed in such a way. Hence, there was no need to question this assumption.

However, once the signals are to be sent over shared channels, where the capacity
can no longer be assumed infinite, the situation can change significantly. Before
transmission, on the sender side, signals must be converted so that they take only
discrete values, which can then be represented in bits. This conversion is referred to
as quantization. After quantization, some encoding schemes can be applied to the
quantized data. This step adds extra information to the raw data to ensure that even
if noise and error are introduced during the transmission, the original data can be
recovered at the receiver side by applying proper decoding.

The focus of this section is the effect of quantization in control systems and
especially very coarse quantization. The quantized control problems discussed in
this chapter are mainly for the system setup in Figure 8.1. Here, the plant to be con-
trolled has an output that goes to the encoder. There, possibly some preprocessing
takes place before quantization so that the signal can be sent over the channel. For
the most part of this chapter, it is assumed that the channel is noiseless and there
is no communication delay. On the receiver side is the controller that generates the

8 Feedback Control over Limited Capacity Channels 259

Fig. 8.2 Uniform quantizer Fig. 8.3 General quantizer

control input. This setup is simple having only one channel in the feedback loop.
It may represent a large-scale system whose sensors and actuators are separately
located. Nevertheless, we will see that this is a good starting point in obtaining
interesting and important theoretical results.

More specifically, in Figure 8.1, the plant is a discrete-time linear time-invariant
(LTI) system whose state-space equation is given by

x(k + 1) = Ax(k)+ Bu(k), (8.1)

where x(k) ∈R
n is the state and u(k)∈R

m is the control input. We make the follow-
ing assumptions: (i) The full state x(k) is measured by sensors, (ii) the pair (A,B)
is controllable (or, more generally, stabilizable), and (iii) the matrix A is unstable,
having at least one eigenvalue with magnitude larger than or equal to 11. Denote by
λ u

i , i = 1, . . . ,nu, the unstable eigenvalues of A.
By a quantizer, we mean a piecewise constant function. A typical one is the uni-

form quantizer QΔ . For the scalar case, this is defined by

QΔ (x) = Δ

⌈
x− Δ

2

Δ

⌉

, x ∈ R, (8.2)

where Δ > 0 is the step size and �·� : R→ Z is the ceiling function; see Figure 8.2.
This quantizer essentially rounds off a number x to the closest multiple of Δ . Hence,
the error caused by quantization is bounded as |x−Q(x)| ≤ Δ/2 for every x. When
the input x is a vector, one way is to quantize componentwise. For example, each
entry xi of x can be uniformly quantized.

It is important to note that for the purpose of systems control, uniform and/or
componentwise quantization may not necessarily be the best choice to obtain good
control performance. Hence, we do not have to limit ourselves to these types and
introduce a more general notion of quantization as follows.

1 In this chapter, the systems are in discrete time. Hence, we say a matrix is stable if all of
its eigenvalues have magnitude less than 1.

260 H. Ishii

Definition 8.1. Let X be a subset of R
n. Then, let {Q j} j∈S be a partition of X

where S is the index set. That is, Qi∩Q j = /0 for i �= j, and ∪ j∈S Q j = X . Each
set Q j is called a cell, and X is referred to as the region of the quantizer. Also,
let {q j} j∈S ⊂ R

n be the set of output values. The quantizer Q : X → {q j} j∈S is
given by

Q(x) = q j if x ∈Q j. (8.3)

An example of this function for the scalar case is depicted in Figure 8.3. In this
chapter, we will consider cases where the index set S is either finite or countable;
its cardinality is denoted by N. What is transmitted over the channel is the index of
the quantizer output, which can be recovered at the receiving end.

The objective of the quantized control problems in this chapter is stabilization
of the unstable plant via quantized signals sent over the channel. This amounts to
the joint design of the encoder-controller pair in Figure 8.1 and in particular the
nonlinear function, the quantizer, as in (8.3). To keep the discussion simple, issues
related to the performance of the overall system will not be addressed.

Notice that the operation of quantization can reduce the amount of information
available for control since the real value (uncountable) is converted to a discrete one
(finite or countable). So the quantized control problem may be interpreted as finding
the amount of information required for control. This is a fundamental problem that
has not been addressed until networks became acknowledged as a viable component
for control systems.

Historical Remarks

We have some remarks on the history of quantized control.
First, we emphasize that this problem is not new. Classical works can be found

in, e.g., [4, 10]. These studies were motivated mainly by the use of digital con-
trollers when computers became more accessible for control engineers. However,
the quantizers studied there are limited to uniform quantizers. More important, the
so-called additive noise model is employed. This model assumes that a quantizer
can be approximated as Q(x) = x + v for x ∈ R, where v is the quantization error
treated as uniformly bounded noise with |v| ≤ Δ/2. This approximation is known
to be acceptable as long as quantization resolution is high so that Δ is sufficiently
small compared to the size of the input x; however, in turn, this requires high data
rate and thus may not be suitable for our purpose.

In his well-known work [12], Delchamps first pointed out some of the nonlin-
ear effects that quantizers can cause within feedback control systems. The problem
setup considered there is that of Figure 8.1. The control input is u(k) = KQ(x(k)),
where Q is the componentwise uniform quantizer and K is a stabilizing state feed-
back gain when no quantization is present (i.e., the matrix A + BK is stable). It is
fairly obvious that if the quantization is sufficiently fine, the state can be brought
close to the origin. However, from the quantized information, it is impossible to
know the exact location of the state, and thus the state will not go to the origin, but
only stay around the origin. What Delchamps discovered is that the behavior there

8 Feedback Control over Limited Capacity Channels 261

is in fact chaotic in a rigorous sense. Such a nonlinear behavior will never arise from
the additive noise model. More recent work along this line can be found in [16].

Another result in Delchamps’ work [12] is that if the plant is not so unstable
(specifically, |λ u

i | < 2 for all i), there exists a dynamic quantized control strategy
of the form u(k) = fk(Q(x(k), . . . ,Q(x(0))) such that the state trajectory x(k) goes
arbitrarily close to the origin. In other words, this result shows that quantized infor-
mation is sufficient to make precise control. Hence, after all, quantization may not
be such an undesirable operation.

In what follows, we present two approaches on quantized control that have been
recently studied by various researchers. Section 8.3 is devoted to the so-called min-
imum data rate problem and then in Section 8.4, the approach based on the notion
of quantization coarseness is discussed.

8.3 The Minimum Data Rate for Stabilization

In this section, we provide an overview on the celebrated minimum data rate the-
orem. The material here is tutorial in nature, and we describe the results following
their development that took place since the end of the 1990s.

8.3.1 Problem Formulation and Initial Results

First, we introduce the problem formulation and some initial results for the mini-
mum data rate theorem. This problem was proposed by Wong and Brockett in their
influential work [56].

Consider the quantized control system in Figure 8.1. We would like to find a
stabilizing control law that utilizes a channel having a finite capacity. We employ a
simple definition of data rate. Recall that the number of discrete values in the output
of the quantizer is denoted by N. Here, we assume N to be finite. Then, the data rate
for this transmission is given by

R := �log2 N� [bits/sample]. (8.4)

This represents the number of bits needed at each sampling time. (The sampling
period is fixed in the discrete-time plant (8.1)).

Let’s consider the simple case with a scalar plant (n = 1). The plant in (8.1) is
unstable, so A has the magnitude larger than 1. Assume that the initial state x(0) is
within the interval [−1,1]. Here, we say that the system is stable if the state x(k)
remains within this interval for all times. The quantized strategy is as follows: The
quantizer Q (as given in (8.3)) partitions this interval into N subintervals Q j. When
the state x(k) is in the subinterval Q j, the corresponding control q j is applied at that
time, that is,

u(k) = q j if x(k) ∈Q j. (8.5)

We would like to find how large the number N of subintervals should be to keep the
state within the interval [−1,1].

262 H. Ishii

The next result due to Wong and Beckett [56] shows a necessary and sufficient
condition for this problem.

Theorem 8.1. There exists a quantized control law in (8.5) such that the closed-loop
system is stable in the sense that for each initial state x(0), it holds x(k) ∈ [−1,1],
∀k ∈ Z+, if and only if N ≥ |A|, or equivalently,

R≥ log2 |A|. (8.6)

This theorem highlights that, to achieve stabilization via quantized control, the min-
imum data rate depends only on the magnitude of the unstable pole of the plant.
This implies that more unstable systems require more data rate. This is an intuitive
and elegant result showing the presence of a fundamental limitation in networked
control systems.

The proof of this theorem is fairly simple and can be given as follows:

Proof : For the necessity part, consider an interval Q j, j ∈ S . At time k, if the
state x(k) is within this interval, then at the next time k + 1, it should lie in another
interval given by R j := AQ j +q j = {Ax+q j : x ∈Q j}. Note that, compared to the
original interval Q j , the width of this R j, which we denote by |R j|, expands by the
ratio |A| as

|R j|= |A| · |Q j|, j ∈S . (8.7)

However, stability of the closed-loop system implies that this interval R j must still
be contained in [−1,1]. Thus, its width must be no greater than 2:

|R j| ≤ 2, j ∈S . (8.8)

On the other hand, by definition, the intervals Q j, j ∈S , form a partition of [−1,1].
So the total of their widths is 2:

∑
j∈S

|Q j|= 2. (8.9)

Now, adding both sides of (8.7) for all j and then applying (8.9), we observe that

∑
j∈S

|R j|= |A| ∑
j∈S

|Q j|= 2|A|. (8.10)

By (8.8), it is immediate that ∑ j∈S |R j| can be bounded from above as

∑
j∈S

|R j| ≤ 2N. (8.11)

Therefore, from (8.10) and (8.11), we arrive at the inequality that N must be no
smaller than the magnitude of |A|. In terms of bits, this scheme requires at least
log2|A| bits per time step.

8 Feedback Control over Limited Capacity Channels 263

The sufficiency part can be shown by employing a uniform quantizer that parti-
tions [−1,1] to N ≥ |A| subintervals of same widths; the output value q j for each
subinterval should be the mid-point multiplied by−A/B. �
By limiting the discussion to the scalar system case, we have seen the solution to the
minimum data rate problem, stated as Theorem 8.1. The next question of interest is
whether this result can be extended to the general n-dimensional case. It has been
shown also in [56] that by following a similar argument, the necessity part can be
generalized. This will be outlined next.

Consider the plant in (8.1), where the state x(k) is measured. Let X ⊂ R
n be a

bounded set in the state space containing the origin. The control objective here is to
keep the state within this set at all times: x(k) ∈X for k ∈ Z+. The control strategy
is to employ a static quantizer as given in Definition 8.1. In particular, the given set
X is used as the quantizer region, and this set X is partitioned into N cells Q j,
j ∈S . Similarly to the scalar case, the quantized control law is of the form (8.5).

The following theorem is also due to [56].

Theorem 8.2. Under the quantized control law (8.5), the closed-loop system is sta-
ble in the sense that for each initial state x(0) ∈X , it holds x(k) ∈X , ∀k ∈ Z+,
only if N ≥ |detA|, or equivalently,

R≥∑
i

log2 |λ u
i |, (8.12)

where λ u
i denote the unstable eigenvalues of the matrix A.

The result shows that to keep the state within a prespecified bounded set for all
times, the number N of partition sets must be no smaller than the product of the un-
stable eigenvalues of A, that is, the unstable poles of the plant. The inequality (8.12)
is clearly a generalization of (8.6) in Theorem 8.1. The proof is very similar to the
scalar case. Instead of measuring the widths of intervals, we must consider the vol-
umes of the corresponding sets.

What was left unanswered in the work of [56] is whether there exists a con-
trol strategy for the general n-dimensional plant under which stabilization can be
achieved at a data rate arbitrarily close to the lower bound shown in Theorem 8.2.
This problem had led many researchers to look into this field as we will see in the
remaining of this section.

8.3.2 Dynamic Quantizers

Before going into the general data rate problem, we introduce the technique of dy-
namic quantization, which will play an important role later. This was proposed by
Brockett and Liberzon in [6].

In the discussion thus far, the quantizers given by Definition 8.1 have been as-
sumed to be static functions. This means that the resolution of the quantized infor-
mation remains the same throughout the time of the control operation. Clearly, from

264 H. Ishii

Zoom out

Zoom in

Fig. 8.4 Dynamic quantizer: The quantization region X is scaled with c1 < c2

the viewpoint of efficiently using the data rate, this may not be a good strategy. Fur-
thermore, if noise enters the system or if the system lacks robustness, the state x may
go beyond the region X of the quantizer. In such cases, the information regarding
the location of x cannot be obtained.

The basic idea in the dynamic quantizer is to introduce scaling for Q according to
the location of the state. If the uniform quantizer QΔ in (8.2) is employed for a scalar
state x, this can be accomplished by making the step size Δ a time-varying parame-
ter. More generally, given the quantizer Q in (8.3), we introduce a new parameter c
and define the quantizer Qc : cX →{cq j} with scaling by

Qc(x) = cq j if x ∈ cQ j (8.13)

or, equivalently, Qc(x) = cQ
(
x/c). Then, by tuning the parameter c in real time, we

may obtain the state information with resolution required at each moment.
The mechanism is analogous to the zooming in digital cameras and can be de-

scribed as follows (see Figure 8.4): If the state is outside its region, the quantizer
“zooms out” so that the state can be captured within the region. This can be achieved
by increasing the size of c. On the other hand, while the state is inside the region, we
should “hold” the current region and apply the control. Once the state comes close
to the origin, we can “zoom in” by reducing the size of c so that the quantization
resolution becomes finer while the region becomes smaller. Repeating this zooming
in, we can obtain asymptotic stabilization.

In the networked control system in Figure 8.1, the encoder and the controller
should be initialized with the same parameter c for quantization. Then, for both the
encoder and the controller to know which quantizer is being used, the information
to be sent over the channel at each time is the following: The index of the cell in
which the state lies and the state of the quantizer, which is either zoom in, zoom
out, or hold. Note that since the quantizer region is only being scaled, the num-
ber N of the partition cells remains the same (similar to digital cameras, where the
number of pixels does not change). This aspect can further be relaxed, as we will
see next.

8 Feedback Control over Limited Capacity Channels 265

8.3.3 The Solution to the Minimum Data Rate Problem

For the minimum data rate problem, we are now ready to consider the general setup,
where the dynamic quantizers just introduced will become useful. The description
here is mainly based on [53] by Tatikonda and Mitter.

In the system in Figure 8.1, the plant (8.1) is n dimensional and its state x is
measured. For the encoder and the controller, we consider more general classes as
follows. The encoder is a function that takes as inputs, the past and current states x
and the past quantized signals s that were sent over the channel. That is,

s(k) = Ek(x(k), . . . ,x(0),s(k−1), . . . ,s(0)). (8.14)

We denote the number of quantized values at time k by N(k), and thus the number
of possible discrete values is a function of time. As a consequence, we modify the
notion of data rate to that in the asymptotic average sense. This is denoted by R and
is given by

R := limsup
k→∞

1
k

k−1

∑
�=0

log2 N(�) [bits/sample]. (8.15)

This rate R is the time average of the rates used over the time and hence may be any
real number. It is different from the previous data rate notion since the rate R in (8.4)
is fixed at all times and moreover must be an integer.

On the receiver side is the controller that generates the control input based on
only the past quantized information as

u(k) = Kk(s(k−1), . . . ,s(0)). (8.16)

This function can be viewed as a decoding operation.
Under this setup, the data rate results in previous subsections can be generalized.

The following theorem is due to [53] and provides a general solution to the minimum
data rate problem. In particular, it gives a necessary and sufficient condition for
achieving global asymptotic stabilization of the system in Figure 8.1. The condition
is stated in terms of a lower bound on the average data rate R.

Theorem 8.3. There exists a quantized control strategy in the form of (8.14) and
(8.16) such that for each initial state x(0) ∈ R

n, the state x(k) converges to zero
asymptotically if and only if the average data rate R in (8.15) satisfies

R >∑
i

log2|λ u
i |. (8.17)

This is a very general result considering that the classes of encoders in (8.14)
and controllers in (8.16) are so broad. In particular, it shows that there is no control
strategy that can stabilize the plant if the available data rate does not meet this bound.

This result in the deterministic form is due to Tatikonda and Mitter [53]; related
results from the early stage can also be found in, e.g., [46, 3, 36]. Around the same

266 H. Ishii

Dynamic

Quantizer

Plant

EstimatorEstimator

Channel

One-step
ahead

Controller

Fig. 8.5 Controller structure

time, in [42], Nair and Evans developed a stochastic counterpart, where the results
take a similar form as (8.17); there will be more discussion on this later.

The necessity part of the proof essentially follows that of Theorem 8.2. The suffi-
ciency part is proven by construction. That is, given an average data rate R satisfying
the bound in (8.17), an explicit design procedure of a stabilizing control law includ-
ing the quantizer, the transmission scheme, and the controller is given.

We briefly discuss the controller structure proposed in [53] for stabilization under
the data rate condition (8.17). A schematic diagram is shown in Figure 8.5. Through
the channel is sent the quantized signal s(k), the output of the encoder side. This
signal is used to reconstruct the state and in particular to generate its estimate de-
noted by x̂(k). Since the channel is noiseless, this estimate can be obtained on both
sides of the channel. At the controller side, this is used to obtain the control input
as u(k) = Kx̂(k), where the feedback gain K is chosen such that A + BK is a stable
matrix.

On the encoder side, the estimate x̂(k) is utilized to find the state estimate z(k)
of one-step ahead via z(k) = Ax̂(k)+ Bu(k) = (A + BK)x̂(k). Then, the difference
between the estimate z(k) and the new measurement x(k+1) is computed and quan-
tized. The quantizer here is a dynamic one. Its structure is however more involved
than that in (8.13) given earlier. A characteristic aspect is that the quantization re-
gion is designed to be time varying but not just via scaling. This can be realized
without much extra information because its dynamics relies on the model of the
plant; see [53] for details.

We finally remark that in the case of output feedback where the state is not mea-
sured, we can place an observer at the sensor. In the encoding and quantization, the
estimated state that the observer produces should be used instead of the state x(k).
It can be shown that global asymptotic stability can still be achieved under the same
data rate condition given in (8.17).

We have further comments related to the minimum data rate theorem. First, it is
important to note that the minimum data rate can be achieved only in the sense of
average data rate as given in (8.15). Obviously, this is because the bound in (8.17)

8 Feedback Control over Limited Capacity Channels 267

may not take an integer value. Hence, to use a data rate arbitrarily close to the bound,
the original definition of data rate in (8.4) does not suffice.

Second, the stochastic control counterpart has been studied by a number of au-
thors as well [34, 42, 54, 57, 40]. An interesting aspect in the work by Nair and
Evans [42] is that the class of noises and disturbances considered there is more gen-
eral than Gaussian. To achieve mean-square stabilization, exactly the same bound as
in (8.17) has been obtained in terms of the unstable poles of the plant. This means
that the noise statistics do not have any effect as long as stabilization is concerned.
The situation is of course different if we consider the performance of the closed-loop
system.

Finally, we note that the presentation here has been limited to the simple case with
only one channel and a linear plant. In networked systems, we often employ multiple
sensors and controllers that are physically distributed and thus connected by limited
data-rate channels. Results for such cases can be found in, e.g., [52, 58]. Also, quan-
tized control of nonlinear systems has been considered from the networked control
viewpoint; such studies include [11, 37].

8.4 The Coarsest Quantization for Stabilization

In this section, we describe another approach for quantization for networked con-
trol systems. The interest here also centers around control using limited informa-
tion. The viewpoint is however different from that in the previous section for the
minimum data rate theorem. We will find similar implications concerned with the
necessary amount of information for stabilization problems.

In the previous section, we have seen that dynamic quantizers can be power-
ful and are indeed an essential tool for deriving the minimum data rate theorem.
By incorporating the plant model into the encoder, the number of quantized values
has been significantly reduced. Nevertheless, as shown in Figure 8.5, the controller
structure there is cumbersome, requiring heavy computation for state estimation
both on the sender side as well as on the receiver side.

In certain applications, resources for such computation may be costly or even
unavailable. Hence, from the implementation side, it is of interest to employ simpler
schemes. Obvious candidates are the uniform quantizers, which are memoryless. As
mentioned earlier, however, such quantization may require a large data rate because
the resolution is the same for any input value and thus may be unnecessarily fine.
This raises the following question: What is a better way to distribute the quantization
resolution for control purposes?

An interesting approach for the design of memoryless quantizers was proposed
by Elia and Mitter in [15]. It is shown there that to achieve stability via a Lya-
punov approach, a quantizer having the “coarsest” resolution can be characterized.
Such quantization is fine around the origin, but coarse outside. Moreover, a cer-
tain parameter representing the coarseness can be determined by the unstable poles
of the plant. Hence, this result shows another form of fundamental limitation in-
volving control and quantization. This approach has been extended to incorporate

268 H. Ishii

Plant

Controller

Quantizer

Channel

Fig. 8.6 Stabilization via coarsely quantized signals

performance issues based on H2 and H∞ norms in [19], and sampled-data control
results are given in [33, 31, 32].

In this section, we first present the initial results of Elia and Mitter based on [15].
Then, we discuss two recent extensions for networked control with uncertainties:
One result deals with unreliable communication from [55], and the other is for the
case with unknown plants based on adaptive control from [24].

8.4.1 The Coarsest Quantizers

The system setup for this problem is shown in Figure 8.6. The system looks similar
to the one before in Figure 8.1. Again, the plant is discrete-time LTI as in (8.1), and
the state x(k) is measured. The control input u(k) is one dimensional. One difference
is that in the current setting, the controller is on the sensor side and its output is given
by v(k) = Kx(k), where K ∈R

1×n is the state feedback gain. Hence, the signal to be
quantized is the control input as

v̂(k) = Q(v(k)) = Q(Kx(k)). (8.18)

Here, we impose the restriction on the quantizer Q to be memoryless, but it is
allowed to be any piecewise constant function of the form (8.3). In the following
discussion, we will look only at the case where Q has the domain R, resulting in a
countable but infinite number N of quantization levels. Again, the channel is noise-
less with no error or delay (i.e., u(k) = v̂(k)). Thus, the control input is expressed as

u(k) = Q(Kx(k)). (8.19)

We consider stabilization of this system under the notion of quadratic stability
based on a Lyapunov argument. We begin with a given quadratic function V (x) =
xT Px for x ∈ R

n, where the matrix P ∈ R
n×n is positive definite. Under the control

law in (8.19), the closed-loop system is said to be quadratically stable with respect
to V (x) if V (x) becomes a Lyapunov function for the overall system, i.e., it decreases
along the state trajectory as

V (x(k + 1))−V(x(k)) < 0, ∀k : x(k) �= 0.

8 Feedback Control over Limited Capacity Channels 269

Fig. 8.7 Logarithmic quantizer

The inequality above implies that the energy in the system decreases at each time
instant and will eventually become 0. The control law design based on a given V (x)
is a standard technique in nonlinear control using Lyapunov theory (e.g., [35]). We
note that in the linear plant case, for V (x) to be a Lyapunov function, it is necessary
that the matrix P > 0 satisfies the inequality

R := P−AT PA + ATPB(BT PB)−1BT PA > 0 (8.20)

In the interest of reducing the communication rate, we should look for a quantizer
in (8.19) that is coarse. The coarseness of a quantizer Q is measured by how densely
the quantized values are distributed. More specifically, define the density of the
quantizer Q by

dQ := limsup
ε→0

�u[ε]
− lnε

, (8.21)

where �u[ε] denotes the number of quantized values q j in the interval [ε,1/ε]. This
density dQ can be viewed as the average number of quantization levels that Q has in
a certain logarithmic sense.

The problem of finding the coarsest quantizer consists of two steps, which are
formulated as follows: The first step is to find the quantizer Q with the minimum
density dQ subject to quadratic stability of the closed-loop system with respect to
the given quadratic function V (x) = xT Px. The second step is to find the quantizer
that minimizes the density over all quadratic functions.

In this problem, the class of quantizers having the coarsest structure is shown to
be that of the so-called logarithmic quantizers. These have the characteristic that the
width of the partition cell becomes larger away from the origin, and finer closer to
the origin. For the given quadratic function V (x) = xT Px, let the state feedback gain
be K := −BT PA/(BT PB) and let

ρ :=
1 + δ
1− δ with δ :=

√
BT PB

BT PAR−1AT PB
. (8.22)

270 H. Ishii

Fig. 8.8 The sets X (q0) and X0(q0) in the state space

Then, under the control in (8.19), the coarsest quantizer is given by

Q(v) =

⎧
⎪⎨

⎪⎩

qi if v ∈ (ρ+1
2 qi−1,

ρ+1
2 qi

]
,

−qi if v ∈ [− ρ+1
2 qi,− ρ+1

2 qi−1
)
,

0 if v = 0,

(8.23)

where the quantized values are qi = ρ iq0 for i ∈ Z with q0 > 0. This function is pre-
sented in Figure 8.7. In logarithmic quantizers, the key parameter ρ > 1 represents
the expansion ratio, and a large ρ means a coarse quantizer.

The idea in finding the logarithmic quantizer above can be roughly explained as
follows. For simplicity, assume R = I in (8.20). First, take a real value q0 and con-
sider using this particular value for the control as u = q0. Then, we can characterize
the states where the function V (x) will decrease in the next time step. The set of all
such states is given by

X (q0) :=
{

x ∈R
n : V (Ax + Bq0)−V(x) < 0

}
.

It can be shown that this set X (q0) is symmetric about the line spanned by the
gain vector KT ; see Figure 8.8. Now, recall that it is Kx that is quantized. Thus, we
must assign this control value q0 to states contained in the set X (q0) with the form
αKT +β , where α ∈R and β ∈KerK. The largest set X0(q0)⊂X (q0) containing
all such states can be found to be a region between two hyperplanes orthogonal to
KT . In fact, it has the structure

X0(q0) =
{
αKT +β : α ∈ [c0q0,c0ρq0], β ∈ KerK

}

for some c0 > 0. Clearly, the expansion ration ρ appears here. This discussion leads
us to a logarithmic partitioning in the state space by the sets X (±qi), i ∈ Z, which
essentially corresponds to the quantization function that is shown in (8.23).

8 Feedback Control over Limited Capacity Channels 271

1 2 3 4 5 6
0

1

2

3

4

5

6

∏i|λ u
i |

ρ∗

Fig. 8.9 The parameter ρ∗ for the coarsest quantizer versus the product ∏i|λ u
i | of plant un-

stable eigenvalues

The second step in the problem is to maximize the parameter ρ over all quadratic
Lyapunov functions. Formally, this problem is stated as

ρ∗ = sup
P>0

ρ . (8.24)

This problem will definitely give us the coarsest quantizer. A closed form solution
was given in [15]. The following theorem shows that the maximum ρ is determined
only by the product of plant unstable poles.

Theorem 8.4. Consider the plant (8.1) under the quantized control (8.19). The quan-
tizer Q that minimizes the density dQ in (8.21) subject to quadratic stabilization is
given by a logarithmic quantizer in (8.23) whose expansion ratio ρ∗ is given by

ρ∗ =
∏i|λ u

i |+ 1

∏i|λ u
i |−1

, (8.25)

where λ u
i are the unstable eigenvalues of the system matrix A of the plant. In the

corresponding Lyapunov function V (x) = xT Px, the matrix P > 0 is the solution to
the following Riccati equation

AT PA−P− AT PBBT PA
BT PB + 1

= 0.

We remark that the coarsest quantizer specified by ρ∗ in the theorem means that ρ∗
is the supremum of ρ for quadratic stabilization. That is, to obtain quadratic stability
for the closed-loop system, the parameter ρ should be chosen smaller than ρ∗.

This result is illustrated in Figure 8.9, where the relation between the maximum
expansion ratio ρ∗ and the product of the unstable eigenvalues of the plant matrix
A is shown. As the plant becomes more unstable, we need finer quantization to
guarantee quadratic stabilization. The implication is similar to the minimum data

272 H. Ishii

0 10 20 30 40 50 60
−50

0

50

100

 x
2

Time k

0 10 20 30 40 50 60
−100

−50

0

50

 u

Time k

Fig. 8.10 Time responses: The state x2 (top) and the control input u (bottom)

rate result that we have presented earlier, providing another form of limitation in the
context of networked control.

Example 8.3. We present a numerical example to demonstrate the utility of the con-
trol scheme based on the logarithmic quantizer. As the plant, we considered the
second-order system given by

x(k + 1) =
[

0 1
1.8 −0.3

]
x(k)+

[
0
1

]
u(k). (8.26)

The system is unstable and has two poles 1.2 and −1.5. To achieve quadratic sta-
bilization, Theorem 8.4 implies that the maximum coarseness for the logarithmic
quantizer is given by ρ∗ = 3.5. Here, we chose ρ = 3 and, as a result, we obtained
the state feedback gain given by K =

[−1.80 0.520
]
.

In Figure 8.10, the time responses of the state x2 and the quantized control input
u with the initial state x(0) =

[
100 100

]T
are shown. We confirm the closed-loop

stability. The responses decay exponentially, resulting from the quadratic stability
attained by the control scheme. &

8.4.2 The Coarsest Quantizer for Stabilization over Lossy
Channels

In this subsection, we extend the results on the coarsest quantizer and consider
the case where the channel is unreliable and data loss may occur. We show that
the limitation observed for coarse quantization can be generalized. The material is
from [55].

When the reliability of the communication channel is insufficient, packets con-
taining control-related signals may get lost during the transmissions. If this oc-
curs often, the control performance degrades and, even worse, stability may not be

8 Feedback Control over Limited Capacity Channels 273

guaranteed. We employ a packet loss model with the assumption that the probabil-
ity of a loss is constant for all transmissions. That is, for example, 10 percent of the
packets sent do not reach the receiver side. The loss probability will be utilized in
the control scheme as a priori known information. This is clearly one of the most
simple models for unreliable channels (see, e.g., [9]).

In recent years, much attention has been devoted to the research on issues related
to packet losses in networked control. The stochastic stabilization of scalar systems
has been reported in [22], and then state estimation problems have been addressed in
[50]. For controller design, LQ control schemes are given in [27] for remote control
and in [21] for a general network topology setup. Approaches based on H∞ control
are studied in [48, 29].

It is interesting to note that in the presence of probabilistic packet losses, limita-
tions in networked control can be derived. In particular, the following two points are
known: (i) To guarantee stability in a stochastic sense, it is necessary and sufficient
that the loss probability is smaller than a certain critical bound. (ii) This bound de-
pends only on the level of instability of the plant. The objective of this subsection is
to present an extension of the coarsely quantized control approach to the case when
the channels are lossy.

Consider the networked control system in Figure 8.6. The problem setup is almost
the same as in the previous case: The plant is as given in (8.1), where the state x is
measured; on the sensor side is the state feedback K and the memoryless quantizer
Q, and thus the input to the channel is v̂(k) = Q(Kx(k)) as in (8.18).

However, in the current case, the channel is assumed to be unreliable, and the
packet transmitted from the sensor side may not reach the actuator side; when such
a loss occurs, we necessarily have u(k) �= v̂(k). We assume that packet losses occur
with probability α ∈ (0,1) at each time k, independently of other times. The random
process that represents the losses is denoted by θ (k), k ∈ Z+, whose probability
distribution is given by

Prob{θ (k) = i}=

{
α i = 0,

1−α i = 1.
(8.27)

In the case of a loss, the convention is that the control input is set to zero, and
otherwise the received data will be applied. Hence, using the process θ (k), we can
write the control input as u(k) = θ (k)v̂(k)2.

Consequently, the state-space equation of the closed-loop system becomes

x(k + 1) = Ax(k)+ Bθ (k)v̂(k). (8.28)

This system is a nonlinear system with stochastic switching. Hence, as the notion
of stability, we need to employ a stochastic version of quadratic stability defined as

2 We note that, in the case without quantization, other control methods have been studied
in the literature such as using the previous input u(k− 1) if a loss occurs at time k (e.g.,
[28, 38]); however, the results to be presented on stabilization will not change even if such
methods are employed.

274 H. Ishii

follows: For the system (8.28), the origin is said to be stochastically quadratically
stable if there exists a positive-definite function V (x) = xT Px in a quadratic form
and a positive-definite matrix R such that

ΔV := E[V (x(k + 1))|x(k)]−V(x(k))

≤−x(k)T Rx(k), ∀x(k) ∈ R
n. (8.29)

It is known that the condition above is sufficient to guarantee the origin of the sys-
tem (8.28) to be mean-square stable (see, e.g., [8]): For every initial state x(0), it
holds that

lim
k→∞

E
[‖x(k)‖2]= 0. (8.30)

The problem that we consider here is to find the coarsest quantizer such that
the quantized control system with random packet losses in (8.28) is stochastically
quadratically stable. As the measure of coarseness for the quantizer Q, we again
employ the density dQ given in (8.21). Note that this problem is a clear generaliza-
tion of the one in the last subsection; the latter problem is the special case where
the loss probability α is set to zero, and we have seen in Theorem 8.4 the limitation
regarding quantization.

On the other hand, another special case of this problem is when quantization is
not present. That is, in the system in Figure 8.6, v̂(k) ≡ v(k). Then, another form of
limitation in networked control is known for the loss probability α . Note that the
closed-loop system is now linear, which in turn makes the two stability notions of
stochastically quadratic stability and mean-square stability equivalent. It has been
shown in [14, 28] that there exists a state feedback gain K such that the closed-loop
system in (8.28) is mean-square stable if and only if

α <
1

∏i|λ u
i |2

. (8.31)

This obviously implies that from the viewpoint of mean-square stability, there is an
upper bound on the loss probability, having a tight relation with the unstable poles
of the plant. Hence, for more unstable plants, more reliable channels are necessary,
which is a natural and reasonable implication. Related results can be found in [30]
for the case when the controller is remotely located; the bound above is shown to be
critical for the two channels on the sensor and actuator sides.

Going back to the problem of this subsection, we consider the effects of both
quantization and packet losses. Our goal is to clarify the relationship among the
three key parameters: ρ∗, α , and ∏i|λ u

i |. A complete solution to this problem is
provided in the theorem below due to [55].

Theorem 8.5. Consider the quantized control system with unreliable communica-
tion in (8.28). The quantizer Q that minimizes the density dQ in (8.21) subject to
stochastic quadratic stabilization is given by the logarithmic quantizer in (8.23). Its
expansion ratio ρ∗ is expressed as

8 Feedback Control over Limited Capacity Channels 275

ρ∗ =
1 + δ ∗

1− δ ∗ , δ ∗ =

√
1

∏i |λ u
i |2
−α

1−α , (8.32)

where λ u
i are the unstable eigenvalues of the system matrix A of the plant and the

loss probability α is chosen such that the inequality (8.31) holds.

Theorem 8.5 generalizes the two previous results in (8.25) from [15] and (8.31)
from [14, 28]. In particular, just as in the case without packet losses, the coarsest
quantizer is of logarithmic type represented by the maximum expansion ratio ρ∗.

1

2

3

4

5

6

0
0.2

0.4
0.6

0.8
1

1

2

3

4

5

6

α
∏i |λ u

i |

ρ∗

From Theorem 5From Theorem 4

From (31)

Fig. 8.11 The relationship between the product of unstable poles ∏i |λ u
i |, the loss probability

α , and the coarseness ρ∗ of the quantizer

Figure 8.11 summarizes the results mentioned above. The relations in (8.25)
and (8.31) are found, respectively, on the ∏i |λ u

i |–ρ∗ plane and on the ∏i |λ u
i |–α

plane. The curved surface represents (8.32) in Theorem 8.5. It is easy to see that
(8.32) unifies the two previous results. The result also shows a tradeoff between α
and ρ∗, i.e., to achieve closed-loop quadratic stability, high packet loss probabilities
require quantizers with fine resolution and vice versa.

The coarse quantizer obtained above is memoryless and further logarithmic. As
a consequence, the output of the quantizer cannot be transmitted over a finite data
rate channel. Indeed, as seen in the expression in (8.23), the quantizer takes an in-
finite number of values around the origin. Moreover, in the discussion so far, we
have not introduced any constraints on the size of the state and the control input.
In [55], a dynamic quantizer is proposed for achieving stochastic stability based on
the logarithmic quantizer. Though dynamic, this control law has a simple structure
compared to those presented in Section 8.3.3.

Example 8.4. We continue with Example 8.3 in Section 8.4.1. As the plant, we em-
ploy the unstable one in (8.26). In Figure 8.11, this system corresponds to the cross
section obtained by cutting the surface at ∏i |λ u

i |= 1.8. From the upper bound given
in (8.31), we must select a communication channel with a packet loss rate α < 0.31.

276 H. Ishii

0 10 20 30 40 50 60
−50

0

50

100

 x
2

Time k

0 10 20 30 40 50 60
−200

−100

0

100

 u

Time k

Fig. 8.12 Time responses of the system designed for the lossy channel: The state x2 (top) and
the control input u (bottom)

Here, we chose a channel with α = 0.2, in which case, the maximum ρ is about
ρ∗ = 2.17. We took the quantizer parameter as ρ = 2. The proposed method then
yields the feedback gain K =

[−1.80 0.651
]
. Notice that this gain is similar to the

one that was found before.
In Figure 8.12, the sample paths of the state x2 and the quantized control input u

with the same initial state x(0) =
[
100 100

]T
are shown. We confirm the closed-loop

stability. The responses are somewhat oscillatory, but decay almost exponentially.
This good transient is due to the notion of mean-square stability, which takes ac-
count of the control performance in the average sense.

To exhibit the difference from the previous design in Example 8.3, we applied the
control law from there to the current setting with the lossy channel. By simulating
the system under the same loss process as above, the sample paths of x2 and u
shown in Figure 8.13 were obtained. The difference in the performance is clear. The
trajectories for the current case, where the controller does not take account of the
losses, start to oscillate with large magnitudes after about 10 time steps. &

8.4.3 Quantized Adaptive Control for Uncertain Systems

In this subsection, we consider the quantized stabilization of an uncertain system
whose uncertainty bounds are unknown. In particular, we present an extension of
[15] based on adaptive control; the material is from [24]. Under this approach, to
ensure system performance, the controller adjusts its feedback gain as well as the
coarseness in quantization in response to the plant outputs.

The system setup is depicted in Figure 8.14. The plant is LTI with uncertain pa-
rameters. The controller is on the sensor side, and the control input is quantized to be
sent over the channel; we assume that the channel is noiseless, and hence the quan-
tized signal can be fully recovered at actuator side. The quantizer is time varying,
and at each time instant, its parameters are determined and adjusted corresponding

8 Feedback Control over Limited Capacity Channels 277

0 10 20 30 40 50 60
−1000

0

1000

 x
2

Time k

0 10 20 30 40 50 60
−4000

−2000

0

2000

 u

Time k

Fig. 8.13 Time responses of the system designed without accounting for the losses: The state
x2 (top) and the control input u (bottom)

to the updates in the feedback gain. Here, we employ a logarithmic quantizer and
aim at keeping it as coarse as possible at each moment.

The proposed control scheme has three features as follows. First, our adaptive ap-
proach is a generalization of Theorem 8.4 from [15] in that if the system matrices are
completely known, the controller and quantizer coincide with the optimal ones given
Theorem 8.4. Second, the coarseness in quantization is time varying and, in partic-
ular, it must be fine while the controller gain is large, and vice versa. In general, this
implies that systems that are more unstable would require more information for sta-
bilization. This may appear contradictory to the fact that the unknown plant param-
eters, which determine the coarsest quantization levels according to Theorem 8.4,
are constant. However, it is noted that the coarsest quantizer requires a specific gain,
and in the adaptive case, this gain is unknown. Third, since the coarseness of the
quantization varies with time, it is necessary to send over the channel the informa-
tion specifying the quantizer being used. We also note that an adaptive quantized
control method for uncertain nonlinear plants is developed in [25].

From the adaptive control viewpoint, we emphasize that the proposed approach
is Lyapunov-based. In particular, it employs the method of [23], to which without
quantization the scheme in this subsection reduces. This method guarantees Lya-
punov stability of the plant state and the adaptive gain and attraction with respect
to the plant state. We note that such an approach is standard in the continuous-time
case, but for discrete-time systems, recursive least squares and least mean square
algorithms are typically used (e.g., [20]); the primary focus there is on state conver-
gence rather than stability in the sense of Lyapunov.

Problem Settings

We introduce the quantized adaptive control problem for linear uncertain plants.

278 H. Ishii

Plant

Controller

Quantizer

Channel

Fig. 8.14 Quantized adaptive control scheme

Consider the networked control system in Figure 8.14. The state-space equation
of the plant is given by

x(k + 1) = Ax(k)+ Bu(k), (8.33)

where x(k) ∈ R
n is the state, and u(k) ∈ R is the control input. We assume that the

pair (A,B) is stabilizable, but the matrix A is unknown.
The state x(k) is measured and the control input to be quantized is generated

through
v(k) = K(k)x(k), (8.34)

where K(k) is the adaptive feedback gain. Then, the signal v(k) is to be sent over
the channel and quantized via

u(k) = Qk(v(k)). (8.35)

Here, Qk represents the time-varying logarithmic quantizer of the form

Qk(v) =

⎧
⎪⎨

⎪⎩

qi(k) if v ∈ (ρ(k)+1
2 qi−1(k),

ρ(k)+1
2 qi(k)

]
,

−qi(k) if v ∈ [− ρ(k)+1
2 qi(k),− ρ(k)+1

2 qi−1(k)
)
,

0 if v = 0,

(8.36)

where the quantized values are qi(k) = ρ(k)iq0 for i ∈ Z with q0 > 0. Note that the
expansion ratio ρ(k) determines coarseness of the quantizer at time k.

The logarithmic quantizer (8.36) can be viewed as a time-varying sector-bounded
memoryless nonlinearity. Letting

δ (k) :=
ρ(k)−1
ρ(k)+ 1

,

we can write the sector condition for Qk as

(1− δ (k))v2 ≤ Qk(v)v≤ (1 + δ (k))v2, v ∈ R. (8.37)

Thus, the parameter δ (k) specifies the bounds. A notable difference from the static
quantizer case is that the information on the quantizer being used at each time k must

8 Feedback Control over Limited Capacity Channels 279

be shared by both the sensor and the actuator. Here, we realize this by quantizing
δ (k) and then transmitting it over the channel as well. We will later explain more on
how to perform this quantization.

Our objective is to design a stabilizing adaptive controller in the form of (8.34)
and a coarse logarithmic quantizer Qk. We present a control law that ensures stability
of the closed-loop system. Here, the results are limited to the case that the matrix B
is known, but this assumption may be relaxed; for details, see [24].

The system matrix A is unknown under the following assumption: Let A :=
{A + BK(1)

g : K(1)
g ∈ R

1×n}. Assume that there is a known matrix Ã ∈ A in this
set, which may be unstable. This assumption holds for the class of systems in the
controllable canonical form.

The Proposed Control Law

We now provide the design procedure of the adaptive controller and then present the
proposed scheme.

Let R∈R
n×n be a positive-definite matrix and let γ > 0. Find the positive-definite

solution P ∈ R
n×n of the Riccati equation

P = ÃT PÃ+ R− ÃTPB(BT PB)−1BT PÃ (8.38)

with P ≥ I. Such a P always exists. Then, let As := Ã + BK(2)
g with K(2)

g :=
−BT PÃ/(BT PB). This matrix As is stable. Finally, take σ ∈ (0,2).

The proposed adaptive control law is given as

v(k) = K(k)x(k).

Here, the gain K(k) ∈ R
1×n is given by the update law

K(k + 1) = K(k)− σ
1 + xT (k)Px(k)

B†{x(k + 1)−Asx(k)

−B
[
Qk(v(k))− v(k)

]}
xT (k), (8.39)

where B† denotes the pseudo inverse of B. The quantizer Qk in (8.35) is chosen such
that the parameter δ (k) satisfies the inequality

R−2δ (k)2KT (k)BT PBK(k)≥ γI. (8.40)

We can establish closed-loop stability under this adaptive control law as follows.

Theorem 8.6. Consider the linear uncertain system in (8.33), where A ∈ R
n×n is an

unknown matrix, but Ã ∈A is known. Then, the adaptive control law given above
guarantees that the solution (x(k),K(k)) ≡ (0,Kg), where Kg := −BT PA/(BT PB),
of the closed-loop system is Lyapunov stable. Furthermore, x(k)→ 0 as k→ ∞ for
each initial state x(0) ∈ R

n.

280 H. Ishii

Fig. 8.15 Sector bounds for a time-varying logarithmic quantizer

This theorem shows that the solution (x(k),K(k))≡ (0,Kg) of the overall closed-
loop system is Lyapunov stable and that the state x(k) converges to the origin. This
stability notion is known as partial asymptotic stability. The convergence of the gain
K(k) follows from (8.39) though the gain may not go to Kg.

We have several remarks on the adaptive quantization scheme. As shown
in (8.37), the coarseness in quantization is determined by the sector bounds and
in particular the parameter δ (k). This must be chosen so that the bound in (8.40)
holds at all times. In (8.40), we observe that quantization must be fine while the
controller gain is large, and vice versa. This is in contrast to the nonadaptive case
in the previous subsections, where specific gains are used for a known system to
maximize the coarseness in quantization.

To meet the requirement in (8.40), the information regarding δ (k) must be com-
municated to the actuator side and hence must also be quantized. A simple scheme
for this quantization is to employ a logarithmic one as follows (see Figure 8.15): Let
δ (k) take values of the form μ−� with � ∈ Z+ and μ > 1. Then, (8.40) can always
be satisfied since δ (k) can be arbitrarily small. In this scheme, it suffices to send the
index � over the channel.

The theorem has a close connection with the result in Section 8.4.1 in the special
case when perfect knowledge of the plant is available. This can be seen as follows.
Since the plant is known, we may take Ã = A and thus

K(k)≡ Kg =−BT PA/(BT PB), (8.41)

where P is the solution of the Riccati equation (8.38). Then, with σ = 0, the update
law (8.39) of the gain becomes unnecessary. Further, in this case, the sector condi-
tion (8.40) can be relaxed to R− δ 2KT

g BT PBKg > 0. By (8.41), this condition can
be rewritten to provide the maximum value of δ as

δ =

√
BT PB

BT PAR−1AT PB
. (8.42)

8 Feedback Control over Limited Capacity Channels 281

0 10 20 30 40 50 60
−100

0

100

200

 x
2

Time k

0 10 20 30 40 50 60
−200

−100

0

100

 u

Time k

Fig. 8.16 Time responses: The state x2 (top) and the control input u (bottom)

This is precisely the result given in (8.22). characterizing the coarsest possible quan-
tizer for the given matrices A, B, and R. Moreover, it is shown there that properly
choosing R in (8.42) further leads to the coarsest possible quantizer, which is deter-
mined solely by the unstable eigenvalues of A.

Example 8.5. We present a numerical example to demonstrate the utility of the pro-
posed adaptive control scheme. We consider the same plant (8.26) in Example 8.3:

x(k + 1) =
[

0 1
−a0 −a1

]
x(k)+

[
0
1

]
u(k),

where the parameters a0 and a1 are assumed to be unknown. The true values are
a0 = −1.8 and a1 = 0.3. Since the plant is in the controllable canonical form, we
may take Ã ∈A as

Ã = A + BK(1)
g =

[
0 1
θ0 θ1

]
with K(1)

g =
[
θ0 + a0 θ1 + a1

]
,

where θ0, θ1 ∈ R can be arbitrary. Here, we chose them as θ0 = −0.167 and θ1 =
0.833. In the design of the quantized adaptive controller, we chose R = I, σ = 0.6,
and γ = 0.25. The coarseness of the quantizer is determined via the parameter δ (k),
which is quantized and takes discrete values as

δ (k) = 1.1−�(k) with �(k) ∈ Z+. (8.43)

Figure 8.16 shows the time responses of x2(k) and the control input u(k) with
the initial conditions x(0) = [100 100]T and K(0) = [0 0]. Furthermore, Figure 8.17
displays the responses of the gains, where K(k) = [K1(k) K2(k)], as well as the
expansion ratio ρ(k). It is interesting to note that the gain K(k) converges as
limk→∞K(k) = [−1.80 0.138]; this final vector takes a similar form as the gains
used in earlier examples in Sections 8.4.1 and 8.4.2. Further, it can be seen that ρ(k)

282 H. Ishii

0 10 20 30 40 50 60
−2

−1

0

1

 K
1, K

2
Time k

0 10 20 30 40 50 60
0

10

20

30

ρ

Time k

Fig. 8.17 Time responses: The gains K1 (top: solid line), K2 (top: dashed line) and ρ (bottom)

remains large for several time steps in the beginning, but then it gradually decreases.
This shows that the communication rate for control is low while the adaptive gains
are small. The final value of ρ(k) is 1.63. In view of the earlier examples, this value
is not small. We also note that for the quantized values of δ (k), the parameter �(k)
in (8.43) ranged between 1 and 15. &

8.5 Information Theoretic Approach to Bode’s Integral
Formula

This section presents the second part of the chapter and is mainly based on [43].
It outlines an approach to the so-called Bode’s integral formula using information
theory.

For a long time, the close relation between control theory and information theory
has been pointed out. Indeed, both theories are concerned with signals and dynam-
ical systems in general. However, the difference lies in the target applications as
well as the approaches. While information theory focuses on signals involved in
communication systems, control theory deals more with feedback control from the
viewpoint of systems, representing the relation between their inputs and outputs.

The recent attention devoted to networked control has motivated studies on the in-
teractions of the two theories. On the one hand, as we have seen in earlier sections,
notions from information theory play essential roles in the context of networked
control. In particular, the notions of channel capacities and communication rates
have been employed in order to quantify the amount of information required for the
stabilization of feedback control systems over channels. On the other hand, some
problems in information theory can be considered as control problems. The work
of [13] shows that the design of an optimal encoder and decoder pair for a com-
munication scheme based on feedback can be reduced to the design of a feedback
controller.

8 Feedback Control over Limited Capacity Channels 283

Fig. 8.18 Discrete-time feedback control system

The information theoretic approach has the characteristic of focusing on signals
rather than the input-output relations of systems. As a consequence, in certain cases,
we may impose fewer assumptions on systems, which then enables us to generalize
conventional control results limited to, e.g., LTI systems. One such result can be
found in [39], where a sensitivity property of feedback systems is analyzed using
information theory; a fundamental limitation of sensitivity functions is presented in
relation to the poles of the plants.

In this section, we present a characterization a complementary sensitivity prop-
erty in a feedback system by measuring the entropy of the signals. In particular,
following the approach of [39], we derive a limitation of the complementary sensi-
tivity function with respect to the unstable zeros of the open-loop system. This result
corresponds to Bode’s integral formula for the complementary sensitivity [51].

We emphasize that the advantage of this information theory based approach, as
exhibited in [39], is that it is capable to consider general nonlinear systems in the
closed loop. This means that networked systems consisting of nonlinear elements
such as encoders and decoders can be dealt with. Hence, the approach will lead us
to a networked control version of Bode’s integral formula where channel capacity is
critical. The discussion in this section is, however, limited to the linear case for the
ease of presentation; general nonlinear extensions can be found in [44].

8.5.1 Bode’s Integral Formula for Complementary Sensitivity
Functions

We briefly introduce Bode’s integral formula for the discrete-time system case. This
famous formula first derived by Bode is for the case of the sensitivity function [5].
Consider the feedback system depicted in Figure 8.18. Suppose that the open-loop
system L is discrete time, single-input single-output, LTI, strictly proper, and sta-
ble. Let its transfer function be L(z). The sensitivity function S(z) is then given by
S(z) := 1/(1 + L(z)).

Bode’s integral formula shows that if the closed-loop system is stable, then it
holds that

1
2π

∫ π

−π
log2 |S(e jω)|dω = 0.

284 H. Ishii

This formula clarifies that the integration of the logarithm of the sensitivity gain
over all frequencies is a constant, and in fact it is always zero. This equality exhibits
a form of fundamental limitations in feedback systems. Due to its significance, the
formula has been generalized by various researchers (e.g., [18, 59, 49]).

Complementary sensitivity functions are equally important, and the constraint
corresponding to Bode’s formula for this case is given in [51]. We describe this case
next. For the open-loop system L in Figure 8.18, let its state-space representation be
given by

x(k + 1) = Ax(k)+ Be(k)
y(k) = Cx(k),

(8.44)

where x(k) ∈ R
n is the state, y(k) ∈ R is the output, r(k) ∈ R is the reference input,

and e(k) ∈ R is the error signal. Denote by ν the relative degree of the transfer
function L(z); this satisfies ν ≥ 1. Then, letting D0 := CAν−1B, we have that D0 is
nonzero and is equal to the ratio of the leading coefficients of L(z). Also, define the
set of unstable zeros of L(z) as U Z L := {z |L(z) = 0, |z| ≥ 1}.

Let T (z) be the complementary sensitivity function: T (z) := L(z)/(1 + L(z)).
Bode’s formula corresponding to this function is as follows [51].

Proposition 8.1. If the closed-loop system in Figure 8.18 is stable, then the com-
plementary sensitivity function T (z) satisfies

1
2π

∫ π

−π
log2 |T (e jω)|dω = ∑

β∈U Z L

log2 |β |+ log2 |D0|. (8.45)

This result shows that in the complementary sensitivity case, the integral of the
gain over the whole frequency range is constrained by the unstable zeros. This rela-
tion can be established by applying Jensen’s formula from complex analysis. In what
follows, we derive a constraint similar to (8.45), independently from this method, by
evaluating the entropies and mutual information of signals in the feedback system.

8.5.2 Entropy and Mutual Information

We introduce some notation and basic results from information theory that will be
used later [9].

We adopt the following notation. For a stochastic process {x(k)}∞k=0, the se-
quence of random variables from k = � to k = m (m ≥ �) is represented by xm

� :=
{x(k)}m

k=�. In particular, when � = 0, we write xm
� simply as xm. When clear from the

context, x is used instead of {x(k)}∞k=0.
Entropy represents a measure of uncertainty of a random variable. For a continu-

ous random variable x ∈R with the probability density function px, its (differential)
entropy h(x) is defined by

h(x) :=−
∫

R

px(ξ) log2 px(ξ)dξ .

8 Feedback Control over Limited Capacity Channels 285

Given two random variables, mutual information provides a measure of the
amount of information contained in one random variable about the other. The mutual
information I(x;y) between x ∈ R and y ∈ R is defined as

I(x;y) := h(x)−h(x|y),

where h(·|·) denotes the conditional entropy.
For stochastic processes, entropy rates play a key role in our analysis. The entropy

rate of the process x is the time average of the entropies of its truncated processes
xk−1 given by

h∞(x) := limsup
k→∞

h(xk−1)
k

.

The random processes appearing in this section belong to the following class;
see [39] and also [45]. Consider a zero-mean stochastic process x (x(k) ∈ R). This
process x is said to be asymptotically stationary if the following limit exists for every
γ ∈ Z:

Rx(γ) := lim
k→∞

E [x(k)x(k + γ)] .

Further, for an asymptotically stationary process x, define the asymptotic power
spectral density Sx as

Sx(ω) :=
∞

∑
γ=−∞

Rx(γ)e− jγω .

The following inequality provides a relation between the entropy rate and the
asymptotic power spectral density. For an asymptotically stationary process x, it
holds that

h∞(x)≤ 1
4π

∫ π

−π
log2(2πeSx(ω))dω . (8.46)

The equality holds if, in addition, x is a Gaussian process.

8.5.3 Characterization of Complementary Sensitivity Properties

Consider the system depicted in Figure 8.18. Suppose that the input r is a stochas-
tic process. We characterize the complementary sensitivity property from r to y by
evaluating the entropy of signals.

Here, it is assumed that the feedback system is stable in the mean-square sense,
that is, supk E[x(k)T x(k)] < ∞. We further assume that rk and x(0) are independent
for every k ∈ Z+. Moreover, regarding the initial state x(0), we assume |h(x(0))|<
∞. This implies that x(0) is neither completely known nor completely unknown.

286 H. Ishii

Fig. 8.19 Equivalent system with the biproper system L0

As we will see later, this assumption is characteristic to the information theoretic
approach.

Since we deal with asymptotically stationary processes, we introduce a comple-
mentary sensitivity-like property using the asymptotic power spectral densities of
the input and output of T . Specifically, if r and y are asymptotically stationary, then
the complementary sensitivity-like function T is given by

T (ω) :=

√
Sy(ω)
Sr(ω)

.

This complementary sensitivity-like function T (ω) can be related to the transfer
function T (z), if the initial state is x(0) = 0, as T (ω) =

∣
∣T (e jω)

∣
∣. This can be shown

by the well-known relation between an LTI system with a stable transfer function
and the power spectral densities of its input and output signals [45]. We however
note that, in this case, x(0) is deterministic and thus its entropy is h(x(0)) = −∞.
This means that the assumption |h(x(0))| < ∞ is not satisfied. In this respect, the
problem setup of this paper is different from that based on transfer functions.

We consider the property of T instead of T and will obtain a constraint similar
to (8.45). The derivation will be carried out in three steps.

Step 1: Conservation Law of Entropies

Because of the relation given in (8.46), power spectral densities can be expressed
in terms of entropy rates. Hence, we first analyze the relation between the entropy
rates h∞(r) and h∞(y) of the input and output of T .

First, we have to consider how at each time k, the entropy h(r(k)) of the input
r(k) affects h(y(k)). However, since the open-loop transfer function L(z) is strictly
proper, there is time delay of ν steps due to the relative degree of L. Hence, r(k)
has an influence on the output y only after time k +ν . To deal with this problem, we
introduce the auxiliary system L0(z) := zνL(z) by adding a time forward element
of ν steps. Also, let y+(k) := y(k + ν), i.e., it is the output y(k) forwarded by ν
steps. By using L0 and y+, the system in Figure 8.18 can be expressed as that in
Figure 8.19.

Now, we obtain the following proposition.

8 Feedback Control over Limited Capacity Channels 287

Fig. 8.20 Equivalent system with the inverse system L̂0 of L0

Proposition 8.2

h(yk+ν
ν) = h(rk)+ I(yk+ν

ν ;x(0))+ (k + 1) log2 |D0|. (8.47)

This result shows a conservation law of entropy between r and y. Intuitively, one
can understand that log2 |D0| reflects the scaling caused by the input r going through
the system L. Moreover, I(yk+ν

ν ;x(0)) shows the effect of the initial state x(0), which
can be viewed as an external input entering y.

Next, we arrive at an inequality relating the entropy rates of r and y. Divide (8.47)
by k + 1 and take the limsup as k→ ∞ on both sides to obtain

h∞(y)≥ h∞(r)+ log2 |D0|+ liminf
k→∞

I(yk+ν
ν ;x(0))

k
. (8.48)

Step 2: Mutual Information and Unstable Zeros

In the next step, we relate the mutual information term in (8.48) and the unstable
zeros of the open-loop transfer function L(z).

Mutual information is a quantity in the time domain, and thus it is difficult to
show its connection with zeros of a transfer function. Hence, we take an approach to
view the zeros of L as the poles of the inverse system of L. Poles are easier to analyze
because they can be expressed as the eigenvalues of the state matrix of the system.
However, we must note that the inverse system of L is improper. For this reason, we
consider the inverse system of the biproper system L0 that was introduced earlier.
Let L̂0 denote the inverse of L0. The system in Figure 8.19 can then be converted to
that in Figure 8.20.

Using this system, we obtain the following result.

Proposition 8.3. For the system depicted in Figure 8.20, the following inequality
holds:

liminf
k→∞

I(yk+ν
ν ;x(0))

k
≥ ∑

β∈U Z L

log2 |β |. (8.49)

This proposition exhibits that the output y and the initial state x(0) have the mu-
tual information which is a function of the unstable zeros of L. In general, from the
viewpoint of the open-loop system L, when the system is unstable, the system am-
plifies the initial state at a level depending on the size of the unstable poles. Hence,

288 H. Ishii

the proposition can be interpreted as saying that in systems having more unstable
dynamics, the output y contains more information about the initial state.

Furthermore, we note that if the initial condition x(0) is exactly known, then from
the definition of mutual information, it follows that I(yk+ν

ν ;x(0)) = 0 for all k. In
this case, the lower bound in (8.49) would be replaced with zero, which is obviously
more conservative. Hence, we see that in the proposition above, the assumption
|h(x(0))|<∞ is critical in order to keep the dependence of the bound on the unstable
poles.

Step 3: Complementary Sensitivity Property

Based on the results in Steps 1 and 2, we are ready to present the main result regard-
ing the complementary sensitivity-like function T .

Theorem 8.7. Consider the system depicted in Figure 8.18. Assume that the system
is stable in the mean-square sense and that the input r is an asymptotically stationary
Gaussian process. Then, T satisfies the following inequality:

1
2π

∫ π

−π
log2

∣
∣T (jω)

∣
∣dω ≥ ∑

β∈U Z L

log2 |β |+ log2 |D0|. (8.50)

Comparing the formulae (8.45) and (8.50), we observe that similar results are
derived via two independent methods. Theorem 8.7 is a weaker result than Propo-
sition 8.1 in the sense that the constraint is an inequality. We however note that
the entropy rate of a signal is a notion in the time domain and thus can be defined
for systems which do not have transfer function forms. This generalization is an
important consequence of the information theoretic approach here.

As discussed earlier, the approach based on information theory is useful for fur-
ther extensions to NCSs with capacity constraints. In fact, in [39], an integral-type
constraint for the case of sensitivity property with an LTI plant and an arbitrary
causal nonlinear controller is given. Such a controller may be composed of encoders,
decoders, and channels under noise, thus leading us to a networked control version
of Bode’s formula.

For the complementary sensitivity case, such systems including nonlinear con-
trollers have been studied in [44]. We however remark that the nonlinear extension
is not straightforward. The reason can be explained as follows. In the complemen-
tary sensitivity case, for the input r(k) at time k to reach the output y(k), it must go
through the system L. Hence, it is necessarily subject to the scaling caused by L. For
the sensitivity case (from r(k) to e(k)), this scaling is simply −1, which makes the
analysis easier.

8.6 Conclusion

In this chapter, motivated by the new applications in NCSs, we have presented sev-
eral approaches involving both control and communication and in particular control

8 Feedback Control over Limited Capacity Channels 289

methods taking account of capacity constraints. We have shown recent theoretical
results exhibiting fundamental limitations arising in networked control.

The first and the main part has been devoted to control problems with quanti-
zation, where the focus is on reducing the amount of communication as much as
possible. Fundamental results on the minimum data rate for stabilization have been
first highlighted with some historical backgrounds. Then, the quantized control ap-
proach based on the notion of coarsest quantizers has been discussed along with
several variants considering uncertainties in the channel as well as in the plant.

The second part has dealt with a control analysis method by employing tools from
information theory. Here, we have provided an extension of Bode’s integral formula,
by measuring the entropy of the signals within control systems. Though the results
as presented do not involve communication channels explicitly, it is stressed that
they have been obtained with a clear motivation from NCSs.

There are several interesting directions for future research. One is towards more
decentralized and distributed control strategies for networked control employing
multiple controllers communicating to each other; this direction is also related to the
area of multi-agent systems and cooperative control; see, e.g., [2, 7]. Another direc-
tion is to further explore the information theoretic approach for networked control
problems.

References

1. Special Section on Complex Networked Control Systems. IEEE Control Systems Maga-
zine, 27(4) (2007)

2. Antsaklis, P.J., Baillieul, J. (Guest eds.): Special Issue on the Technology of Networked
Control Systems. Proc. IEEE 95(1) (2007)

3. Baillieul, J.: Feedback designs in information-based control. In: Pasik-Duncan, B. (ed.)
Stochastic Theory and Control. LNCIS, vol. 280, pp. 35–57. Springer, Berlin (2002)

4. Bertram, J.E.: The effect of quantization in sampled-feedback systems. Trans. Amer.
Inst. Elec. Engineers 77(2), 177–182 (1958)

5. Bode, H.W.: Network Analysis and Feedback Amplifier Design. D. Van Nostrand, New
York (1945)

6. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE
Trans. Autom. Control 45, 1279–1289 (2000)

7. Bullo, F., Cortés, J., Piccoli, B., (Guest eds.): Special Issue on Control and Optimization
in Cooperative Networks. SIAM J. Contr. Optim. 48(1) (2009)

8. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Sys-
tems. Springer, London (2005)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
10. Curry, R.E.: Estimation and Control with Quantized Measurements. MIT Press, Cam-

bridge (1970)
11. De Persis, C.: n-bit stabilization of n-dimensional nonlinear systems in feedforward

form. IEEE Trans. Autom. Control 50, 285–297 (2005)
12. Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans.

Autom. Control 35, 916–924 (1990)
13. Elia, N.: When Bode meets Shannon: Control-oriented feedback communication

schemes. IEEE Trans. Autom. Control 49, 1477–1488 (2004)

290 H. Ishii

14. Elia, N.: Remote stabilization over fading channels. Systems & Control Letters 54, 238–
249 (2005)

15. Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE
Trans. Autom. Control 46, 1384–1400 (2001)

16. Fagnani, F., Zampieri, S.: Quantized stabilization of linear systems: Complexity versus
performance. IEEE Trans. Autom. Control 49, 1534–1548 (2004)

17. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems,
5th edn. Prentice Hall, Uppersaddle River (2006)

18. Freudenberg, J.S., Looze, D.P.: Frequency Domain Properties of Scalar and Multivari-
able Feedback Systems. Springer, Berlin (1988)

19. Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans.
Autom. Control 50, 1698–1711 (2005)

20. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice Hall, En-
glewood Cliffs (1984)

21. Gupta, V., Dana, A.F., Hespanha, J.P., Murray, R.M.: Data transmission over networks
for estimation and control. IEEE Trans. Autom. Control 54, 1807–1819 (2009)

22. Hadjicostis, C.N., Touri, R.: Feedback control utilizing packet dropping network links.
In: Proc. 41st IEEE Conf. on Decision and Control, pp. 1205–1210 (2002)

23. Hayakawa, T., Haddad, W.M., Leonessa, A.: A Lyapunov-based adaptive control frame-
work for discrete-time nonlinear systems with exogenous disturbances. Int. J. Control 77,
250–263 (2004)

24. Hayakawa, T., Ishii, H., Tsumura, K.: Adaptive quantized control for linear uncertain
discrete-time systems. Automatica 45, 692–700 (2009)

25. Hayakawa, T., Ishii, H., Tsumura, K.: Adaptive quantized control for nonlinear uncertain
systems. Systems & Control Letters 58, 625–632 (2009)

26. Hristu-Varsakelis, D., Levine, W.S. (eds.): Handbook of Networked and Embedded Con-
trol Systems. Birkhäuser, Boston (2005)

27. Imer, O.Ç., Yüksel, S., Başar, T.: Optimal control of LTI systems over unreliable com-
munication links. Automatica 42, 1429–1439 (2006)

28. Ishii, H.: Stabilization under shared communication with message losses and its limita-
tions. In: Proc. 45th IEEE Conf. on Decision and Control, pp. 4974–4979 (2006) See
also arXiv:0806.3609

29. Ishii, H.: H∞ control with limited communication and message losses. Systems & Con-
trol Letters 57, 322–331 (2008)

30. Ishii, H.: Limitations in remote stabilization over unreliable channels without acknowl-
edgements. Automatica 45, 2278–2285 (2009)

31. Ishii, H., Başar, T.: Remote control of LTI systems over networks with state quantization.
Systems & Control Letters 54, 15–31 (2005)

32. Ishii, H., Başar, T., Tempo, R.: Randomized algorithms for quadratic stability of quan-
tized sampled-data systems. Automatica 40, 839–846 (2004)

33. Ishii, H., Francis, B.A.: Limited Data Rate in Control Systems with Networks. LNCIS,
vol. 275. Springer, Berlin (2002)

34. Ishii, H., Ohyama, C., Tsumura, K.: Performance analysis of control systems under lim-
ited data rates. Trans. SICE 44, 396–404 (2008)

35. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Uppersaddle River (1996)
36. Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans.

Autom. Control 48, 304–307 (2003)
37. Liberzon, D., Nesic, D.: Input-to-state stabilization of linear systems with quantized state

measurements. IEEE Trans. Autom. Control 52, 767–781 (2007)

8 Feedback Control over Limited Capacity Channels 291

38. Ling, Q., Lemmon, M.D.: Power spectral analysis of networked control systems with
data dropouts. IEEE Trans. Autom. Control 49, 955–960 (2004)

39. Martins, N.C., Dahleh, M.A., Doyle, J.C.: Fundamental limitations of disturbance at-
tenuation in the presence of side information. IEEE Trans. Autom. Control 52, 56–66
(2007)

40. Matveev, A.S., Savkin, A.V.: Estimation and Control over Communication Networks.
Birkhäuser, Boston (2008)

41. Nair, G., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data constraints:
An overview. Proc. IEEE 95(1), 108–137 (2007)

42. Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback
date rates. SIAM J. Contr. Optim. 43, 413–436 (2004)

43. Okano, K., Hara, S., Ishii, H.: Characterization of a complementary sensitivity property
in feedback control: An information theoretic approach. Automatica 45, 504–509 (2009)

44. Okano, K., Ishii, H., Hara, S.: Sensitivity analysis of networked control systems via an
information theoretic approach. In: Proc. 47th IEEE Conf. on Decision and Control, pp.
3360–3365 (2008)

45. Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th
edn. McGraw Hill, New York (2002)

46. Petersen, I.R., Savkin, A.V.: Multi-rate stabilization of multivariable discrete-time linear
systems via a limited capacity communication channel. In: Proc. 40th IEEE Conf. on
Decision and Control, pp. 304–309 (2001)

47. Renesas Technology Corp., http://www.renesas.com/
48. Seiler, P., Sengupta, R.: An H∞ approach to networked control. IEEE Trans. Autom.

Control 50, 356–364 (2005)
49. Seron, M.M., Braslavsky, J.H., Goodwin, G.C.: Fundamental Limitations in Filtering

and Control. Springer, London (1997)
50. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.:

Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49, 1453–
1464 (2004)

51. Sung, H., Hara, S.: Properties of complementary sensitivity function in SISO digital
control systems. Int. J. Control 50(4), 1283–1295 (1989)

52. Tatikonda, S.: Some scaling properties of large distributed control systems. In: Proc.
42nd IEEE Conf. on Decision and Control, pp. 3142–3147 (2003)

53. Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Au-
tom. Control 49, 1056–1068 (2004)

54. Tatikonda, S., Sahai, A., Mitter, S.K.: Stochastic linear control over a communication
channel. IEEE Trans. Autom. Control 49, 1549–1561 (2004)

55. Tsumura, K., Ishii, H., Hoshina, H.: Tradeoffs between quantization and packet loss in
networked control of linear systems. Automatica 45, 2963–2970 (2009)

56. Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints
II: Stabilization with limited information feedback. IEEE Trans. Autom. Control 44,
1049–1053 (1999)

57. Yüksel, S., Başar, T.: Minimum rate coding for LTI systems over noiseless channels.
IEEE Trans. Autom. Control 51, 1878–1887 (2006)

58. Yüksel, S., Başar, T.: Optimal signaling policies for decentralized multi-controller sta-
bilizability over communication channels. IEEE Trans. Autom. Control 52, 1969–1974
(2007)

59. Zhang, G., Iglesias, P.A.: Nonlinear extension of Bode’s integral based on an
information-theoretic interpretation. Systems & Control Letters 50, 11–19 (2003)

http://www.renesas.com/

Chapter 9
Event-Triggered Feedback in Control,
Estimation, and Optimization

Michael Lemmon

Abstract. Networked control systems often send information across the commu-
nication network in a periodic manner. The selected period, however, must assure
adequate system performance over a wide range of operating conditions and this
conservative choice may result in significant over-provisioning of the communi-
cation network. This observation has motivated the use of sporadic transmission
across the network’s feedback channels. Event-triggering represents one way of
generating such sporadic transmissions. In event-triggered feedback, a sensor trans-
mits when some internal measure of the novelty in the sensor information ex-
ceeds a specified threshold. In particular, this means that when the gap between
the current and the more recently transmitted sensor measurements exceeds a state-
dependent threshold, then the information is transmitted across the channel. The
state-dependent thresholds are chosen in a way that preserves commonly used sta-
bility concepts such as input-to-state stability or L2 stability. This approach for
threshold selection therefore provides a systematic way of triggering transmissions
that provides some guarantees on overall control system performance. While early
work in event-triggering focused on control applications, this technique can also be
used in distributed estimation and distributed optimization. This chapter reviews re-
cent progress in the use of state-dependent event-triggering in embedded control,
networked control systems, distributed estimation, and distributed optimization.

9.1 Introduction

Embedded and networked control systems often rely on the periodic sampling and
transmission of data. This periodic data abstraction is advantageous from the de-
sign standpoint. It permits real-time system engineers and control system engineers
to pursue their design objectives in relative isolation from each other. While this

Michael Lemmon
University of Notre Dame, Notre Dame, Indiana, USA
e-mail: lemmon@nd.edu

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 293–358.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

lemmon@nd.edu

294 M. Lemmon

so-called separation-of-concerns has proven advantageous from a designer’s per-
spective, it does not necessarily lead to cost effective implementations of the control
system. By separating the concerns of the control engineer from the real-time sys-
tem engineer, one forces each designer to adopt a conservative viewpoint that may
lead to unnecessary over-provisioning in the system implementation and hence to
higher system costs. When one applies these traditional design principles to ex-
tremely large-scale systems, then the cost of enforcing the periodic data abstraction
may become prohibitive.

As a result of these scaling issues, there has been recent interest in developing
co-design frameworks where the concerns of real-time systems and control systems
engineers are treated in a unified manner. One of the first statements of the co-
design problem was given by Seto et al. [66]. This work presented co-design as
an optimization problem that sought to minimize a traditional quadratic integral
measure of control cost subject to task schedulability constraints. Seto’s problem
was an off-line design approach since the optimization problem was solved prior
to system deployment. Since that time, a number of other co-design approaches
have been suggested. A number of promising methods were listed in a paper by
Arzen et al. [3]. Since that time a number of research scientists have investigated the
methods on this list. These methods include feedback modification of task attributes
[8, 45, 9, 12], anytime controllers [7, 21], and event-triggered sampling [2, 70, 83].

One approach to co-design involves adjusting task attributes through feedback.
An example of this is found in the elastic scheduling method [8] of Buttazzo et al.
This method uses measured task execution times to adaptively adjust task periods.
Lu et al. [45] presented a feedback control approach to real-time scheduling. This
idea was later applied to the scheduling of control tasks by Caccamo et al. [9] and
Cervin et al. [12]. This work clearly demonstrated that feedback control principles
could be used to reduce the sensitivity of real-time systems to uncertainties in con-
trol task period, jitter, and execution time. The reduction in real-time system sensi-
tivity also leads to improved control system performance, since one no longer needs
to design the real-time system for the worst-case variation in jitter and execution
time.

While these early schemes used feedback about the real-time system’s perfor-
mance to adjust task attributes, this feedback was not directly based on the control
system’s measured performance. A more direct link between real-time system and
control system performance will be found in recent work examining anytime con-
trollers and event-triggered sampling. Anytime controllers are control systems that
adjust their structure based on the performance of the real-time system [7, 21]. In
other words, if the real-time system becomes overloaded, then the application will
select a less complex (though stabilizing) controller to execute. In this way, the con-
troller’s performance is directly tied in an intelligent way to the real-time system’s
performance.

Event-triggered controllers, on the other hand, adapt the real-time system’s task
period directly in response to the application’s performance [2] . Under event-
triggering the control task is only executed when the application’s error signal
exceeds a specified threshold. Ostensibly, this error provides a measure of how

9 Event-Triggered Feedback in Control, Estimation, and Optimization 295

valuable the current state is to the overall system’s closed-loop behavior. In this way
the real-time system is only used when it is essential for maintaining the system’s
performance. Since the system state is always changing, this approach generates a
sporadic sequence of controller invocations. In general, the hope is that the aver-
age rate of this sporadic task set will be much lower than the rate of a comparable
periodic task set.

There is experimental evidence to support the assertion that event-triggered feed-
back improves overall control system performance while reducing the real-time sys-
tem’s use of computational resources. Two examples are shown in figure 9.1 which
shows results from [4] and [63, 65].

The left-hand plot in figure 9.1 shows a plot from [4]. This paper considers a
controlled scalar diffusion process of the form,

dx = axdt + udt + dw,

where a is a real constant and w is a standard Brownian motion. The signal u is the
control signal generated by a full-state controller. This control is computed in either
a periodic or event-triggered manner. Under event-triggering, the control is updated
whenever the state magnitude, |x|, exceeds a specified threshold. The performance
of the system is characterized by the steady-state variance of the system state. The
variance of the periodically triggered system is denoted as VR whereas the variance
of the event-triggered system is denoted as VL. The left-hand plot in figure 9.1 plots
the ratio VR/VL as a function of the mean sampling period, T . Note that for all
choices of the system constant, a, this performance ratio is greater than one, thereby
showing that the event-triggered system has better performance than periodically
triggered systems operating at the same mean sampling period.

The right-hand side of figure 9.1 shows another example in which an event-
triggered system demonstrates lower usage of computational resources. This result
is taken from [63, 24] which considers the control of a linear plant under a PID

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

10

8

7

6

5

4

3

2

1

9

V
R

 /
 V

L

Mean Sample Period (T)

a=1

a=0

a=-1

[Astrom 02]

0 2 4 6 8 10−5

0

5
x 10

−3

E
rr

or
 [r

ad
/s

]

0 2 4 6 8 10
−5

0

5
x 10

−3

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
0

5e3

1e4

Time [s]

sa

m
pl

es

Time−driven PID

event−driven PID

Time−driven PID
Event−driven PID

[Sandee 2006]

Fig. 9.1 Experimental results demonstrating that event-triggered feedback reduces a real-
time system’s use of computational resources while providing good overall control system
performance

296 M. Lemmon

controller. This controller is discretized at a specified sampling rate and the result-
ing tracking error is plotted as a function of time in the top plot on the right-hand
side of figure 9.1. The middle plot shows the tracking error for a comparable event-
triggered implementation of the system. In this case the control is recomputed when
the gap between the current system state and the last sampled system state exceeds
a specified threshold, eT ,

gap = |x(t)− x(r j)| ≤ eT = threshold,

where r j denotes the jth consecutive time when the state was sampled. For the sim-
ulation shown in the middle plot, the threshold eT was chosen to match the peak
error of the periodically triggered system. This means that these first two plots are
comparing the behavior of an event-triggered and periodically triggered system hav-
ing similar performance levels. The bottom plot in the figure shows the number of
samples that were generated by the periodically triggered (time-driven) and event-
triggered PID control. As can be seen from this plot, the number of event-triggered
samples is smaller than the time-driven control. Moreover, as the system approaches
its equilibrium point, the number of samples begins to level off, thereby suggesting
that as the information content within the error signal decreases, the controller needs
to be invoked less often.

The left-hand example shown in figure 9.1 suggests an event-triggered system
will perform better than a periodically-triggered systems with similar computational
usage. The right-hand example suggests an event-triggered system will use fewer
computational resources than a periodically triggered system with similar perfor-
mance levels. These results, unfortunately, are only empirical in nature. The objec-
tive of this chapter is to review prior work that provides a more complete analysis of
the relationship between performance and computation in event-triggered feedback
systems.

Event-triggering samples the system state when some measure of the novelty in
the state exceeds a given threshold. This approach to sampling has been around
for quite awhile. Early examples of event-triggered systems may be found in re-
lay [73] and pulse-width modulated feeback [54]. Event-triggered feedback has
been used in reaction jet control of spacecraft. More recent examples have exam-
ined event-triggering in systems using motors [23, 65, 64, 24]. A comparison of
the performance of event-triggered systems against periodically triggered systems
may be found in [26]. Event-triggering has also appeared under a variety of other
names such as interrupt-based feedback [29], Lebesgue sampling [4], asynchronous
sampling [76], self-triggered feedback [75], state-triggered feedback [71], and level
crossing sampling [39].

While event-triggering has been around for quite awhile it has only been in re-
cent years [2] that researchers have made significant advances in understanding the
event-triggering process. Sampled stochastic differential equations have been used
to study event-triggered sampling [4]. This model has also been used to study event-
triggered control [5, 27]. Optimal control and estimation in these event-triggered
stochastic systems was studied in [87] for infinite horizons. The results from [87]

9 Event-Triggered Feedback in Control, Estimation, and Optimization 297

determine event triggers that maximize control/estimator performance subject to a
soft constraint on communication usage. The resulting optimal event-triggers take
the form of static thresholds. These results were extended to finite horizon event-
triggered systems for control [31, 62] and estimation [30, 58, 57, 60]. These finite-
horizon results optimize control/estimator performance subject to hard communi-
cation constraints. For estimation problems, the resulting optimal event-triggers are
time-varying and for control problems, the event-triggers are time-varying functions
of the initial system state.

Much of the aforecited work, however, focused only on scalar systems due to the
computational complexity associated with solving the associated dynamic program-
ming equations. Research scientists have recently been using state-based methods
that can be more easily applied to vector systems. Making use of the emulation
method [50] in sampled-data systems, recent work has identified sufficient sampling
conditions that preserve closed-loop stability concepts such as input-to-state stabil-
ity [70] or L2 stability [83]. A similar state-based approach has also been proposed
in [40]. This recent work again derives state-dependent thresholds for the event-
triggers. While the recent state-based methods do not explicitly constrain commu-
nication usage, experimental studies suggest that state-dependent event-triggers can
be very effective in reducing an embedded system’s usage of computational and
communication resources.

This chapter discusses how event-triggering can be used in a wide range of net-
worked control applications; ranging from control to estimation to optimization. In
all of these application areas, event-triggering appears to greatly reduce the com-
munication and/or computational effort required of the supporting real-time system.
The remainder of this chapter is organized as follows. The chapter first reviews some
mathematical preliminaries in section 9.2. Section 9.3 examines state-based event-
triggering in embedded single processor control systems. The results from this sec-
tion are then extended to networked control systems in section 9.4. The controllers
in sections 9.3-9.4 all use full state feedback. As a first step towards developing
output-feedback controls, section 9.5 examines a recent approach to event-triggered
state estimation. Finally section 9.6 presents a novel application of event-triggering
in distributed optimization of networked systems. Event-triggered control is still an
active research area and a number of promising future research directions are dis-
cussed in section 9.7.

9.2 Mathematical Preliminaries

The event-triggers in this chapter are designed to enforce a variety of stability con-
cepts found in the system science literature. This section reviews those stability
concepts primarily to establish notational conventions that are followed throughout
the rest of this chapter. In particular, this section reviews stability concepts such as
asymptotic stability, input-to-state stability, and L2 stability. Much of this material
may be found in textbooks [32, 74, 37].

298 M. Lemmon

This chapter adopts the following notational conventions. The function x map-
ping elements on the real line, R, onto elements of Euclidean n-space, R

n, is de-
noted as x : R→ R

n. Let x(t) denote the value that this function takes at time t ∈ R

and let ẋ(t) = dx(t)/dt denote the time derivative of x at time t. This function is said
to solve an initial value problem of the form

ẋ(t) = f (x(t)), x(0) = x0 (9.1)

if the above equations are satisfied for almost all t ≥ 0. In equation (9.1), f : R
n→

R
n is a function mapping Euclidean n-space back onto itself. To assure the above

equation has unique solutions, one often requires that f be Lipschitz continuous.
Namely, there exists a positive real constant L such that

‖ f (x)− f (y)‖ ≤ L‖x− y‖

for all x and y in R
n. The vector x(t) ∈ R

n is an element of a normed vector space
where ‖x(t)‖ denotes the usual Euclidean 2-norm. The function x is a member of
a normed linear space. Important norms used for such functions are the supremum
norm, ‖x‖L∞ = esssupt ‖x(t)‖ and the 2-norm ‖x‖L2 =

√∫ ∞
0 ‖x(τ)‖2dτ . Let L2

denote the linear space of all measurable functions with bounded 2-norms. L∞ de-
notes the linear space of all measurable functions with bounded supremum norm.
A function α : R→ R is said to be class K if it is continuous, strictly increasing,
and α(0) = 0. A function β : R×R→ R is said to be of class K L if it is a con-
tinuous function that is class K with respect to the first argument and decreasing
asymptotically to zero with respect to the second argument.

With these notational conventions established one can now define a variety of
stability concepts. One of the best known stability concepts is Lyapunov stability.
This concept applies to homogeneous systems characterized in equation (9.1). Given
such as system, one says that a point x ∈ R

n is an equilibrium point if 0 = f (x); in
other words x represents a fixed point of the system . Without loss of generality, one
can presume the equilibrium point x = 0 lies at the origin.

The concept of Lyapunov stability is a property of the system’s equilibrium point.
In particular one says that the equilibrium point, x = 0, is stable in the sense of
Lyapunov if for all ε > 0 there exists δ > 0 such that for all t ≥ 0

‖x(0)‖< δ ⇒ ‖x(t)‖< ε.

Essentially, this means that the equilibrium point is Lyapunov stable if there always
exists an initial condition that permits us to confine the system state within an arbi-
trarily small neighborhood of the equilibrium point.

A somewhat stronger (and better known) notion of Lyapunov stability is asymp-
totic stability. An equilibrium point is said to be asymptotically stable if the point
is Lyapunov stable and if the state x(t) asymptotically approaches the equilibrium
point as t goes to infinity.

The existence of a Lyapunov function provides a well known sufficient condition
for Lyapunov (asymptotic) stability. Consider a homogeneous system ẋ(t) = f (x(t))

9 Event-Triggered Feedback in Control, Estimation, and Optimization 299

with equilibrium point x = 0. One says a continuously differentiable function
V : R

n→R is a Lyapunov function for the system if V is a positive definite function
and its directional derivative, V̇ = ∂V

∂x f (x), is negative semi-definite. The existence
of a Lyapunov function V is sufficient to show that the equilibrium point is stable
in the sense of Lyapunov. Moreover, if one can strengthen the condition on V̇ to be
negative definite, then this suffices to establish that the equilibrium point is asymp-
totically stable.

While the Lyapunov stability concept has been widely used, it cannot be directly
used to characterize the behavior of inhomogeneous systems whose state trajectories
x : R→ R

n satisfy the initial value problem,

ẋ(t) = f (x(t),w(t)), x(0) = x0. (9.2)

where w : R→ R
m is an external disturbance. In this case f : R

n×R
m→ R

n maps
the current system state, x(t), and an external disturbance, w(t), onto the state’s time
derivative. Because this system is driven by an external disturbance, one cannot
usually identify a single equilibrium point for the system. Without this equilibrium
point, one cannot use Lyapunov stability concepts to study the system’s behavior.
This observation motivates a variety of other stability concepts for such inhomo-
geneous systems. Two such stability concepts are input-to-state stability and L2

stability.
The system in equation (9.2) is input-to-state stable (ISS) if there exists a class

K L function β and a class K function γ such that for any initial condition, x(0) =
x0, the response under any input w ∈L∞ satisfies

‖x(t)‖ ≤ β (‖x0‖,t)+ γ(‖w‖L∞)

for all t ≥ 0. An alternative and equivalent characterization of ISS is that the system
response satisfies

‖x(t)‖ ≤max{β (‖x0‖, t),γ(‖w‖L∞)}

for all t ≥ 0. Both definitions essentially require that the transient and steady state
behaviors of the system are appropriately bounded. This view of the ISS-concept
is illustrated in figure 9.2. The dashed line shows the bound due to the class K L
function β acting on the initial transient portion of the system’s response. The dotted
line shows the bound due to the class K function γ acting on the steady-state portion
of the system’s response. To be ISS, the system’s response must lie below the point-
wise maximum of both of these comparison functions.

Input-to-state stability can also be characterized using Lyapunov-type functions.
In particular, one says that a continuously differentiable function V : R

n → R is
an ISS-Lyapunov function for the system in equation (9.2) if there exist class K
functions α , α , γ , and β such that

α(‖x‖)≤V (x)≤ α(‖x‖)
V̇ (x,w) ≤−γ(‖x‖)+β (‖w‖)

300 M. Lemmon

t (time)

||x(t)||

β(||x0 ||,t)

γ(||w||L∞
)

Fig. 9.2 Input-to-State Stability bounds the response’s transient and steady-state behavior

hold for x ∈ R
n and all w ∈ R

m. The existence of an ISS-Lyapunov function for the
system in equation (9.2) is necessary and sufficient for that system to be ISS.

L2 stability is another useful stability concept for inhomogeneous systems. In
this case one usually thinks of the system as a mapping, G : L2→L2 between two
normed linear spaces, L2. This means that if one is given an input w ∈L2 then the
system’s output function Gw will also be a function in L2. The system G is finite-
gain L2 stable (or just L2 stable) if there exist finite positive real constants γ and β
such that

‖Gw‖L2 ≤ γ‖w‖L2 +β . (9.3)

The right-hand side of the above inequality represents an affine function that over-
bounds the norm of the actual system’s output. In particular, one can think of γ as a
gain and β as an offset or bias. The so-called induced gain of G is then taken as the
greatest lower bound on all of the possible γ’s for which the above inequality holds.
This induced gain is often denoted as ‖G‖ and can be formally defined as

‖G‖= inf
{
γ ∈ R : ‖Gw‖L2 ≤ γ‖w‖L2 +β

}

for all w ∈L2.
The induced gain provides an important way of defining a control system’s per-

formance. Many control synthesis problems can be formulated as so-called regula-
tor problems in which the objective is to minimize the gain from the closed-loop
system’s uncontrolled external input to some output function. By making the in-
duced gain of the closed-loop system sufficiently small, one provides some guaran-
tee on the control system’s performance level. The induced gain therefore becomes
a direct way of characterizing overall control system performance.

When the inhomogeneous system in equation (9.2) has a special affine form then
there is a useful characterization of the L2 induced gain. This characterization will
be used later to design event-triggered systems that enforce the L2 stability concept.
In particular, let’s consider a special form of the inhomogeneous control system in
which the state trajectory satisfies

ẋ(t) = A(x(t))+ B1(x(t))w(t)+ B2(x(t))u(t) (9.4)

z(t) =
[

x(t)
u(t)

]T

9 Event-Triggered Feedback in Control, Estimation, and Optimization 301

where x(0) = x0, w : R→ R
p is an external L2 disturbance and u : R→ R

m is
a control signal that is generated by a controller K : R

n → R
m. The functions A :

R
n→R

n, B1 : R
n→R

n×p and B2 : R
n→R

n×m define how the system state, external
input, and control map into the state’s time derivative. The other signal z : R→R

n+m

represents the system’s output signal. The objective is to find a controller K such that
the induced L2 gain from the external input w to the output z is less than a specified
amount, γ .

The main result characterizing such a controller makes use of the so-called
Hamilton-Jacobi Inequality (HJI). In particular, assume there exist a real constant
γ ≥ 0 and a positive definite continuously differentiable function V : R

n → R that
satisfy the HJI,

∂V
∂x

A(x)+
1
2
∂V
∂x

[
1
γ2 B1(x)BT

1 (x)−B2(x)BT
2 (x)

]
∂V T

∂x
+

1
2

xT x≤ 0 (9.5)

for all x ∈ R
n. If one then selects the control output, u, so that

u = K(x) =−BT
2 (x)

∂V (x)T

∂x
(9.6)

then one can show that the closed-loop system’s L2 gain is less than or equal to γ .
The bound on ‖G‖ can be obtained as follows. The directional derivative of V is

V̇ =
∂V
∂x

A(x(t))+
∂V
∂x

B1(x(t))w(t)+
∂V
∂x

B2(x(t))u(t).

Completing the square on the cross-term ∂V
∂x B1(x)w and using the fact that u =

−BT
2
∂V
∂x

T
, yields

V̇ =
∂V
∂x

A− 1
2

∥
∥
∥
∥
∥
γw− 1

γ
BT

1
∂V
∂x

T
∥
∥
∥
∥
∥

2

+
1

2γ2

∂V
∂x

B1BT
1
∂V
∂x

+
1
2
γ2‖w‖2−‖u‖2.

Making use of the Hamilton-Jacobi inequality, one can bound V̇ as

V̇ ≤ −1
2

∥
∥
∥
∥
∥
γw− 1

γ
BT

1
∂V
∂x

T
∥
∥
∥
∥
∥

2

− 1
2
‖u‖2 +

1
2
γ2‖w‖2− 1

2
‖x‖2

≤ −1
2
(‖u‖2 +‖x‖2− γ2‖w‖2).

Since z =
[

x
u

]
, this implies that

V̇ ≤−1
2
‖z‖2 +

1
2
γ2‖w‖2.

302 M. Lemmon

If one then integrates the above inequality from 0 to infinity, one can readily use the
definition of the L2-norm to see that

‖z‖L2 ≤ γ‖w‖L2 +
√

2V(x(0)).

This inequality is precisely what was seen in equation (9.3) which is sufficient to
imply the closed-loop system is L2 stable with an induced gain less than or equal
to γ . In other words, if one choses the control as stated in equation (9.6), then one
can guarantee that the L2 performance level achieved by the closed-loop system is
less than or equal to γ .

As mentioned at the opening of this section, this chapter derives event-triggers
that preserve input-to-state stability or L2 stability concepts. The preceding defini-
tions and derivations will be used later in deriving these event-triggers. Let’s now
turn to see precisely how such event-triggers would be derived for both embedded
control and networked control systems.

9.3 Event-Triggered Feedback in Embedded Control Systems

This section discusses the design of event-triggering schemes for embedded control
systems. The main idea is to first design a continuous-time controller that guaran-
tees a stability concept such as input-to-state stability or L2 stability. The section
then develops an event-triggering threshold such that the associated sporadically
triggered control system preserves this underlying stability concept. This approach
is sometimes called the emulation-based method [50].

Sampled-Data System Model: Let’s first consider how a sampled-data system
might be configured. Figure (9.3) shows a block diagram for the system under
study. The plant (G) has two types of inputs. There is an external uncontrolled dis-
turbance, w : R→R

q and a control input, u : R→R
m. The plant’s state, x : R→R

n,
satisfies the inhomogeneous differential equation

ẋ(t) = f (x(t),u(t),w(t))

for t ≥ 0 with initial condition x(0) = x0 ∈R
n. The output of the plant is the system

state, x.
Rather than working directly with the continuous-time state, x, the controller

works with a sampled version of the state trajectory. In particular, let’s introduce
a sampler (S) system that is characterized by a monotone increasing sequence of
sampling instants. This sequence of sampling instants is denoted as {r j}∞j=0 where

r j > r j−1 for j = 1,2, . . . ,∞. The time r j ∈ R denotes the jth consecutive sampling
instant. The output of the sampler is therefore a sequence of sampled states, {x̂ j},
in which x̂ j = x(r j). A state-feedback controller, K : R

n→ R
m, maps the sampled

state onto a control vector û j ∈ R
m. The resulting sequence {û j}∞j=0 of controls

is then transformed into a continuous-time signal through a zero-order hold (H)
without any delay. The control signal, u ∈R→R

m, used by the plant is a piecewise

9 Event-Triggered Feedback in Control, Estimation, and Optimization 303

Plant (G)

Sampler (S)Hold (H)

Controller (K)

ûj = K(x̂j)

x(t)

sampling instants, { rj }

xj = x (rj)

u(t)

w(t)

uj

Fig. 9.3 Sampled Data Control System

constant function. In particular, let’s introduce a sequence of functions ũ j : R→R
m

that have support over the time interval [r j,r j+1). The value of ũ j at time t ∈ R is

ũ j(t) =
{

û j for t ∈ [r j,r j+1)
0 otherwise

for j = 0,1, . . . ,∞. With regard to this sequence the controlled input feeding the
plant simply becomes u(t) = ∑∞j=0 ũ j(t).

ISS Event-Triggers: Under the emulation-based approach for developing sampled-
data systems, one assumes that the controller, K, enforces a specified stability con-
cept. In particular, let’s confine our attention to input-to-state stability and let’s con-
sider the continuously sampled closed-loop system,

ẋ(t) = f (x(t),K(x(t)+ e(t)),w(t))

where e : R→ R
n and w : R→ R

m are L∞ input disturbances. Let’s assume that
the controller K leaves this closed-loop system ISS with respect to the two inputs w
and e.

From our earlier discussion in section (9.2), the ISS assumption implies the
existence of an ISS-Lyapunov function V : R

n→ R with class K functions α , α ,
γ , β1 and β2 such that

α(‖x‖) ≤ V (x)≤ α(‖x‖) (9.7)

∂V
∂x

f (x,K(x + e),w)) ≤ −γ(‖x‖)+β1(‖e‖)+β2(‖w‖). (9.8)

The inequalities in equation (9.7) essentially require that V is positive definite. The
inequality in equation (9.8) is a dissipative relation on the ISS-Lyapunov function’s
directional derivative.

Now let’s consider the sampled-data version of this system. The sampler gener-
ates a sequence of sampling instants, {r j}∞j=0. The time r j is referred to as the jth

304 M. Lemmon

σ γ(||x||) = state dependent event-trigger

β
1
(||e

0
||)

r
0

r
1

r
2

r
3 r

4

β
1
(||e

1
||)

β
1
(||e

2
||) β

1
(||e

3
||)

trajectory of gap and threshold

Fig. 9.4 Time history of gap and event threshold

consecutive release time of the system. (This term refers to the fact that in a real-
time computer system, state sampling is implemented through a task that is released
for execution at time r j). The sampled states {x̂ j}∞j=0 form a sequence in which

x̂ j = x(r j). Let’s define the gap function associated with the jth sampling time as a
function e j : [r j,r j+1)→ R

n in which

e j(t) = x̂ j− x(t)

for t ∈ [r j,r j+1) where j = 0,1, . . . ,∞.
The sampled data system’s controller uses x̂ j = e j(t)+ x(t), rather than x(t), so

the sampled-data system’s state must satisfy

ẋ(t) = f (x(t),K(x(t)+ e j(t)),w(t))

for all t ∈ [r j,r j+1) and all j = 0,1, . . . ,∞. Under the ISS assumption, one knows
that

V̇ ≤−γ(‖x(t)‖)+β1(‖e j(t)‖)+β2(‖w(t)‖). (9.9)

Let’s assume the gap can be restricted so that for some σ ∈ (0,1)

β1(‖e j(t)‖)≤ σγ(‖x(t)‖) (9.10)

for all t ≥ 0 and all j = 0,1, . . . ,∞. Inserting equation (9.10) into equation (9.9)
implies

V̇ ≤−(1−σ)γ(‖x(t)‖)+β2(‖w(t)‖).

In light of the characterization of input-to-state stability (Sec. 9.2) and since 0 <σ <
1, it should be apparent that enforcing the constraint on the gap (equation (9.10))
leaves the sampled-data system input-to-state stable with respect to the input w.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 305

The constraint in equation (9.10) can be viewed as a state-dependent threshold
condition. In particular, one knows that at the beginning of the interval [r j,r j+1), that
the gap e j(r j) = 0. After that, one expects the norm of the gap to increase. When
the gap satisfies the inequality β1(‖e j(t)‖) > σγ(‖x(t)‖), then the system state is
again sampled by setting x̂ j = x(t), thereby forcing the gap to zero again. In this
way the condition in equation (9.10) can be viewed as an event-trigger. This event-
trigger would be realized by the sampler, S. In particular, one would require the
sampler to continuously monitor the inequality in equation (9.10). Upon detecting
a violation of the inequality, the sampler would trigger the sampling of the system
state. The resulting time history of the threshold γ(‖x(t)‖) and the gap is shown
below in figure 9.4. As the state asymptotically approaches the origin, the threshold
gets smaller. This state-dependent threshold idea and the above analysis underlying
the ISS event-trigger was first discussed by Tabuada [70].

Let’s look at a simple example to see how well the ISS event-trigger works. Con-
sider a process model (without the external disturbance w) of the form

ẋ(t) = f (x(t))+ u(t)
u(t) = −2 f (x̂ j)

for t ∈ [r j,r j+1). The release times r j are selected as the times when the event-trigger
is violated. The ISS event-trigger is chosen to have the following form,

β1(‖e j(t)‖) = e2
j(t)≤ x2(t) = γ(‖x(t)‖).

The system function f : R→R is chosen so the proposed control leaves the closed-
loop system input-to-state stable. In particular, let’s consider three different types of
system dynamics. The chosen system dynamics have sublinear, linear, and superlin-
ear f functions of the forms,

sublinear linear superlinear
f (x) = sgn(x)

√|x| f (x) = x f (x) = x3

The plots below in figure 9.5 show the system response for the linear and su-
perlinear choices for f . The top graphs plot the gap, β1(‖e(t)‖), and the threshold
γ(‖x(t)‖) as a function of time for both cases. This response is plotted on a loga-
rithmic axis. For both linear and superlinear cases one sees that the gap satisfies the
basic form seen earlier in figure 9.4. The bottom plots show the intersample time,
Tj = r j − r j−1, for both cases. For the linear f , the choice of event-trigger and f
yields a periodic sampling of the system state. The case with the superlinear case
f shows that the intersample time gets longer as the system state approaches the
equilibrium point of the unforced system.

An interesting behavior is seen if f is the sublinear function f (x) = sgn(x)
√|x|.

The gap and intersample time histories for this case are shown in figure 9.6. In
this case, the intersample times get shorter and shorter as the system approaches
its equilibrium point. Asymptotically these time intervals go to zero at a finite time
around 3.5 seconds into the simulation. This type of behavior is sometimes called a

306 M. Lemmon

0 1 2 3 4 5 6 7 8
−20

−10

10

0.5

0.4
0.3

0.2

0.1

β1(e(t))

γ(x(t))

Intersample Period

f(x) = xlinear

Gap and Threshold Trajectory

1 2 4 7 10
time

9 10

8 9653
0.0

0

4 5 6 7 8 9 10

4 7 10

Intersample Period

γ(x(t))

time

f(x) = x
3superlinear

Gap and Threhold Trajectory
0 1 2 3

0 1 2 3 5 6 8 9

−20

−10

10

0.5

0.4
0.3

0.2

0.1

0.0

0

β1(e(t))

Fig. 9.5 Two examples showing gap, threshold, and intersampling time history. (left) linear
function f (x) = x. (right) superlinear function f (x) = x3

0 1 2 3 4 5 6 7 8 9 10
10

−15

10
−5

10
5

1 2 4 7 10
0

0.2
0.4

0.6

0.8

1

Intersample Period

γ(x(t))

β1(e(t))

time

f(x) = sgn(x)
√
|x|sublinear

Gap and Threshold History

985 63

0

10
−10

Fig. 9.6 Gap, threshold, and intersampling time history for a sublinear dynamical system
where f (x) = sgn(x)

√|x|

Zeno behavior. Zeno-sampling is highly undesirable in real-time control for it would
require the computer to eventually sample infinitely fast.

Avoiding Zeno-sampling: To better understand when Zeno-sampling might occur,
let’s try to derive a lower bound on the event-triggered system’s intersample time.
Let’s first assume that the closed-loop system is Lipschitz with respect to the state
x and the gap e. In other words, there exists a positive constant L such that for all x
and e in R

n,

‖ f (x,K(x + e))‖ ≤ L‖x‖+ L‖e‖.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 307

If the jth gap function, e j, violates the event-trigger in equation (9.10) at time r j+1,
then

β1(‖e j(r j+1)‖) > σγ(‖x(r j+1)‖).

Let’s assume there exists a positive constant P such that

P‖e j(r j+1)‖ ≥ γ−1
(

1
σ
β1(‖e j(r j+1)‖)

)
≥ ‖x(r j+1)‖.

It can therefore be concluded that with these constraints, the ratio of the gap and the
system state must be greater than a positive constant 1/P. In other words, the next
sample occurs when

1
P
≤ ‖e j(t)‖
‖x(t)‖ . (9.11)

This condition is a more conservative than the original event-trigger in equation
(9.10). It is useful, however, because it provides an analytically tractable method of
bounding the earliest time when the event-trigger can occur. As long as this earliest
sampling time can be shown to be bounded away from zero, then one can assure
that Zeno-sampling doesn’t occur.

For any j = 0,1, . . . ,∞, the trajectory for ‖e j(t)‖/‖x(t)‖ can be bounded through
the use of differential inequalities. A direct computation of the ratio’s time derivative
shows that

d
dt

‖e j(t)‖
‖x(t)‖ ≤

(
1 +
‖e j(t)‖
‖x(t)‖

)
L‖x(t)‖+ L‖e j(t)‖

‖x(t)‖ = L

(
1 +
‖e j(t)‖
‖x(t)‖

)2

.

This differential inequality is used in the Comparison principle [37] to obtain an
upper bound on the time history of the event quotient ‖e j(t)‖/‖x(t)‖. This bound
takes the form

‖e j(t)‖
‖x(t)‖ ≤

tL
1− tL

for t beween 0 and r j+1− r j where j = 0,1, . . . ,∞.
So one merely needs to see when the right-hand side of the above inequality trig-

gers the event quotient condition in equation (9.11). This occurs if the next release
time r j+1 satisfies

1
P
≤ ‖e j(r j+1)‖
‖x(r j+1)‖ ≤

TjL
1−TjL

where Tj = r j+1−r j is the intersample time interval. Solving the right-hand inequal-
ity for Tj yields a lower bound of the form

308 M. Lemmon

r j+1− r j = Tj ≥ 1
L+ LP

.

Note that this is a lower bound on the intersample time. So as long as the bound
is non-zero one can guarantee that the event-triggered system won’t exhibit Zeno-
sampling. Clearly this bound goes to zero when L is unbounded. In other words,
this occurs when the system function f fails to be Lipschitz. In reviewing the sub-
linear example where Zeno sampling occurs, it is apparent that the sublinear func-
tion sgn(x)

√|x| is not Lipschitz. These results show that ISS event-triggering can
guarantee non-Zeno sampling of the system state whenever f is Lipschitz.

The sampling generated under these conditions is sporadic rather than aperiodic.
Aperiodic sampling simply means that the intersample interval Tj is not a constant.
Being aperiodic, however, doesn’t require that the minimum intersample interval
is positive. Following notational conventions in real-time computing, the term spo-
radic is reserved for systems whose intersample intervals need not be constant and
whose minimum intersample intervals are positive.

L2 Event-Triggers: The prior subsection derived sporadic event-triggers that pre-
serve the input-to-state stability of the original non-sampled control system. This
framework [70] places relatively few assumptions on the nature of the controller. It
only requires that the controller has an ISS-Lyapunov function to ensure input-to-
state stability with regard to both the external disturbance, w, and the state gap, e j.
If one makes some assumptions about the structure of the controller, it is possible
to say a bit more about the robustness of the closed-loop system’s stability con-
cept with regard to non-zero delays, or what is sometimes referred to as jitter in the
real-time systems community.

This subsection derives event-triggers that preserve the L2 stability of the closed-
loop system. In particular, these so-called L2 event triggers guarantee that the
closed-loop system’s induced L2 gain is preserved (up to a user-defined scaling
factor). The so-called L2 event-trigger was first proposed by Lemmon et al. [41]
and then formally analyzed by Wang et al. [83]. Since these L2 event-triggers pre-
serve the original non-sampled system’s closed-loop gain, one can say that these
event-triggers are performance preserving since the L2 gain is a commonly used
measure of a regulator’s performance.

By focusing on the L2 stability concept, one can use the aforecited results relat-
ing the closed-loop system L2 gain to a Hamilton-Jacobi inequality. To use this
relationship, let’s narrow our attention to systems that are affine in the external
disturbance, w, and the control u. In particular, let’s assume that the system state,
x : R→ R

n satisfies the following differential equation

ẋ(t) = A(x(t))+ B1(x(t))w(t)+ B2(x(t))u(t) (9.12)

for t ≥ 0 and initial condition x(0) = x0 ∈ R
n. As before w : R→ R

q is an external
disturbance that is assumed to lie in L2. The control signal, u : R→R

m is assumed
to be a special control of the form

9 Event-Triggered Feedback in Control, Estimation, and Optimization 309

u(t) =−BT
2 (x(t))

[
∂V (x(t))

∂x

]T

= K(x(t))

where V : R
n→R is a continuously-differentiable positive definite function (some-

times called the storage function [37]) that satisfies the Hamilton-Jacobi inequality
(9.5) for some γ > 0. For this particular control, one can show that the L2 gain of

the system from the input w to the output z =
[

x
u

]
is less than or equal to γ . These

results were summarized in the earlier section on mathematical preliminaries.
The event-triggered version of the above system starts by introducing a sequence

of release or sampling times
{

r j
}∞

j=0 where r j ∈R denotes the jth consecutive time
when the system state has been sampled. In this case the control law uses the sam-
pled state instead of the true state so that u(t) becomes

u(t) =−BT
2 (x̂ j)

[
∂V (x̂ j)
∂x

]T

= K(x̂ j)

for t ∈ [r j,r j+1) and j = 0,1, . . . ,∞. In the above equation x̂ j ∈ R
n denotes the jth

consecutive sampled state

x̂ j = x(r j).

As before let’s introduce the gap between the current state x(t) and the previously
sampled state. The jth gap function therefore is

e j(t) = x̂ j− x(t)

for t ∈ [r j,r j+1) and all j = 0,1, . . . ,∞. Assume that the controller K : R
n→ R

m is
Lipschitz with respect to the gap. In other words, there exists a non-negative real
constant L such that

‖K(x)−K(x̂ j)‖= ‖K(x)−K(x + e j)‖ ≤ L‖e j‖. (9.13)

This assumption is satisfied in many applications. In particular, the assumption is
valid when the controller is affine with respect to the gap signal.

Let’s now examine the time rate of change of the storage function V under the
sampled control law. The directional derivative of V is

V̇ =
∂V (x)
∂x

A(x)+
∂V (x)
∂x

B1(x)w+
∂V (x)
∂x

B2(x)K(x̂ j).

Since K(x) =−BT
2
∂V
∂x

T
, one can rewrite V̇ as

V̇ =
∂V
∂x

A(x)+
∂V
∂x

B1(x)w−KT (x)K(x̂ j).

310 M. Lemmon

Completing the square for the cross-term ∂V
∂x B2(x)w yields,

V̇ =
∂V
∂x

A(x)− 1
2

∥
∥∥
∥
∥
γw− 1

γ
∂V
∂x

T
∥
∥∥
∥
∥

2

+
γ2

2
‖w‖2 +

1
2γ2

∥
∥∥
∥
∥

BT
1 (x)

∂V
∂x

T
∥
∥∥
∥
∥

2

−KT (x)K(x̂ j).

Applying the Hamilton-Jacobi inequality bounds V̇ as was done in section 9.2 yields

V̇ ≤ −1
2

∥∥
∥
∥
∥
γw− 1

γ
∂V
∂x

T
∥∥
∥
∥
∥

2

+
γ2

2
‖w‖2− 1

2
‖x‖2−KT (x)K(x̂ j)

≤ −1
2
‖x‖2 +

γ2

2
‖w‖2−KT (x)K(x̂ j). (9.14)

The above cross-term, KT (x)K(x̂ j), in equation (9.14) must still be dealt
with. From the Lipschitz assumption on K in equation (9.13), one rewrites this
cross-term as

KT (x)K(x̂ j) =
1
2

∥
∥K(x)−K(x̂ j)

∥
∥2− 1

2
‖K(x)‖2− 1

2
‖K(x̂ j)‖2

≤ 1
2

L2‖e j‖2− 1
2
‖K(x)‖2− 1

2
‖K(x̂ j)‖2

≤ 1
2

L2‖e j‖2− 1
2
‖K(x̂ j)‖2

where e j = x̂ j − x is the gap. Substituting this bound for KT (x)K(x̂ j) into equa-
tion (9.14) yields the following bound on the directional derivative of the storage
function,

V̇ ≤ −1
2
‖x‖2 +

γ2

2
‖w‖2− 1

2
‖K(x̂ j)‖2 +

1
2

L2‖e j‖2

= −β
2

2
‖x‖2 +

γ2

2
‖w‖2 +

(
−1−β 2

2
‖x‖2− 1

2
‖K(x̂ j)‖2 +

1
2

L2‖e j‖2
)

(9.15)

for some user-defined parameter β ∈ [0,1]. Note that the above inequality will be
a dissipative inequality for V̇ provided one can guarantee that the last three terms
within the parentheses are collectively negative definite. If this is the case, then

V̇ ≤−β
2

2
‖x‖2 +

γ2

2
‖w‖2

for all x and w. As noted in the mathematical preliminaries section, satisfaction of
this inequality is sufficient to establish that the sampled-data system’s induced L2

gain from the input w to the output x is less than or equal to γ/β . Note that the
user-defined parameter β becomes a parameter that controls how close the gain of
the sampled-data system will be to the original gain of the continuously-sampled
system.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 311

inter-sample period

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

1 2 4 7 10
0

0.1

0.2

0.3

0.4

0.5

scaled error

event-trigger

inter-sample period

time

Gap and threshold history (L2 disturbance)

3 5 6 8 9

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

1 2 4 7 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4

inter-sample period

event-trigger

scaled error

time

Gap and threshold (wideband disurbance)

3 5 6 8 90

Fig. 9.7 Gap, threshold, and intersample time history using an L2 event-trigger. (left) L2
noise case. (right) wideband noise case

In summary, if the last three terms on the right-hand side of equation (9.15) are
negative, then the sampled-data system is L2 stable with a gain less than γ/β . This
inequality is satisfied for all times, t, if one can guarantee

L2‖e j(t)‖2 ≤ (1−β 2)‖x(t)‖2 +‖K(x̂ j)‖2. (9.16)

The left-hand side of this inequality is simply the size of the system gap, e j. The
right-hand side of the inequality is a state-dependent threshold that is very similar
to the ISS event threshold derived earlier. In other words equation (9.16) is an L2

preserving event-trigger. The event-trigger is used in the same way the ISS event-
trigger was used. Namely, the sampler, S, monitors the gap against the threshold on
the right-hand side. When the inequality is violated (or about to be violated), then
the state is sampled and the next release time r j+1 is generated.

Note that the event-trigger depends on the user-defined parameter β . This pa-
rameter controls how close the event-triggered system’s gain will be to γ , the gain
of the original continuous-time system. If β is close to one then the sampled system
achieves the original gain of γ . As β gets smaller, the gain of the system increases,
thereby reducing the event-triggered system’s L2 performance. In other words, the
smallest thresholds and hence the most frequent sampling occurs when β is close
to one. As β gets smaller, the intersampling periods will get longer at the cost of a
higher closed-loop system gain. This is a tradeoff between the system gain and how
frequently the state must be sampled.

The following example illustrates the use of the L2 event trigger on a variation
of the superlinear system examined in figure (9.5). In this case let’s consider the
controlled system characterized by the following equations,

ẋ(t) = x3(t)+ u(t)+ w(t)
u(t) = −α x̂3

j − x̂ j

312 M. Lemmon

for t ∈ [r j,r j+1) and all j = 0,1, . . . ,∞. The sequence of release times {r j}∞j=0 is gen-
erated by the violation of the L2 event-trigger in equation (9.16). Choose a special
type of L2 disturbance of the form,

w(t) = e−2tν(t)

for t ≥ 0 and where ν is white noise process. The left-hand side of figure 9.7 plots the
gap and threshold time histories for this system (top plot) and the intersample time
(bottom plot), Tj, that was generated. As can be seen the sampling period is initially
very small (about 0.1 sec) at the beginning of the simulation when the disturbance
is largest. As the disturbance decays, the sampling period stabilizes to a relatively
long period (0.4 sec) that is four times longer than the initial sampling period.

The right-hand side of figure 9.7 shows the gap, threshold, and intersample time
histories for the same L2 event-triggered system in which the disturbance is no
longer guaranteed to go to zero as our system approaches the equilibrium point. In
this case let the disturbance be

w(t) = (e−2t + 0.1)ν(t)

where ν(t) is again a white noise process. In this case, the disturbance amplitude
does not go to zero as time goes to infinity. In particular, this w(t) is referred to as
a wide band disturbance. The top plot shows the gap and threshold time histories.
The bottom plot shows the resulting intersample times. When the system state is
far from the equilibrium point, the system’s response is similar to the earlier L2

disturbance case. As the system state approaches the equilibrium point, however,
the periodic nature of the intersampling time disappears with sampling times that
can become arbitrarily short. In this case, therefore, event-triggering only yields
aperiodic, rather than sporadic, sampling of the system state.

This type of behavior is common in both the L2 event-triggered and ISS event-
triggered systems. It essentially results because the state-dependent threshold gets
very small as the system state approaches the origin. With such a small threshold,
the introduction of noise into the disturbance makes the system’s sampling-events
trigger much more often. This example therefore shows that state-dependent event-
triggered system may be sensitive to wide-band disturbances. One way to address
this sensitivity is to place a lower bound on the event-triggering threshold of the
form (in the L2 event-trigger case)

L2‖e j(t)‖2 ≤max
{

T ,(1−β 2)‖x(t)‖2 +‖K(x̂ j)‖2} .

Assuming that ‖e j(t)‖ and ‖x(t)‖ have bounded rates of growth, this modified event-
trigger prevents the sampling period from being arbitrarily close to zero and can
therefore assure the sporadic nature of event-triggered sampling.

Impact of Delays: The preceding analysis for the L2 and ISS event-triggers as-
sumed that both the system state and control update are generated at the same time.
In other words, the control signal, based on the system state sampled at time r j, is

9 Event-Triggered Feedback in Control, Estimation, and Optimization 313

applied to the plant at the same time. This means that our prior analysis ignored
delays. Real-life implementations of such systems will always exhibit some delay
due to the amount of time it takes to compute the control signal. It would be highly
desirable to show that the performance of the event-triggered system (as measured
by the closed-loop system’s L2 gain) is preserved under such delays. The following
analysis from [83] shows how robust L2 performance will be under event-triggering
with delays.

Before starting the analysis, let’s discuss the modeling of event-triggered sam-
pling with delays. In particular, one now needs to consider two sequences of times.
The sequence of release times {r j}∞j=0 is defined as before. Release time r j repre-
sents the time when 1) the state was sampled and 2) the control task was released
for execution by the central processing unit (CPU). The other sequence of interest
is the sequence of finishing times, { f j}∞j=0. The time f j ∈ R denotes the time when
the control signal computed by the control task is actually used by the plant. This
time also marks the finish of the control job that had been released at time r j. In
general one make the small delay assumption which states that r j ≤ f j < r j+1 for
all j = 0,1, . . . ,∞. In other words, the sample taken at time r j is used at a time, f j ,
which always occurs before the next invocation of the control task.

Figure 9.8 shows the timing relationships assumed in this analysis. The figure is
a timeline in which the black rectangles indicate when the control task job is being
executed. With regard to this diagram, let’s define two measures of real-time system
performance. The first measure is the task period Tj = r j+1− r j. This is the interval
of time between any two consecutive invocations of the control task. As in the case
of the ISS event-trigger, there is great interest in obtaining lower bounds on Tj,
thereby identifying the smallest sampling period required by the real-time computer.
The other measure of interest is the delay, D j, of the jth job. This is the time between
the finishing time and release time, i.e. D j = f j− r j. The control task deadline D is
a real-time constraint that one might place on these delays. In particular, a real-time
system that is functioning properly will have all delays less than the deadline (D j ≤
D for all j = 0,1, . . . ,∞). The choice of the deadline is an important constraint. In our
case, the deadline is chosen to ensure the L2 performance of the control application.
In particular, this means that our analysis would like to derive upper bounds on
the maximally allowable delay (MAD) that any task can tolerate before losing our
guarantee on L2 performance. This upper bound then becomes the deadline quality-
of-service (QoS) constraint on the real time system.

To obtain tight bounds on the maximally allowable delays (MAD) and intersam-
ple intervals, let’s confine our attention to linear time-invariant control systems of
the form

ẋ(t) = Ax(t)+ w(t)+ Bu(t)
u(t) = −BT Px̂ j = K(x̂ j)

for all t ∈ [f j, f j+1) and j = 0,1, . . . ,∞. A and B are are suitably dimensioned real
matrices. In terms of the earlier system model considered in equation 9.12, we let
B1 = I and B2 = B. This is simply done for notational convenience. The sampled

314 M. Lemmon

job jjob j-1 job j+1

ƒ
j

ƒ
j-1 ƒ

j+1

r
j-1

r
j r

j+1

D
j

T
j

Fig. 9.8 Definition of Timing Relationships used in Studying the Real-time Implementations
of L2 event-triggered control

state, x̂ j = x(r j), is the state that occurs at the jth consecutive release time. Note
that the above equation holds between finishing times, rather than between release
times. This is in accordance with the fact that control signals can only be changed
after the control task’s job has finished executing.

By confining our attention to linear systems one can use a storage function of the
form V (x) = xT Px where P is a real valued n by n matrix. With this choice of V
the Hamilton-Jacobi inequality reduces to an algebraic Riccati inequality where P
is a symmetric positive definite matrix that for some real γ > 0 satisfies the Riccati
inequality

AT P+ PA−P
(
BBT − γ−2I

)
P + I ≤ 0.

With this choice of control, the induced L2 gain of the continuously sampled closed-
loop system is guaranteed to be less than or equal to γ .

The L2 event-trigger is derived in the same way it was for the nonlinear system.
The difference is that now in establishing the dissipative inequality, one makes use
of the algebraic Riccati inequality rather than the Hamilton-Jacobi inequality. The
resulting L2 event-trigger (derived in [83]) is

eT
j (t)Me j(t) < δxT (r j)Nx(r j)

where

M = (1−β 2)I + PBBT P

N =
1
2
(1−β 2)I + PBBT P

and β and δ are user supplied constants between 0 and 1. Note that the earlier L2

triggering threshold was a function of x(t) and x(r j). The preceding threshold for the
LTI case is only a function of x(r j). This means that the above threshold is weaker
than our earlier result (in other words it would cause the system to sample sooner).
This particular form of the L2 threshold was used in [83] because it rendered the
analysis of delays more tractable. With this weaker threshold it was possible to
obtain specific bounds on the acceptable delays and minimum periods that could be

9 Event-Triggered Feedback in Control, Estimation, and Optimization 315

t
r

jr
j-1

r
j+1

z
j-1

(t) z
j
(t)

z
j+1

(t)

T
j

r
j+2

Fig. 9.9 Time history of normalized gap ‖z j(t)‖ when there are no delays (r j = f j)

tolerated by the event-triggered system. As mentioned above, the bounds on delays
are useful because they serve as deadlines for the real-time computer implementing
the event-triggered control system. The bounds on period are useful in verifying
whether the system can exhibit Zeno-sampling.

Let’s first examine the problem of obtaining a lower bound on the sampling pe-
riod under the assumption of no delays. For notational convenience, rewrite the
earlier L2 event-trigger in terms of a normalized gap function,

z j(t) =
√

Me j(t)

so that the triggering inequality takes the form

‖z j(t)‖<
√

xT (r j)Nx(r j) = ρ(x(r j))

where the function ρ : R
n→ R is defined in the above equation. Figure 9.9 shows

the time history of the gap functions when there are no delays; in other words the
controller job’s finishing time equals the release time. As was done in the earlier
analysis regarding sampling periods for ISS event-triggers, let’s examine the nor-
malized gap function’s rate of growth over the interval [r j,r j+1).

The analysis starts by bounding the time derivative of ‖z j(t)‖,
d
dt
‖z j(t)‖ ≤

∥
∥
∥
√

Mė j(t)
∥
∥
∥=

∥
∥
∥
√

M
(
Ax(t)−BBT Px(r j)+ w(t)

)∥∥
∥

≤
∥
∥
∥
√

MAe j(t)
∥
∥
∥+

∥
∥
∥
√

M(A−BBT P)x(r j)
∥
∥
∥+

∥
∥
∥
√

M
∥
∥
∥‖w(t)‖

for t ∈ [r j,r j+1). Let’s assume the disturbance is bounded by the norm of the system
state. In other words, let’s assume there exists a positive real constant W such that
‖w(t)‖ ≤W‖x(t)‖. In this case the preceding upper bound on d

dt ‖z j(t)‖ may be
simplified to the form,

d
dt
‖z j(t)‖ ≤ α‖z j(t)‖+ μ0(x(r j)) (9.17)

where α is a real constant such that

316 M. Lemmon

α =
∥
∥∥
√

MA
√

M−1
∥
∥∥+W

∥
∥∥
√

M
∥
∥∥
∥
∥∥
√

M−1
∥
∥∥

and μ0 : R
n→R is a function such that

μ0(x(r j)) =
∥
∥∥
√

M(A−BBT P)x(r j)
∥
∥∥+W

∥
∥∥
√

M
∥
∥∥‖x(r j)‖.

The differential inequality in equation (9.17) bounds the rate of growth of the
normalized gap function over the interval between two consecutive release times, r j

and r j+1. Since the state is sampled at time r j , the gap is zero at that time. So the
initial condition for the differential inequality is ‖z j(r j)‖= 0. One can therefore use
the Comparison principle to show that for all t ∈ [r j,r j+1) that

‖z j(t)‖ ≤ μ0(x(r j))
α

(
eα(t−r j)−1

)
.

This is an upper bound on the normalized gap between two consecutive release
times. Clearly, the next release r j+1 must occur before the right-hand side of the
above inequality violates the L2 event threshold. In other words, the following in-
equality must hold

μ0(x(r j))
α

(eαTj −1)≥ ρ(x(r j)).

This inequality can be solved for the sampling period Tj = r j+1− r j to obtain

Tj ≥ 1
α

ln

(
1 +α

ρ(x(r j))
μ0(x(r j))

)

when the next release occurs. The above inequality represents a lower bound on the
intersample time intervals generated by L2 event-triggers. It can be shown [83] that
this bound is always bounded away from zero, so as in the ISS event-trigger case
Zeno-sampling does not occur. A major reason for this lies in the requirement that
the external disturbance has a norm that goes to zero as the system state approaches
its equilibrium. This is a particularly strong assumption that can be justified if the
source of the disturbance arises from modeling uncertainty. In general, however, if
this assumption does not hold, then L2 event-triggers can lead to Zeno-sampling as
was seen in figure 9.7. One can avoid these undesirable behaviors by imposing some
additional constraints on the event-triggers. This particular approach was discussed
in more detail in [84].

The usefulness of the prior analysis is limited by the no task delay assumption.
Let’s now examine how this assumption might be relaxed. In the case of delays,
the normalized gap’s evolution changes as shown in figure 9.10. With non-zero de-
lays, the individual gap functions overlap as shown in the figure. This means that
one should partition the time interval [r j, f j+1) into two subintervals [r j, f j) and
[f j, f j+1). Over the first subinterval, the system state evolves according to the dif-
ferential equation

9 Event-Triggered Feedback in Control, Estimation, and Optimization 317

ẋ(t) = Ax(t)−BBT Px(r j−1)+ w(t)

in which the state used in the controller is the state at sample time r j−1. After the
jth control job finishes, the control is updated with the most recent sampled state.
This means that over the time interval [f j, f j+1), the system state evolves according
to the differential equation

ẋ(t) = Ax(t)−BBT Px(r j)+ w(t).

In a manner similar to what was done in the no-delay case, differential inequalities
can be used to bound ‖z j(t)‖ for all t ∈ [r j, f j+1).

The analysis of the non-zero delay case is done by viewing the event threshold
ρ(x(r j)) as a budget that is allocated to the normalized gap. In particular we partition
this budget between the two subintervals [r j, f j) and [f j, f j+1). Let’s require that
over the first subinterval [r j, f j) is constrained so the normalized gap doesn’t get
bigger than ερ(x(r j)) where ε is a user-defined constant between 0 and 1. One can
again use differential inequalities to show that the normalized gap is bounded as

‖z j(t)‖ ≤ μ1(x(r j),x(r j−1))
α

(
eα(t−r j)−1

)
=Φ(x(r j),x(r j−1);t− r j) (9.18)

for all t ∈ [r j, f j) and where the function μ1 : R
n×R

n→ R is defined as

μ1(x(r j),x(r j−1)) =
∥
∥
∥
√

M(Ax(r j)−BBT Px(r j−1))
∥
∥
∥+W‖

√
M‖‖x(r j)‖.

The right-hand side of the above inequality (9.18) represents the solution to the
differential equation

d
dt
‖z j‖= α‖z j(t)‖+ μ1(x(r j),x(r j−1))

where α is a real constant. The solution to this differential equation is characterized
by the function Φ : R

n×R
n×R→ R. This function returns the normalized gap

z j(t) at time t as a function of the system states x(r j) and x(r j−1). The dependence
of Φ on the system state at times r j and r j−1 is a consequence of the fact that the

t
r

jr
j-1

r
j+1

z
j-1

(t) z
j
(t) z

j+1
(t)

D
j

T
j

r
j+2ƒ

j+1
ƒ

j+2
ƒ

jƒ
j-1

Fig. 9.10 Time history of normalized gap ‖z j(t)‖ when there are task delays (r j < f j)

318 M. Lemmon

differential equations governing the evolution of the system state are different over
time intervals [r j, f j) and [f j, f j+1).

Note that the duration of the first subinterval, [r j, f j) is the delay, D j. To ensure
the normalized gap gets no larger than ερ(x(r j)) over this first subinterval, equation
(9.18) implies that

μ1(x(r j),x(r j−1))
α

(
eαDj −1

)≤ ερ(x(r j)).

Solving for D j yields

0≤ D j ≤ 1
α

ln

(
1 + εα

ρ(x(r j))
μ1(x(r j),x(r j−1))

)
.

The above equation represents an upper bound on the delay that ensures the gap at
the end of the first subinterval is less than the allocated budget of ερ(x(r j)).

The analysis is completed by examining the behavior of the gap over the second
subinterval [f j, f j+1). At the beginning of this interval,

‖z j(f j)‖ ≤Φ(x(r j),x(r j−1);D j)≤ ερ(x(r j))≤ ρ(x(r j)). (9.19)

The system state over the interval [f j, f j+1) satisfies the differential equation

ẋ(t) = Ax(t)−BBT Px(r j)+ w(t).

Using an argument similar to that employed in analyzing the gap over the first subin-
terval, one can show that

d
dt
‖z j(t)‖ ≤ α‖z j(t)‖+ μ0(x(r j)).

Solutions to this differential inequality over the interval t ∈ [f j, f j+1] are bounded
above by solutions to the associated differential equality

d
dt
‖z̃ j(t)‖= α‖z̃ j(t)‖+ μ0(x(r j))

with the initial condition z̃ j(f j) = z(f j). This bounding solution, z̃ j(t), is used to
predict when the release time should be selected to ensure the L2 stability of the
event-triggered system.

This result is proven in [83]. In particular, this paper states that the closed-loop
system is L2 stable with a gain less than or equal to γ/β if the task’s (j+1)st release
time is generated by

r j+1 = f j +
1
α

ln

(
1 +α

δρ(x(r j))−Φ(x(r j),x(r j−1);D j)
μ0(x(r j))+αΦ(x(r j),x(r j−1);D j)

)
(9.20)

9 Event-Triggered Feedback in Control, Estimation, and Optimization 319

and the delay D j+1 satisfies

D j+1 ≤ 1
α

(
1 + εα

(1− δ)ρ(x(r j))
αδρ(x(r j))+ μ0(x(r j))

)
. (9.21)

In the above function α is the real constant defined earlier, ρ and μ0 are the class K
functions defined above and Φ bounds a function of the system state as it evolves
over the delay time D j.

Self-Triggered Feedback Control: The results in the prior section do more than
suggest that an event-triggered system’s L2 stability will be robust with respect
to task delays. Equation (9.20) is interesting in that it computes the future release
time given the current release and finishing times. This equation therefore provides
a prediction of the next release time and it suggests that it should be possible to
develop a software implementation of event-triggered systems. This software ver-
sion of event-triggering has sometimes been referred to as self-triggered feedback
control. Such software versions of event-triggering may be preferred in applications
where the cost of adding event-detection hardware is deemed unacceptable.

The concept of self-triggered task models was original presented in [75]. Sim-
ulation results [41] suggested that self-triggering systems exhibit a robustness to
delays that is consistent with what one might exhibit from event-triggered systems.
In these earlier works the computation of the next release time was usually done
in a heavy handed fashion that was not computationally efficient. This has changed
recently with results in [83] which allow a more computationally efficient way of
selecting the next release time. More recently, it has been noted that for homogenous
systems [1], release times enforcing input-to-state stability satisfy certain scaling re-
lationships. These relationships can be used to reduce the computation of the next
release time to a table look-up. Another important aspect of these analytical bounds
on acceptable delay and release times is that they can be used as quality-of-service
constraints for real-time schedulers. Since it now becomes possible to predict when
the next control job should be released, one can use these estimates as the period
and deadline that govern how real-time scheduling services adjust task priorities. In
other words, the aforecited analytical bounds provide a formal way of connecting
real-time scheduling constraints to the application’s (i.e. control system’s) actual
performance.

Event-triggering was proposed [2, 3] as a means to co-design controllers and
schedulers in embedded systems. The analysis of state-dependent event-triggers
[70] formally characterized the stability properties of event-triggering and the later
analyses of intersample intervals and maximally allowable deadlines [83] provided
bounds that could be used in adapting the embedded system’s controller tasks. These
methods raise the possibility of moving away from the traditional hard real-time task
models that have dominated embedded control. While the use of event-triggering
has focused on conserving the embedded system’s computational resources, it is
anticipated that event-triggering may be used to conserve other types of shared re-
sources. Of particular interest are embedded sensor-actuator control systems where
communication resources are highly constrained. The next section examines the ap-
plication of state-dependent event-triggering to such networked control systems.

320 M. Lemmon

9.4 Event-Triggered Feedback in Networked Control Systems

Many of the results for event-triggered control of embedded systems can be ex-
tended to networked control systems. A networked control system or NCS is a set
of controllers that coordinate their actions over a communication network. For NCS,
event-triggering is used to decide when to transmit or broadcast the system state to
a local controller’s neighbors. Using events to trigger communication actually pro-
vides a much stronger motivation for event-triggered control. The reason for this is
that in many cases, the energy or cost associated with the transmission of a bit of in-
formation is much more than the energy associated with using that bit to compute the
control law. Event-triggering, therefore, provides a realistic way of reducing traffic
congestion in communication networks used by NCS. The objective of this section
is to show how the earlier results from event-triggered control of embedded systems
can be extended to networked control systems. The section first discusses the NCS
architecture under study and then it derives event-triggers assuring the NCS is ISS.
As in the case of embedded systems, the NCS implementation introduces a number
of so-called network artifacts that complicate the analysis of the idealized model.
These network artifacts include delays in the transmission of information as well as
dropped information packets. This section studies the impact of such network arti-
facts and demonstrates that event-triggered NCS stability is robust to such network
artifacts in a quantifiable manner.

While there is a great deal of literature [11, 25, 50, 51, 90] examining networked
control systems, there is relatively little work pertaining to event-triggered NCS.
Most of the results in this section are drawn from [81] and [80]. Related work will
be found in [48].

Model of Networked Control System: Let’s first describe a model of a networked
control system or NCS. Consider a distributed NCS consisting of N agents. Fig-
ure 9.11 provides a graphic illustration of an NCS with three agents. Each agent
consists of a physical component and a cyber-component. The physical components
are interconnected as shown by the solid lines in the figure. The cyber-components
are also interconnected through a communication network whose links are shown
by the dashed lines in the figure.

This system may be more formally characterized using graph theoretic notation.
In particular, let N = {1,2, . . . ,N} denote the set of agents. A graph Gp = (N ,Ep)
represents the physical coupling between the agents. N denotes the vertices of the
graph and Ep ⊂N ×N denotes the set of edges in the graph. The edge (i, j) con-
nects node i ∈N to node j ∈N . The edge, therefore, is an ordered pair (i, j) of
nodes. The ordered pair (i, j) is in Ep if the dynamics of agent j’s physical com-
ponent are directly driven by agent i’s local state. The graph Gc = (N ,Ec) models
the interconnections between the cyber-components of the agents. As before N de-
notes the vertices (nodes) of the graph and Ec ⊂N ×N represents the edges of
the graph.

In this section, the graphs for the physical and cyber-interconnections need not
be the same. This requires us to define a number of special neighborhoods in the
graph. In particular,

9 Event-Triggered Feedback in Control, Estimation, and Optimization 321

physical system

physical system

cyber

system

cyber

system

cyber

system

x1

x3

x3

x2

u1

u2

u3

x1

x3

x2

x1

x2

x3

ẋ1(t) = f1(xD1
(t), u1(t), w1(t))

ẋ2(t) = f2(xD2
(t), u2(t), w2(t))

ẋ3(t) = f3(xD3
(t), u3(t), w3(t))

u1(t) = K1(x̂Z1
(t))

u2(t) = K2(x̂Z2
(t))

u3(t) = K3(x̂Z3
(t))

physical system

Fig. 9.11 Model of Event-Triggered Networked Control Systems

• Zi = { j ∈N |(j, i) ∈ Ec} represents those agents whose cyber-components can
send information to agent i’s cyber-component.

• Ui = { j ∈N |(i, j) ∈ Ec} denotes those agents whose cyber-components can re-
ceive information from agent i’s cyber-component.

• Di =
{

j ∈N |(j, i) ∈ Ep
}

represents those agents whose physical components
directly drive the dynamics of agent i’s physical component.

• Si =
{

j ∈N |(i, j) ∈ Ep
}

denotes those agents whose physical components are
directly driven by the physical component of agent i.

For any set Σ ⊂N , let |Σ | denote the number of elements in that set and let Σ =
Σ ∪{i}.

The physical component of agent i is characterized by a local state xi : R→ R
n

where xi satisfies the differential equation

ẋi(t) = fi(xDi
(t),ui(t),wi(t))

xi(t0) = xi0

where xDi
= {x j} j∈Di

are the local states of agent i’s neighbors that are physically

connected to it. The system dynamics are characterized by the function fi : R
n|Di| ×

R
m×R

�→ R
n which is locally Lipschitz and satisfies fi(0,0,0) = 0. ui : R→ R

m

is a control input generated by the cyber-component of the agent and wi : R→ R
�

is an external disturbance. The above characterization assumes all subsystems have
the same local state dimension, n. This is done for notational convenience. The
model and subsequent analysis would also apply to subsystems with local states of
different dimensionalities.

The control ui is generated by agent i’s cyber-component. Since these cyber-
components exchange information over a digital communication network, local
states are transmitted in a discrete manner. In particular, let {ri

j}∞j=1 denote the

322 M. Lemmon

sequence of broadcast release times for the ith agent. So the transmitted state from
agent i is denoted as

x̂i(t) = xi(ri
j)

for t ∈ [ri
j,r

i
j+1) and j = 0,1, . . . ,∞. Agent i’s cyber-component uses the local state

information received from all its neighbors in the set Zi to compute the control ui.
So let Ki : R

n|Zi| → R
m denote the i’th agent’s local controller so that

ui(t) = Ki(x̂Zi
(t)).

Following the same notational conventions as before, x̂Zi
denotes the broadcast

states of all neighbors of agent i whose cyber-components send information directly
to agent i.

ISS Event-Triggered Networked Control: Let’s now derive ISS event-triggers for
the NCS described above. In particular, let ei(t) = x̂i(t)− xi(t) denote the local gap
between agent i’s current state and its last broadcast state. Assume there exist posi-
tive definite function V : R

nN → R, controllers Ki : R
|nZi| → R

m, and class K func-
tions γi, ψi, and βi (for i = 1,2, . . . ,N) such that

V̇ =
N

∑
i=1

∂V
∂xi

fi(xDi
,Ki(xZi

+ eZi
),wi)

≤
N

∑
i=1

(−γi(‖xi‖)+ψi(‖ei‖)+βi(‖wi‖)) (9.22)

where eZi
is the gap of all agent i’s cyber-neighbors. This assumption means that

V is an ISS-Lyapunov function with respect to w when the the gap ei(ri
j) = 0. In

view of our earlier discussion, this is sufficient to imply that the local controllers
Ki leave the original continuously sampled version of the networked control system
input-to-state stable.

So again, one selects a user-defined parameter σi ∈ (0,1) and notes that if the
local state and gap trajectories satisfy the inequality

−σiγi(‖xi(t)‖)+ψi(‖ei(t)‖)≤ 0 (9.23)

for all t ∈ R and all i = 1,2, . . . ,N, then the bound on V̇ becomes

V̇ ≤
N

∑
i=1

(−(1−σi)γi(‖xi‖)+βi(‖wi‖)) .

This is a dissipative inequality that was seen earlier to be sufficient to show that the
event-triggered NCS is ISS with respect to the external input wi.

As before in our study of the embedded event-triggered controllers, the inequality
in equation (9.23) can be used as the basis of a state-dependent threshold test. In

9 Event-Triggered Feedback in Control, Estimation, and Optimization 323

particular, the ith agent would check the validity of the following threshold test on
the gap,

ψi(‖ei(t)‖)≤ σiγi(‖xi(t)‖). (9.24)

At the broadcast time ri
j, the local gap, ei = 0. This gap then grows until ψi(‖ei(t)‖)

exceeds the state dependent threshold γi(‖xi(t)‖). The violation of that threshold
triggers agent i to broadcast its state again. Note that this is a cooperative broad-
cast mechanism in that the violation of the threshold results in an agent sharing its
local state information with its neighbors. In other words, the success of such an
event-triggered broadcast scheme relies on all agent’s agreeing to work in the same
manner.

Note that the ISS event trigger given above is only a local function of the agent’s
state. This is important, for it means each agent is able to trigger its broadcast with-
out relying directly on its neighbors. A key part of the prior analysis is the assump-
tion that there exists an ISS Lyapunov function that is separable in the sense speci-
fied by the bounds in equation (9.22). Such a Lyapunov function may be constructed
by identifying a set of N positive definite functions Vi : R

n → R for i = 1,2, . . . ,N
with class K functions γi, ηi,ψi, and βi such that

∂Vi

∂xi
fi(xDi

,Ki(xZi
+ eZi

),wi) ≤ −γi(‖xi‖)+ ∑
j∈Di∪Zi

η j(‖x j‖)

+ ∑
j∈Zi

ψ j(‖e j‖)+βi(‖wi‖). (9.25)

As a specific example, let’s consider class K functions that are quadratic so γi(‖x‖)
can be expressed as γi‖x‖2 and similarly for the other functions, ηi, ψi, and βi. In
this case, one sees that by choosing V =∑N

i=1 Vi, the following inequality is obtained

V̇ ≤
N

∑
i=1

⎛

⎝−γi‖xi‖2 + ∑
j∈Di∪Zi

η j‖x j‖2 + ∑
j∈Zi

ψ j‖e j‖2 +β 2
i ‖wi‖2

⎞

⎠

=
N

∑
i=1

(−(γi−|Si∪Ui|ηi)‖xi‖2 +ψi|Ui|‖ei‖2 +βi‖wi‖2) .

Note that this matches the conditions in equation (9.22) provided the first term on
the right-hand side is negative definite. This term will be negative definite if

γi−|Si∪Ui|ηi > 0.

This condition places a restriction on the amount of coupling between physically
interconnected physical systems. In particular, it says that if one can appropriately
bound this physical coupling and if there exist candidate ISS-Lyapunov functions
satisfying the bounds in equation (9.25), then it is always possible to construct a

324 M. Lemmon

global V that is an ISS-Lyapunov function for the entire networked system. In this
case, the associated ISS event-trigger is shown to have the form

‖ei(t)‖ ≤ σi

√
γi−|Si∪Di|ηi

|Ui|ψi
‖xi(t)‖=

σi

αi
‖xi(t)‖

which would ensure the L2 stability of the entire system.
The ability to construct V from smaller local candidate ISS-Lyapunov functions

is important, for it allows us to distribute the design of the ISS event-triggers. This
is particularly important in large-scale networked systems where agent subsystems
may be added and modified in an ad hoc manner. Linear networked systems provide
a particularly good example of when one can exploit this distributed strategy for
constructing ISS event-triggers. For linear NCS, the parameters in the triggering
conditions can be computed using linear matrix inequalities [82].

Simulation results for this approach to event-triggered broadcasting are shown
in figure 9.12. This example was taken from [81]. It consists of N carts that are
interconnected through soft springs. The local state of the ith cart is xi =

[
yi ẏi

]T

where yi is the position of the ith cart with respect to the system’s equilibrium point.
Assuming soft spring coupling between the carts, the state equation for the ith cart
can be written as

ẋi(t) =
d
dt

[
yi
ẏi

]
=
[

ẏi(t)
ui(t)+k1

i tanh(yi+1(t)−yi(t))+k2
i tanh(yi−1(t)−yi(t))+wi(t)

]

for all t ∈ R where i = 1,2, . . . ,N. The parameters k1
i and k2

i denote the spring con-
stants for the springs on the right-hand and left-hand side of the ith cart, respectively.
From the cart geometry shown in figure 9.12, one can see that these spring constants
satisfy k1

i = k2
i+1 for i = 1,2, . . . ,N−1. The left-end cart’s spring constant is k2

1 = 0
and the right-end cart’s spring constant in k1

N = 0. The function ui : R→ R denotes
the control applied to the cart by its local controller.

In this example the communication network’s links mirror the physical interac-
tions between the carts so that Zi = Di. The sampled state is denoted as x̂i(t) =
[

ŷi(t) d
dt ŷi(t)

]T
where ŷi(t) = yi(ri

j) and d
dt ŷi(t) = ẏi(ri

j) for all t ∈ [ri
j,r

i
j+1) and

j = 0,1, . . . ,∞. The local control is computed from these sampled measurements as

ui(t) = Kix̂i(t)− k1
i (tanh(ŷi+1(t)− ŷi(t))− k2

i tanh(ŷi−1(t)− ŷi(t)).

In this case, the agents controlling the end cars use the ISS event-trigger
5.9‖ei(t)‖< 0.2‖xi(ri

j)‖ and the interior agents use the event-trigger 10.3‖ei(t)‖<

0.2‖xi(ri
j)‖. The results from this simulation are shown in figure 9.12.

The top plot on the left-hand side of figure 9.12 plots the state trajectories for all
three carts. As can be seen, this event-triggered system is asymptotically stable since
all points asymptotically approach their equilibrium points at zero. The bottom plot
on the left-hand side of figure 9.12 plots the intersample time intervals that were
generated by the proposed event-triggers. As can be seen, these intersample time
intervals vary over time in a regular manner.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 325

u1 u2 u3

y1

y2

y3

0 1 2 3 4 5 6
−0.5

0

0.5

1

0 1 2 3 4 5 6
0

0.02

0.04

Time

Time

lo
ca

l s
ta

te
s

In
te

rs
a

m
p

le
 T

im
e

s

Fig. 9.12 Simulation Example of Event-Triggered Networked Control System consisting of
three coupled carts

Impact of Network Artifacts: The prior analysis for the ISS event-triggers in net-
worked control systems had two important assumptions that now need to be exam-
ined in more detail. The first assumption was that there was no delay between the
transmission and reception of information over the communication network. The
second important assumption was that all neighbors in the set Ui receive and use the
broadcast data in a synchronized manner. Both assumptions are difficult to justify in
real-life wireless sensor-actuator networks. This difficulty is a direct consequence
of the unreliable and time-varying nature of wireless communication. The second
assumption can be dealt with by making use of a broadcast protocol that essentially
synchronizes the transmitted data across all neighbors in Ui. The use of such a pro-
tocol, however, introduces a number of network artifacts such as delays and dropped
messages; both of which have a significant impact on the event-triggered system’s
performance. The objective of this subsection is to establish bounds on acceptable
transmission delays and message dropout rates, thereby showing that the stability of
the event-triggered NCS is robust to such network artifacts.

Let’s first describe the network broadcast protocol used to ensure that the received
broadcasts are synchronized between all neighbors in Ui. Such a broadcast protocol
is illustrated graphically on the left-hand side of figure 9.13. In this case, the shaded
agent represents the ith broadcasting agent at time instant ri

j. This broadcast is made
to the two neighboring agents. Since this is a broadcast, both neighboring agents
receive the same sampled copy of the transmitting agent’s local state. Upon receiv-
ing the ith agent’s message, each agent acknowledges the receipt of that message
through an ACK signal. When the ith agent receives ACKs from all of the neigh-
bors in Ui, it then broadcasts a permission or PERM message to those neighbors.
As soon as all neighbors receive the PERM message they use the previously re-
ceived data in computing their controls. The delay between initial transmission and
the final receipt of the PERM messages represents the delay between sampling and
actuation. As long as this delay is sufficiently small, the overall networked system
should still be stable.

ACKs and PERMs are control packets that are very short in length and can there-
fore be delivered with a high degree of reliability. The data packets, on the other
hand are relatively long and will be more subject to unreliable transmission. Even
if an ACK or PERM message were lost, the impact such lost information has on

326 M. Lemmon

Broadcast at rj
i

First ACK

Second ACK

PERM at fj
i

agent agent agent

agent agent agent

agent agent agent

agent agent agent

Broadcast at rj
i

First NACK

Second ACK

PERM not sent

agent agent agent

agent agent agent

agent agent agent

agent agent agent

Fig. 9.13 Broadcast Protocol in Wireless NCS. (left) step-by-step description of broadcast
protocol. (right) mechanism by which transmitted data is dropped

the overall system’s performance can be detected and used to trigger additional data
broadcasts. So one would expect the system’s overall performance to be robust to
such faults. Just how robust this system is to such faults, however, has yet to be fully
studied.

It is relatively easy to see why the assumption that transmissions are received in-
stantaneously is unreasonable. While the transmitted signal propagates at the speed
of light, it takes time for a message to work its way though an agent’s network stack.
Moreover, it takes time to transmit, receive and acknowledge the ACKs of an agent’s
neighbors. As a result, the analysis cannot assume that messages are transmitted and
received with zero delay.

The right-hand side of figure 9.13 shows another network artifact that can’t be
neglected. Wireless communication is inherently unreliable since there is a finite
probability that a message will not be successfully transported across the channel.
In this case, it is highly likely that a broadcast message may not be received by all
neighbors in Zi. When this occurs, ACK messages will only be sent by a subset of
the agents in Zi. Since the transmitting agent doesn’t receive all of the ACKs it is
expecting, it will not send the PERM message and so the neighboring agents will
not use the information that was previously transmitted to them. In this situation,
the data transmitted by the ith agent is actually dropped. An important question is
whether or not event-triggered system stability is robust to such data dropouts.

Under the proposed broadcast protocol, one must therefore adopt a somewhat
more complex view of the timing relations between message transmission and re-
ception than was presented earlier. Figure 9.14 illustrates the underlying timing re-
lationships assumed in the following analysis. As before, let’s define a sequence
{ri

j}∞j=0 which consists of the time instants when the ith agent releases a message
for broadcast to its neighbors. If this agent receives ACKs from all of its neighbors
then the broadcast is said to be successful. One can therefore introduce a subse-
quence of {ri

j}∞j=0 that consists of all the successful broadcast times. Let {bi
k}∞k=0

denote this sequence of successful broadcasts. If a broadcast is successful, there is
a finite delay associated with informing all neighbors that the broadcast was suc-
cessful (i.e. the time required to execute the broadcast protocol). One can therefore
define a sequence of successful finishing times, { f i

k}∞k=0. The time instant f i
k denotes

the time when the broadcast that was released at time instant bi
k was given permis-

sion for use by all agents in Ui. With regard to these timing relations, the number of

9 Event-Triggered Feedback in Control, Estimation, and Optimization 327

r i
j f i

k r i
j+1 r i

j+2
r i

j+ +1d
i

k
r i

j+ d
i

k
f i

k+1

(=b)i
k (=b)i

k+1

kth transmission k+1st transmissionr
i
j = jth consecutive broadcast time

bi
k = kth successful broadcast time

fik = kth successful finishing time

di
k = number of dropped broadcasts

between kth and k + 1st broadcasts

Fig. 9.14 Timing Relationships under NCS Broadcast Protocol

dropped broadcasts between the kth and (k + 1)st successful broadcasts is denoted
as di

k.
Analyzing the effect that such network artifacts have on the event-triggered sys-

tem’s performance can be done in a manner that is analogous to our earlier anal-
ysis of delays in event-triggered embedded systems. As before, one first considers
a somewhat weaker version of the event-trigger in which the threshold is only a
function of the last sampled state x̂i(t), rather than the current local state xi(t). The
original event-trigger has the form

‖ei(t)‖ ≤ σi

√
γi−|Si∪Bi|ηi

|Ui|ψi
‖xi(t)‖=

σi

αi
‖xi(t)‖.

A sufficient condition that ensures the above inequality is satisfied would be

‖ei(t)‖ ≤ σi

σi +αi
‖x̂i(t)‖= ci‖x̂i(t)‖.

In this weaker condition, the threshold is constant over the interval [f i
j, f i

j+1). As
mentioned above, this event-trigger makes it easier to analyze the impact that delays
and dropouts have on the overall event-triggered system’s performance.

b
i

k f
i

k
r i

j= r i

j+1
r i

j+d
i

k

r i

j+d +1
i

k

b
i

k+1 f
i

k+1

‖ek
i (t)‖ ci‖x̂i(t)‖

δici‖x̂i(t)‖

δ̂ici‖x̂i(t)‖

Fig. 9.15 Gap time history in the presence of network artifacts such as dropouts and delays

328 M. Lemmon

With this simplified event-triggering condition, one analyzes the impact of
dropouts and delays by allocating some portion of the threshold condition to each
network artifact. Figure 9.15 shows the gap ‖ei(t)‖ as a function of time between a
successful broadcast at time bi

k and the finishing time of the next successful broad-
cast f i

k+1. The gap grows over this interval of time and in order to assure the per-
formance of the event-triggered system, one requires that this gap always remains
less than ci‖x̂i(t)‖. The effect of the dropouts on the gap is confined to the first
part of this interval between times bi

k and bi
k+1. The effect of the delay on the gap

is confined to the last part of the interval from bi
k+1 to f i

k+1. This means that one
can separate the impact of dropouts and delays between these two subintervals. One
exploits this separation by requiring that the next successful broadcast at time bi

k+1
occur before the gap gets larger than δici‖x̂i(t)‖ where δi ∈ (0,1) is a user specified
constant. Once δi is selected, this determines how many dropouts the system can
tolerate before violating the condition.

Is it possible to ensure the gap due to dropouts is no larger than than the allocated
gap budget of δici‖x̂i(t)‖? This is done by simply triggering the event early. In
particular, let’s use an actual event-trigger of the form

‖ek
i (t)‖ ≤ δ̂ici‖x̂i(t)‖= δ̂ici‖xi(bi

k)‖

where ek
i (t) = xi(t)− xi(bi

k) for t ∈ [bi
k, f i

k+1), δ̂i ∈ (0,δi) and bi
k is the kth suc-

cessful broadcast. As shown in figure 9.15, the use of such a smaller threshold
will cause the system to trigger early, thereby providing some margin for dropouts
or delays. With this threshold the next release of a transmission occurs when
‖xi(t)− xi(bi

k)‖ = δ̂ici‖xi(bi
k)‖. The transmitting agent, however, does not know if

this transmission was successful, so when it tests for the next released transmission,
it uses the threshold condition

‖xi(t)− xi(ri
j+1)‖ < δ̂ici‖xi(ri

j+1)‖.

Note that in this inequality, the sampled system state that is used is taken at time
ri

j+1 rather than ri
j = bi

k. So if one now looks at the total gap ‖ek
i (t)‖ that occurs for

times after ri
j+1, then one can write this as

‖ek
i (t)‖ = ‖xi(t)− xi(bi

k)‖
≤ ‖xi(t)− xi(ri

j+1)‖+‖xi(ri
j+1)− xi(bi

k)‖.

Each of the two terms can be bounded using the event-triggering conditions to obtain

‖ek
i (t)‖ ≤ δ̂ici‖xi(ri

j+1)‖+ δ̂ici‖xi(bi
k)‖

≤ δ̂ici

(
‖xi(bi

k)‖+ δ̂ici‖xi(bi
k)‖
)

+ δ̂ici‖xi(bi
k)‖

=
(
(1 + δ̂ici)2−1

)
‖xi(bi

k)‖.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 329

The last relationship shows that under event-trigger‖xi(t)−xi(ri
j)‖< δ̂ici‖xi(ri

j)‖,
that the first release ri

j+1 occurs when the gap reaches δ̂ici‖xi(bi
k)‖. If that first re-

lease is unsuccessful, then the second release occurs at ri
j+2 when the gap equals(

(1 + δ̂ici)2−1
)
‖xi(bi

k)‖. In a similar way one can show that if additional releases

are unsuccessful then

‖ek
i (t)‖ ≤

(
(1 + δ̂ici)di

k+1−1
)
‖xi(bi

k)‖

for all t where di
k is the number of consecutive unsuccessful releases (i.e. dropped

transmissions) between times bi
k and bi

k+1. In order to assure the stability of this
system let’s require that the right-hand side of the above inequality be less than
δci‖xi(bi

k)‖ or rather that

(
(1 + δ̂ici)di

k+1−1
)
‖xi(bi

k)‖ ≤ δici‖xi(bi
k)‖.

Solving this inequality for di
k determines an upper bound on the maximum number

of successive dropouts that can be tolerated to assure overall system stability. This
bound is called the maximally allowed number of successive dropouts (MANSD)
and the bound is

di
k ≤MANSD =

⌊
log1+δ̂ici

(1 + δici)
⌋
−1.

This bound represents the maximum number of dropouts that our system can accept.

b
i

k
r i

j= r i

j+1

r i

j+d +1
i

k

b
i

k+1
r i

j+2
r i

j+3

(
(1 + δ̂ici)

2 − 1
)
‖xi(b

i
k)‖

δ̂ici‖xi(b
i
k)‖

(
(1 + δ̂ici)

3 − 1
)
‖xi(b

i
k)‖

(
(1 + δ̂ici)

di

k
+1 − 1

)
‖xi(b

i
k)‖

Fig. 9.16 Gap history in the presence of multiple dropouts

Delays only impact the gap in the subinterval between bi
k+1 and the finishing time

f i
k+1. This case must ensure that the gap does not get larger than the event threshold

ci‖xi(bi
k)‖. Bounding the allowable length of the interval [bi

k+1, f i
k+1) is done by

bounding the gap’s rate of growth of the gap by a constant

d
dt
‖ek

i (t)‖ ≤ pi.

330 M. Lemmon

This assumption is reasonable if the gap can be shown to evolve over compact sets.
Given this rate of growth, pi, the bound on the admissible delay between broadcast
and reception will be

f i
k+1−bi

k+1 ≤
(1− δi)ci

pi
‖xi(bi

k)‖= upper bound on deadline.

This expression represents the admissible deadline by which a network transmission
must be received to assure overall system stability.

This section has shown that state-dependent event-triggering can greatly reduce
the usage of communication resources in networked control systems. A potential
weakness in the existing results is their reliance on state-feedback controllers. How
one might extend these formalisms to output feedback controllers is still an open
question. One way to begin addressing this question is to first examine the use of
event-triggering in state estimation. The following section reviews recent results in
this direction.

9.5 Event-Triggered Estimation

This section examines a simple problem involving the use of event-triggering in
state estimation. In this case, let’s assume that a sensor is observing a discrete-time
process over a finite horizon and computing a local estimate of the process state.
The problem involves determining when this local estimate should be transmitted to
a remote observer so that the remote observer’s mean square estimation error is min-
imized subject to a constraint on the transmission rate between the local sensor and
remote observer. These event-triggers are therefore referred to as MMSE (minimum
mean square error) event-triggers. Problems of this sort are relevant to estimation
over wireless sensor networks [91].

Early work on this problem focused on characterizing the impact that intermit-
tently received observations had on the performance of the estimator [68, 47]. A
solution to the MMSE event-triggering problem was presented by Imer et al. [30]
and by Rabi et al. [59, 61, 57]. Rabi viewed the transmission problem as an optimal
stopping problem [35], whereas Imer made use of dynamic programming concepts.
This approach can also be applied to control systems [31]. An alternative approach
to event-triggered estimation will be found in [67]. This section uses dynamic pro-
gramming to rederive the results from Rabi’s earlier work [59].

It should be noted that MMSE triggers differ in a significant manner from the
earlier stability-based triggers derived in sections 9.3 and 9.4. The prior stability-
based triggers preserved some desired stability concept such as input-to-state or L2

stability. The MMSE event-triggers, however, actually optimize the estimator’s per-
formance subject to a constraint on transmission frequency. Recall that one motiva-
tion for considering event-triggered systems is that experimental evidence suggests
that event-triggering can greatly reduce communication and computational effort
while maintaining overall system performance. None of the prior stability-based
event-triggers, however, actually show why this should be the case. The MMSE

9 Event-Triggered Feedback in Control, Estimation, and Optimization 331

event-triggers suggested in Imer’s and Rabi’s work, however, explicitly optimize
overall estimator system performance subject to a constraint on communication ef-
fort. In this way, MMSE event-triggers may shed more light on why event-triggered
systems appear to be more efficient in their use of limited computational and com-
munication resources.

Remote Estimation Problem: The event-triggering problem considered in [61] as-
sumes that a sensor is observing a scalar linear discrete-time process over a finite
horizon of length M + 1. The process state x : [0,1,2, . . . ,M]→ R satisfies the dif-
ference equation

xk+1 = axk + wk

for k ∈ [0,1, . . . ,M−1] where a is a real constant, w : [0,1, . . . ,M−1]→R is a sam-
ple path for a zero mean white Gaussian noise process with variance Q. The initial
state, x0 ∈R, is chosen from a Gaussian distribution with mean μ0 and varianceΠ0.
The sensor generates a measurement y : [0,1, . . . ,M]→R that is a corrupted version
of the process state. The sensor measurement at time k is

yk = xk + vk

for any integer k between 0 and M where v : [0,1, . . . ,M] → R is a sample path
of a zero mean white Gaussian noise process with variance R that is uncorrelated
with the process noise, w. The process and sensor blocks are shown on the left-hand
side of figure 9.17. In this figure the output of the sensor feeds into a transmission
subsystem that decides when to transmit information to a remote observer.

This transmission subsystem consists of three components; an event detector, a
filter, and a local observer. The event detector decides when to transmit information
to the remote observer. It is assumed that the detector is only allowed to transmit
at B distinct time instants where B is an integer between 0 to M + 1, inclusive.
The particular transmission times form a sequence {τ�}B

�=1 where τ� ∈ [0,1, . . . ,M]

Physical

Process
Sensor

x

Event

Detector

y

Local

Observer

x(τj)

x

Remote

Observer

transmission at

times τj xw

Filter

x

Transmission Subsystem

0 1 r M

a priori gap e
k

= x
k
- x

k

event-trigger, Sk
-

Event Detector triggers the transmission of

the “local filter’s” MMSE estimate at times

τj. The transmission time, τj, is triggered

the first time when the a priori gap |xk - xk|

exceeds a time-varying theshold

-

-

Fig. 9.17 Remote Estimation Problem

332 M. Lemmon

denotes the time when the �th consecutive transmission was made. The decision to
transmit is based on estimates that are generated by the filter and the local observer
shown in figure 9.17.

The filter and local observer shown in figure 9.17 generate state estimates that
the event-detector uses to make its transmission decision. Let Yk = {y0,y1, . . . ,yk}
denote the measurement information available at time k. The filter generates a
state estimate x : [0,1, . . . ,M]→ R that minimizes the mean square estimation er-
ror (MSEE), E

[
(xk− xk)2 |Yk

]
, at each time step conditioned on all of the sensor

information received up to and including time k. These estimates can be computed
using a Kalman filter. For the scalar process under study these filter equations are

xk = E [xk |Yk] = axk−1 + Lk (yk−axk−1)
Pk = E

[
(xk− xk)2 |Yk

]

= a2Pk−1 + Q−L2
k(a

2Pk−1 + Q+ R)

where x0 = Π0
Π0+R y0 + R

Π0+Rμ0, P0 = Π0R
Π0+R and Lk = a2Pk−1+Q

a2Pk−1+Q+R
.

The event detector uses the filter’s state estimate, xk at time k, and another esti-
mate generated by the local observer to decide when to transmit the filtered state xk

to the remote observer. Given a set of transmission times {τ�}B
�=1, let X k denote

the information received at the remote observer by time k. In particular, this infor-

mation set is X k =
{

xτ1 ,xτ2 , . . . ,xτ�(k)

}
where �(k) = max{� : τ� ≤ k}. The remote

observer generates an a posteriori estimate x̂ : [0,1, . . . ,M]→ R of the process state
that minimizes the MSEE, E

[
(xk− x̂k)2 |X k

]
, at time k conditioned on the informa-

tion received at the remote observer up to and including time k. The a priori estimate
at the remote observer, x̂− : [0,1, . . . ,M]→R, minimizes the E

[
(xk− x̂k)2 |X k−1

]
,

the MSEE at time k conditioned on the information received up to and including
time k−1. Due to the scalar nature of the process, these estimates take the form,

x̂−k = E
[
xk |X k−1

]
= ax̂k−1

x̂k = E
[
xk |X k

]
=
{

x̂−k don’t transmit at time step k
xk transmit at time step k

where x̂−0 = μ0.
The event-detection strategy that is used to select the transmission times, τ�, is

based on observing the gap, e−k = xk − x̂−k between the filter’s estimate x and the
remote observer’s a priori estimate, x̂−k . In the following it will be convenient to
adopt the following notational conventions,

êk = xk− x̂k estimation error at step k,
ek = xk− xk filtered state error at step k,
e−k = xk− x̂−k a priori gap at step k,
ek = xk− x̂k a posteriori gap at step k.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 333

Note that even through the gap is a function of the remote observer’s estimate, this
signal will be available to the sensor. The sensor has access to this information
because the sensor has access to all of the information, X k, that it sent to the remote
observer. As a result, the sensor can use another local estimator to construct a copy
of x̂ that can be used locally by the event-detector to compute the gap, e−k . This local
estimator is shown as part of the transmission subsystem shown in figure 9.17.

The event detector’s decision to transmit is triggered when the estimate’s gap, e−k ,
leaves a time-varying trigger set, Sb

k , where k ∈ [0,1, . . . ,M] is the current time and b
is the number of transmissions remaining at step k. In general, the trigger sets can be
cast as threshold conditions on the estimate’s gap. This is shown graphically in the
lower left-hand side of figure 9.17. The event-triggers are marked with the squares.
The actual gap e−k is shown by the solid bullets. Note that the event-triggers are
time-varying and equal zero at the end of the time horizon M. Sampling is triggered
the first time the gap violates the threshold as shown in figure 9.17. For a given
time k, there can be at most min{B,M + 1− k} transmissions remaining. The state
of the event detector at given time r will be a function of the current a priori gap,
e−r , and the number of remaining transmissions, Tr. This a priori information at
the detector is denoted as the ordered pair, I−r = (e−r ,Tr). In a similar way, the a
posteriori information at the detection is denoted as Ir = (er,Tr+1).

Backward Recursion for Value Function: One can use a backward recursion simi-
lar to that found in stochastic dynamic programming [20] to determine the triggering
sets. Towards this end let’s introduce two collections of triggering sets that will be
used later. These collections are,

S b
r (k) =

{
Smax{0,b−k+r}

k , . . . ,Smin{b,M+1−k}
k

}

S b
r =

{
S b

r (r), . . . ,S b
r (M)

}
.

These two sets are shown in figure 9.18 for a problem with horizon M = 4 and
total number of transmissions, B = 3. This figure shows the indices for the time
steps r and the number of remaining transmissions, b. The collection S 2

1 consists
of those indices enclosed within the dotted line. That set is composed of four other
collections; S 2

1 (1), S 2
1 (2), S 2

1 (3), and S 2
1 (4). Each of these subcollections is

shown as a column of indices enclosed within the rectangles in the figure.
Denote the estimation error at the remote observer as êk = xk− x̂k. The problem

to be solved involves picking the event-triggers in collection S B
0 to minimize the

total MSEE at the remote observer. Formally, the problem is stated as follows

minimize: J(S B
0) = E

[
∑M

k=0 ê2
k

]
(9.26)

where the expectation is taken over ê0, . . . , êM . The optimal collection is the set S B∗
0

such that J(S B∗
0)≤ J(S B

0) over all possible S B
0 and the resulting optimal cost is

J∗ = min
S B

0

J(S B
0).

334 M. Lemmon

r
b

0 1 2 3 M=4

0

1

2

B=3

(1)S
2

1

(2)S
2

1

(3)S
2

1

(4)S
2

1

S
2

1

Fig. 9.18 Trigger set collection S 2
1 =

⋃M
k=1 S 2

1 (k) for B = 3 and M = 4

The problem in equation (9.26) can be treated using results from optimal stochas-
tic control. In our case, the control variables are the collection of triggering sets in
S B

0 , rather than some control signal. Since this is a dynamic optimization problem,
it can be treated using stochastic dynamic programming. This requires a value func-
tion that represents the remote observer’s total MSEE assuming one uses the optimal
triggering sets and assuming the initial information set is I−r = (ζ ,b) where ζ is the
current value of random variable e−r and b is the number of remaining transmissions.
In other words, the value function is

V (ζ ,b,r) = min
S b

r

E

[
M

∑
k=r

ê2
k | I−r = (ζ ,b)

]

. (9.27)

This is the minimal expected cost conditioned on the information I−r available to the
event detector at time r. The optimal cost achieved is J∗ = E

[
V (e−0 ,B,0)

]
. As will

be shown below, this value function can be computed using a backward recursion
often found in dynamic programming.

To develop the backward recursion, let’s first consider that the event-detector
starts at some time after the initial time step 0. In particular, consider an initial state,
(ζ ,b,r), at time step r in which the a priori gap, e−r equals ζ assuming there are b
transmissions remaining to be made. Note that e−r is a random variable whereas ζ is
a specific value for this random variable. From this initial condition, the collection
of admissible trigger sets can be described as

S b
r = {Sb

r}∪S b
r (r + 1)∪·· ·∪S b

r (M).

This is seen from figure 9.18. The minimization in equation (9.27) may therefore be
broken apart as

9 Event-Triggered Feedback in Control, Estimation, and Optimization 335

V (ζ ,b,r) = min
Sb

r

{

min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k | I−r = (ζ ,b)

]}

.

For notational convenience we’ll denote the inner minimization shown above as
G(ζ ,b,r). In other words,

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k | I−r = (ζ ,b)

]

.

The computation of G(ζ ,b,r) may be decomposed into two cases. The first case
is when ζ ∈ Sb

r (i.e. the sensor decides not to transmit) and the other case occurs
when ζ /∈ Sb

r (i.e. the sensor decides to transmit). Let’s outline the computation for
the first case below. In particular, when ζ ∈ Sb

r , one sees that

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k |e−r = ζ ∈ Sb

r ,Tr = b

]

.

When no transmission takes place, the information in the conditions in the above
equation hold if and only if Ir = (er,Tr+1) = I−r = (e−r ,Tr) = (ζ ,b). G(ζ ,b,r) may
therefore be rewritten as

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k | Ir = (ζ ,b)

]

.

Since Tr+1 = b means that there are b transmissions remaining at step r+1, one can
conclude that not all of the trigger sets in

⋃M
k=r+1 S b

r (k) will impact the minimiza-
tion. In particular, one can disregard the sets Sp

k where p ranges from 0 to b−1 and
k = r + b− p.

This means that the minimization is really done over the set S b
r+1. Let’s now

compute G(ζ ,b,r) as a function of the value function at V (e−r+1,b,r + 1). In partic-
ular, G(ζ ,b,r) may be written as

G(ζ ,b,r) = min
S b

r+1

E

[
M

∑
k=r

ê2
k | Ir = (ζ ,b)

]

= E
[
ê2

r | Ir = (ζ ,b)
]
+ min

S b
r+1

E

[
M

∑
k=r+1

ê2
k | Ir = (ζ ,b)

]

= Pr + ζ 2 + min
S b

r+1

E

[
M

∑
k=r+1

ê2
k | Ir = (ζ ,b)

]

.

Since the information set sequence {I−k , Ik}M
k=0 is Markov and e−r+1 is independent

from S b
r+1, the remaining minimization may be rewritten as

336 M. Lemmon

G(ζ ,b,r) = Pr + ζ 2 + min
S b

r+1

E

[

E

[
M

∑
k=r+1

ê2
k | I−r+1 =(e−r+1,b), Ir =(ζ ,b)

]

| Ir =(ζ ,b)

]

= Pr + ζ 2 + min
S b

r+1

E

[

E

[
M

∑
r+1

ê2
k | I−r+1 = (e−r+1,b)

]

| Ir = (ζ ,b)

]

= Pr + ζ 2 + E

[

min
S b

r+1

E

[
M

∑
k=r+1

ê2
k | I−r+1 = (e−r+1,b)

]

| Ir = (ζ ,b)

]

= Pr + ζ 2 + E
[
V (e−r+1,b,r + 1) | Ir = (ζ ,b)

]
.

The preceding argument showed that if ζ ∈ Sb
r , then the term

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k |e−r = ζ ∈ Sb

r ,Tr = b

]

= Pr + ζ 2 + E
[
V (e−r+1,b,r + 1) | Ir = (ζ ,b)

]
.

A similar argument can be used for the case when ζ /∈ Sb
r (i.e. the sensor decides to

transmit). In this case it can be shown that

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k |e−r = ζ /∈ Sb

r ,Tr = b

]

= Pr + E
[
V (e−r+1,b−1,r + 1) | Ir = (0,b−1)

]
.

Combining both of these results determines the following backward recursion for
the value function,

V (ζ ,b,r) = min
Sb

r

{
VNT (ζ ,b,r)1ζ∈Sb

r
+VT (ζ ,b,r)1ζ /∈Sb

r

}
(9.28)

where 1ζ∈Ω is the indicator function that takes a value of 1 if ζ is in the set Ω and
is zero otherwise. The choice implied in the above equation is between VNT (ζ ,b,r)
and VT (ζ ,b,r) where

VT (ζ ,b,r) = Pr + E
[
V (e−r+1,b−1,r + 1) | Ir = (0,b−1)

]

= optimal cost if there is a transmission at time step r

VNT (ζ ,b,r) = Pr + ζ 2 + E
[
V (e−r+1,b,r + 1) | Ir = (ζ ,b)

]

= optimal cost if there is no transmission at time step r.

Note that VT (ζ ,b,r) is independent of ζ . Because of the properties of the indicator
function, the expression given in equation (9.28) is more naturally seen as a choice
in which the sensor chooses between the smaller of two costs,

V (ζ ,b,r) = min
Sb

r

G(ζ ,b,r) = min{VNT (ζ ,b,r),VT (ζ ,b,r)} .

9 Event-Triggered Feedback in Control, Estimation, and Optimization 337

In other words, we have a recursive expression for the optimal cost from the given
state (ζ ,b,r) and the sensor simply decides to transmit if the cost, VT , is smaller
than not transmitting, VNT .

The computation shown in equation (9.28) is a backward recursion over two sets
of indices: the time steps, r, and the number of remaining transmissions, b. In par-
ticular, the value function at index (b,r) is a function of the value function at indices
(b−1,r + 1) and (b,r + 1). The functional dependencies are shown in figure 9.18.
The arrows in this figure illustrate the functional dependencies implied by equation
(9.28).

The initial conditions for this recursion are the value functions at the indices
shaded in figure 9.18. The initial values for indices (0,r) where r ∈ [B,B+1, . . . ,M]
are

V (ζ ,0,r) =

{
Q(M+1−r)

1−a2 +
(

Pr + ζ 2− Q
1−a2

)
1−a2(M+1−r)

1−a2 if |a| �= 1
Q(M+r)(M+1−r)

2 +
(
Pr + ζ 2− rQ

)
(M + 1− r) if |a|= 1

. (9.29)

These initial conditions are determined by recognizing that V (ζ ,0,r) is the cost
assuming that no transmissions occur between steps r and M. The other set of ini-
tial conditions are marked by the indices in figure 9.18 that are located along the
diagonal. In this case

V (ζ ,b,r) =
M

∑
k=r

Pk (9.30)

for b ranging between 1 and B and r = M + 1−b. This value function is the MSEE
from time step r assuming there is a transmission in each of the remaining time
steps.

The value function V (ζ ,B,0) can be computed by recursively determining the
value function in sets S B

0 (k) for k starting at M and ranging backward to 0. The
collection

S B
0 (k) =

{
Smax{0,B−k}

k , . . . ,Smin{B,M+1−k}
k

}

consists of the indices enclosed by the rectangles in figure (9.18). The value func-
tion in set S B

0 (M) is determined by the initial conditions described above. Using
the order of computation implied by the arrows in figure 9.18, it should be appar-
ent that the value function for all nodes in S B

0 (M− 1) can be computed from the
known values in S B

0 (M). In a similar way, one can see that the value function at
indices in S B

0 (M−2) are computed from the values in S B
0 (M−1). One continues

this computation recursively to obtain the value function in S B
0 (0).

Let’s see what’s involved in computing the value function and the trigger set Sb
k

at index (b,k) which corresponds to time step k with b remaining transmissions.
The trigger set, Sb

k , can be chosen to be the symmetric interval [−θ b
k ,θ b

k] where
θ b

k ∈ R is a real positive number that must be computed. In particular, this leads
to the MSEE event-trigger where a transmission occurs if |e−k | > θ b

k . If (b,k) are

338 M. Lemmon

the initial indices shaded in figure 9.18, then the value function is given by the
initial conditions in equations (9.29)-(9.30). For other indices, the value function,
V (ζ ,b,k), and associated threshold θ b

k must be numerically computed using the
recursion in equation (9.28).

V (ζ ,b,k) is computed numerically at a number of discrete points in the real line.
Recall that V (ζ ,b,k) is determined as a choice between the functions VNT (ζ ,b,k)
and VT (ζ ,b,k). These two functions satisfy

VT (ζ ,b,k) = Pk +VT (ζ ,b−1,k + 1)

+
∫ θb−1

k+1

−θb−1
k+1

(VT (x,b−1,k + 1)−VNT(x,b−1,k + 1)) p(x|0)dx

VNT (ζ ,b,k) = Pk + ζ 2 +VT (ζ ,b,k + 1)

−
∫ θb

k+1

−θb
k+1

(VT (x,b,k + 1)−VNT(x,b,k + 1)) p(x|ζ)dx

where p(x|y) is the probability density of e−k+1 conditioned on ek = y. The value of

the optimal thresholds θ b
k+1 and θ b−1

k+1 are needed to evaluate these two functions.
These thresholds can be computed in a recursive manner.

Given θ b
k+1 and θ b−1

k+1 , the next optimal threshold, θ b
k , can be found using a bi-

section search. In particular, the optimal threshold occurs at ζ ∗ when VT (ζ ∗,b,k) =
VNT (ζ ∗,b,k). So the threshold must satisfy θ b

k = |ζ |∗. Once this threshold is de-
termined through the bisection search, then one can see that for |ζ | > θ b

k the value
function V (ζ ,b,k) = VT (ζ ,b,k) and for |ζ | ≤ θ b

k , the value function must satisfy
V (ζ ,b,k) = VNT (ζ ,b,k). This allows one to readily evaluate V (ζ ,b,k) at a number
of distinct points, ζ , along the real line.

An example of this computation is provided below for the system

xk = 1.2xk−1 + wk

yk = xk + vk. (9.31)

The mean and covariance of the initial state are 1 and 2, respectively. The covariance
of the noise terms, w and v, are both 1. Fix the horizon M = 8 and the total number
of transmissions B = 2. Using the algorithm mentioned above, the value function is
evaluated at various values of ζ . Figure 9.19 shows the resulting value function. The
solid line in the figure is the value function for various values of time k. The right-
hand plot shows V (ζ ,1,k) and the left-hand plot shows V (ζ ,2,k). The threshold
θ b

k is marked by the dots in the figure. Outside of the interval defined by the dots
one finds that V (ζ ,b,k) = VT (ζ ,b,k) and this is a constant because VT (ζ ,b,k) is
independent of ζ . Inside the region, the value function varies as a function of ζ .

To see how well the MSEE event-triggers perform, let’s vary B from 0 to 9 and
repeat the experiment 10,000 times for both the optimal event-trigger and compara-
ble periodic triggering of transmissions. The plot in figure (9.20) shows the MSEE
for the optimal event-triggered and periodically triggered transmissions as a func-
tion of the total number of transmissions, B. The plot shows that the experimentally

9 Event-Triggered Feedback in Control, Estimation, and Optimization 339

5

6
7

0

V(ζ ,2,k)

100

80

60

40

20

0

ζ
-8 -6 -4 -2 8642

k=2

k=3

k=0

k=1

k=4

θ 2

0
θ

1

2
θ 2

2
thresholds

0

6
7

8

V(ζ ,1,k)

100

80

60

40

20

0

ζ
-8 -6 -4 -2 8642

k=4

k=3

k=1

k=2

k=5

θ 1

1θ
2

1θ
3

1
thresholds

Fig. 9.19 Value functions V (ζ ,1,k) and V (ζ ,2,k) for sample system

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

Total Number of Transmitted Samples, B

predicted minimum MSE

MSE for optimal event triggered sampling

MSE for periodic sampling

M
e
a
n
 S

q
u
a
re

 E
rr

o
r,

 M
S

E

Fig. 9.20 MSE for periodic and event-triggered system

observed MSEE equals the MSEE predicted by the value function. The plot also
shows that the optimal event-triggered transmission strategy always generates a
smaller total MSEE than comparable periodically triggered systems.

This section has studied the design of MSEE event-triggers for a simple dis-
tributed estimation problem. This problem was solved in [30, 61, 58] under a va-
riety of assumptions. The main contribution of this section was a direct derivation
of the optimal event-triggers using dynamic programming concepts as well as an
explicit method for computing the optimal event-triggering thresholds. The meth-
ods in this section recover the original results in [59]. The analysis may be general
enough to suggest specific ways of extending the treatment of the scalar system to
state estimation of more general linear vector processes.

This section has focused on the estimation problem, but the framework used here
may also be extended to control problems. For control, one simply takes the out-
put of the remote estimator and connects it back into the plant through a controller.

340 M. Lemmon

Real-life applications that fit into this model are found in wireless sensor-actuator
networks. The associated control problem that seeks to maximize control perfor-
mance subject to a communication usage constraint was solved in [87, 88] for the
infinite horizon case. In general, the event-triggering thresholds solving the infinite
horizon problem are constants. Finite horizon versions of this control problem were
treated by [31] and [62]. In the finite horizon case, the event-triggering thresholds
are time-varying functions of the initial system state. It has proven difficult, how-
ever, to apply this work to vector systems due to the computational complexity asso-
ciated with solving the dynamic programming equations. Recent progress has been
made in resolving the computational complexity issue for infinite horizon prob-
lems through the use of quadratic approximations for the value function [19, 18].
A related approach was used in [42] to address the complexity in the finite-horizon
estimation problem.

9.6 Event-Triggered Approaches to Optimization

This section introduces an event-triggered distributed algorithm that solves network
utility maximization (NUM) problems in large-scale networked systems [79, 78].
Existing distributed algorithms for the NUM problem are gradient-based schemes
that converge to the optimal point provided the communication between subsystems
is sufficiently frequent. Analytic bounds on the communication interval required to
ensure convergence tend to be inversely proportional to certain measures of network
complexity such as network diameter and connectivity. As a result, the total mes-
sage passing complexity in such algorithms can be very great. The event-triggered
algorithm presented in this section appears to reduce the message passing complex-
ity by nearly two-orders of magnitude. Moreover, experimental results indicate that
this complexity may be independent of network diameter and connectivity.

Related Work: Many problems in networked systems can be formulated as opti-
mization problems. This includes estimation [56, 69, 33], source localization [56],
data gathering [15, 14], routing [46], control [77], resource allocation [55, 89] in
sensor networks, resource allocation in wireless communication networks [86, 16],
congestion control in wired communication networks [36, 44], and optimal power
dispatch [38] in electrical power grid. The consensus problem [52] can also be
viewed as a distributed optimization problem where the objective function is the
total state mismatch between neighboring agents. Many of these problems may be
viewed as multi-agent optimization problems that can be solved by a distributed im-
plementation of a subgradient algorithm [49]. In all of these problems, subsystems
communicate with each other in order to collaboratively solve a network optimiza-
tion problem.

Distributed algorithms that solve such network optimization problems include
the center-free distributed algorithms [28], distributed asynchronous gradient-based
algorithms [72] and distributed subgradient methods [49]. These early algorithms
suggest that if the communication between adjacent subsystems is sufficiently fre-
quent, then the state of the network will asymptotically converge to the optimal

9 Event-Triggered Feedback in Control, Estimation, and Optimization 341

point. Later developments in such distributed algorithms may be found in the net-
working community. Most of these later algorithms focus on solving the Network
Utility Maximization (NUM) problem. The NUM problem maximizes a global sep-
arable measure of network system performance subject to linear inequality con-
straints that are directly related to throughput constraints. This problem originates
in congestion control for Internet traffic [36, 44]. The NUM problem, however, has
a general form and many problems in other areas can be recast as a NUM problem
with little or no variation. As a matter of fact, many of the aforementioned problems
can be reformulated as NUM problems.

Among the existing algorithms [36, 44, 85, 53] solving the NUM problem, the
dual-decomposition approach proposed by Low et al. [44] is the most widely used.
Low et al. showed that their dual-decomposition algorithm was convergent for a
step-size that was inversely proportional to two important measures of network
size: the maximum path length L and the maximum number of neighbors S. So
as these two measures get large, the step size required to ensure convergence be-
comes extremely small. Step size, of course, determines the number of computa-
tions required for the algorithm’s convergence. Under dual-decomposition, system
agents exchange information at each iteration, so that step size, γ , also determines
the message passing complexity of the algorithm. Therefore if one uses the stabi-
lizing step size, dual-decomposition algorithms will have a message passing com-
plexity that quickly scales to unreasonable levels as the network diameter, L, or the
neighborhoood size, S, increases. In particular, it was shown in [44] that the dual-
decomposition is convergent if the step size satisfies

0 < γ < γ∗ =
−2max(i,xi)∇

2Ui(xi)

LS
(9.32)

where L is the maximum number of links any user uses, S is the maximum number
of users any link has, and Ui(xi) is the utility user i receives for transmitting at rate
xi. For many networked systems this type of message passing complexity may be
unacceptable. This is particularly true for systems communicating over a wireless
network. In such networked systems, the energy required for communication can be
significantly greater than the energy required to perform computation. As a result, it
would be beneficial if one can somehow separate communication and computation
in these distributed algorithms. This could reduce the message passing complex-
ity of distributed algorithms such as dual-decomposition. This section shows how
event-triggering can be used to realize the separation between communication and
computation in a primal algorithm solving the NUM problem.

NUM Problem: The NUM problem consists of a network of N users and M links.
Let S = {1, . . . ,N} denote the set of users and L = {1, . . . ,M} denote the set of
links. Each user generates a flow with a specified data rate. Each flow may traverse
several links (which together constitute a route) before reaching its destination. The
set of links that are used by user i ∈S will be denoted as Li and the set of users
that are using link j ∈L will be denoted as S j. The NUM problem takes the form

342 M. Lemmon

maximize: U(x) = ∑i∈S Ui(xi)
subject to: Ax≤ c, x≥ 0

(9.33)

where x =
[

x1 · · · xN
]T

and xi ∈ R is user i’s data rate. A ∈ R
M×N is the routing

matrix mapping users onto links and c ∈ R is a vector of link capacities. The jith

component, A ji, is 1 if user i’s flow traverses link j and is zero otherwise. The
jth row of Ax represents the total data rates going through link j. This rate cannot
exceed the link’s capacity c j. The cost function U : R

N → R is the sum of the user
utility functions, Ui : R→R, for i = 1,2, . . . ,N. These utility functions represent the
reward, Ui(xi), (i.e. quality-of-service) that user i receives by transmitting at rate xi.

A specific example of a NUM problem is shown in figure 9.21. This figure shows
a linear network consisting of M = 5 links with N = 3 users. User 1’s route includes
links 1-4, user 2’s route includes links 2-3, and user 3’s route uses link 3-5. Assum-
ing each link has a capacity limit of 1, the throughput constraint therefore becomes,

Ax =

⎡

⎢
⎢
⎢⎢
⎣

1 0 0
1 1 0
1 1 1
1 0 1
0 0 1

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎣
x1

x2

x3

⎤

⎦≤

⎡

⎢
⎢
⎢⎢
⎣

1
1
1
1
1

⎤

⎥
⎥
⎥⎥
⎦

= c.

link 1 link 3link 2 link 4 link 5

User 1

User 2
User 3

Fig. 9.21 Example of NUM Problem

The solution to the NUM problem maximizes the summed utility seen by all users
in the network as a function of the users’ transmission rates. These rates must clearly
be non-negative. Moreover, if Ui(x) = αi log(x) where αi is a positive constant, then
it can be shown [36] that all the user rates in the optimal solution must be positive. In
other words, the optimal solution does not result in certain users from being denied
access to the network, thereby assuring that all users have fair access to network
resources.

Augmented Lagrangian Algorithm: While early algorithms used methods based
on the dual to the problem in equation (9.33), this section examines a primal aug-
mented Lagrangian method. In particular, let’s introduce a slack variable s∈R

M and
replace the link constraints (c j− aT

j x ≥ 0 for all j ∈L) by the following equality
constraint

9 Event-Triggered Feedback in Control, Estimation, and Optimization 343

aT
j x− c j + s j = 0, s j ≥ 0, for all j ∈L .

where s j is called the slack variable for the jth constraint. The augmented cost then
becomes

L(x,s;λ ,w) =− ∑
i∈S

Ui(xi)+ ∑
j∈L

λ j(aT
j x− c j + s j)+

1
2 ∑j∈L

1
wj

(aT
j x− c j + s j)2.

Here a penalty parameter wj is associated with each link constraint and w =
[w1, . . . ,wM] is the vector of penalty parameters. The other variable λ j is an estimate
of the Lagrange multiplier, λ ∗j , associated with link j’s constraint, c j − aT

j x ≥ 0.
A vector formed from these estimates is denoted as λ = [λ1, . . . ,λM]. The vector
aT

j =
[
A j1, · · · ,A jN

]
is the jth row of the routing matrix A.

L(x,s;λ ,w) is a continuous function of x and s for fixed λ and w. The user rate, x∗,
and the slack variable s∗, that minimizes the augmented cost satisfies the following
equation

min
x≥0,s≥0

L(x,s;λ ,w) = min
x≥0

min
s≥0

L(x,s;λ ,w) = min
x≥0

Lp(x;λ ,w) (9.34)

where one defines the augmented Lagragian function associated with the NUM
problem as

Lp(x;λ ,w) =− ∑
i∈S

Ui(xi)+ ∑
j∈L

ψ j(x;λ ,w)

and where

ψ j(x;λ ,w) =

{
− 1

2 wjλ 2
j if c j−aT

j x−wjλ j ≥ 0
λ j(aT

j x− c j)+ 1
2w j

(aT
j x− c j)2 otherwise .

The optimization problem in equation (9.34) is then used as a starting point for
developing a recursive procedure that asymptotically approaches the solution of the
original NUM problem.

The original NUM problem’s solution can be approached arbitrarily closely by
solving an appropriately defined sequence of the optimization problems in equation
(9.34). This sequence of problems involve minimizing Lp(x;λ [k],w[k]) for appro-
priately chosen sequences of penalty parameters, w, and multiplier estimates, λ .
Let x∗[k] denote the approximate minimizer for Lp(x;λ [k],w[k]). It has been shown
[6] that for appropriately chosen sequences {w[k]}∞k=0 and {λ [k]}∞k=0, the sequence
of approximate minimizers, {x∗[k]}∞k=0 converges to the optimal point of the NUM
problem. The appropriate choice for these sequences is that for all j ∈L

• the sequence of penalty parameters, {wj[k]}∞k=0, is monotone decreasing to zero
• and the sequence of Lagrange multiplier estimates, {λ j[k]}∞k=0, is a sequence

where

344 M. Lemmon

λ j[k + 1] = max

{
0,λ j[k]+

1
wj[k]

(
aT

j x∗[k]− c j
)
}

.

A detailed description of how the sequences w[k] and λ [k] are updated in a dis-
tributed manner will be found in [78].

A primal algorithm based on the augmented Lagrangian method was developed
[78] that converges to the exact minimizer of the NUM problem. In many scenarios,
however, it may suffice to obtain an approximate minimizer which can be obtained
by considering the problem of minimizing Lp(x;λ ,w) for a fixed λ and w. In par-
ticular, if λ j = 0 and wj is sufficiently small, the minimizer of Lp(x;λ ,w) will be a
good approximation to the solution of the original NUM problem. In this regard the
basic primal algorithm can be stated as follows

1. Initialization: Select any initial user rate x[0] > 0. Set λ j = 0 and select a suf-
ficiently small wj > 0 for all j ∈L .

2. Recursive Loop: Minimize Lp(x;λ ,w) by letting

x[k + 1] = max

{
0,x[k]− γ ∂Lp

∂x
(x[k];λ ,w)

}
(9.35)

for k = 0,1, . . . ,∞.

The smaller w is the more accurate our approximate solution is. The recursion shown
in step 2 tries to minimize Lp(x;λ ,w) using a gradient following method in which
γ is a sufficiently small step size. The computations shown above can be easily
distributed among users and links.

Event-Triggered NUM Algorithm: Implementing the aforementioned primal al-
gorithm in a distributed manner requires communication between users and links.
An event-triggered implementation of the algorithm assumes that the transmission
of messages between users and links is triggered by some local error signal crossing
a state-dependent threshold. The main problem is to determine a threshold condi-
tion that results in message streams ensuring asymptotic convergence to the NUM
problem’s approximate solution.

The minimizer of the Lagrangian Lp(x;λ ,w) is searched for using the gradient
following recursion in equation (9.35). Assuming that computation is cheap, one
realizes this gradient recursion as a continuous-time system in which

xi(t) = −
∫ t

0

(
∂Lp

∂xi
(x(τ);λ ,w)

)+

xi(τ)
dτ

=
∫ t

0

(
∂Ui(xi(τ))

∂xi
− ∑

j∈Li

μ j(τ)

)+

xi(τ)

dτ (9.36)

for each user i ∈S where

9 Event-Triggered Feedback in Control, Estimation, and Optimization 345

μ j(t) = max

{

0,λ j +
1

wj

(

∑
i∈S j

xi(t)− c j

)}

. (9.37)

The function μ j : R→ R is a scalar characterizing how close the jth link constraint
is to being active. The link constraint is active at time t when μ j(t) = 0. Given a
function f : R→ R, its positive projection is defined as

(f (x))+
x =

{
0 if x = 0 and f (x) < 0

f (x) otherwise
.

The positive projection used above guarantees that the user rate, xi(t), is always
non-negative along the trajectory.

Equation (9.36) is the continuous-time version of the discrete-time update shown
in equation (9.35). Note that in equation (9.36), user i computes its rate based only
on the information from itself and the information of μ j from those links that are
being used by user i. As noted above μ j characterizes how close the j link constraint
is to being active. One may think of μ j as the jth link’s local state. From equation
(9.37), link j only needs to be able to measure the total flow that goes through
itself. Since all of this information is locally available, the update of the user rate in
equation (9.36) can be done in a distributed manner.

In equation (9.36), the link state information is available to the user in a contin-
uous manner. Let’s consider an event-triggered version of equation (9.36). This is
done by allowing the user to only access a sampled version of the link state. In par-
ticular, let’s associate a sequence of sampling instants, {T L

j [�]}∞�=0 with the jth link.

The time T L
j [�] denotes the instant when the jth link samples its link state μ j for the

�th time and transmits that state to users i ∈S j. One can see that at any time t ∈ R,
the sampled link state is a piecewise constant function of time in which

μ̂ j(t) = μ j(T L
j [�])

for all � = 0,1, . . . ,∞ and any t ∈ [T L
j [�],T L

j [�+1]). In this regard, the event-triggered
version of equation (9.36) takes the form

xi(t) =
∫ T

0

(
∂Ui(xi(τ))

∂xi
− ∑

j∈Li

μ̂ j(τ)

)+

xi(τ)

dτ

for all � and any t ∈ [T L
j [�],T L

j [�+ 1]).
Let’s now try to establish conditions on the sampling times {T L

j [�]} that ensure
the gradient update shown in equation (9.35) is convergent. For notational conve-
nience let the time derivative of the user rate, xi(t), be denoted as zi(t). Referring to
zi(t) as the user state, one sees that zi satisfies the equation

zi(t) = ẋi(t) =

(
∂Ui(xi(t))

∂xi
− ∑

j∈Li

μ̂ j(t)

)+

xi(t)

346 M. Lemmon

for all i ∈S . Now we take Lp(x;λ ,w) as a candidate Lyapunov function. The di-
rectional derivative of Lp is

L̇p(x;λ ,w) =
M

∑
i=1

∂Lp

∂xi

dxi

dt
=−

N

∑
i=1

zi

(
∂Ui(xi(t))

∂xi
−

M

∑
j=1

μ jA ji

)

≤ −
N

∑
i=1

⎛

⎝1
2

z2
i −

1
2

(
M

∑
j=1

(μ j− μ̂ j)A ji

)2
⎞

⎠

≤ −1
2

N

∑
i=1

z2
i +

1
2

M

∑
j=1

LS(μ j− μ̂ j)2.

To assure that L̇p is negative definite, one needs to select the sampling times so that

M

∑
j=1

LS(μ j− μ̂ j)2 ≤
N

∑
i=1

z2
i .

This almost looks like one of the state-dependent event-triggers used earlier in sec-
tion 9.4. Unfortunately, this trigger cannot be implemented in a distributed manner.
While the left-hand side is separable over the links, the right-hand side is summed
over the users. So the preceding analysis does not give rise to a distributed event
triggered algorithm.

To develop local event-triggers that can be easily distributed across the network,
let’s consider another sequence of times {T S

i [�]}∞�=0 for each user i ∈S . The time
T S

i [�] is the �th time when user i transmits its user state to all links j ∈Li. One can
therefore see that at any time t ∈ R, the sampled user rate is a piecewise constant
function of time satisfying

ẑi(t) = zi(T S
i [�])

for all � = 0,1, . . . ,∞ and any t ∈ [T S
i [�],T S

i [�+ 1]). One can now use this sampled
user state in our earlier expression for L̇p to show that

L̇(x;λ ,w) ≤−1
2

N

∑
i=1

[
z2

i −ρ ẑ2
i

]− 1
2

M

∑
j=1

[

ρ ∑
i∈S j

1

L
ẑ2

i −LS(μ j− μ̂ j)2

]

for some ρ ∈ (0,1). The derivative, L̇p, is negative definite as long as

0 <
N

∑
i=1

[z2
i −ρ ẑ2

i]

0 <
M

∑
j=1

[

ρ ∑
i∈S j

1

L
ẑ2

i −LS(μ j− μ̂ j)2

]

.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 347

In this case, both inequalities are separable. The first one is separable over the users
and the second one is separable over the links. One can therefore ensure these con-
ditions are satisfied if

z2
i −ρ ẑ2

i > 0 (9.38)

for each i ∈S . This condition can be enforced by requiring that the user transmit zi

at those time instants when the inequality is about to be violated. The other condition
is satisfied if

LS(μ j− μ̂ j)2 < ρ ∑
i∈S j

1

L
ẑ2

i (9.39)

for each j ∈L . This condition can be enforced by requiring that the link transmit
μ j at those time instants when the inequality is about to be violated. The informal
discussion given above therefore establishes that if user/link transmissions are gen-
erated using the event-triggers in equation (9.38) and (9.39), then Lp(x;λ ,w) indeed
becomes a Lyapunov function for this system and one can ensure that this system is
convergent to a neighborhood of the optimal solution of the NUM problem.

Figure 9.22 shows the event-triggered optimization algorithm in graphical from.
This figure uses the system network that was introduced in figure 9.21. In this case
each link in the network has an associated router which monitors the total data flow-
ing through the link (∑i∈S j

xi(t)− c j). Attached to each router is a price agent that
updates the link state μ j and checks the event-trigger in equation (9.39) to determine
whether or not it will transmit its local link state. In a dual manner, each user that
is pumping data into the network has an associated rate agent that updates the user
state zi(t) and checks the trigger in equation (9.38) to determine when to transmit to
the links. One therefore see that the algorithm has both a feedback (link to user) and
feedforward path (user to link) in which the information streams are both sporadic
in nature.

Scaling of Event-Triggered Algorithm: Let’s compare the number of message
exchanges of the event-triggered algorithm against the dual-decomposition algo-
rithm. Simulation results show that event-triggered algorithms reduce the number
of message exchanges by up to two orders of magnitude when compared to dual-
decomposition. Moreover, the event-triggered algorithm’s message passing com-
plexity scales in a way that appears to be independent of network diameter or
connectivity.

Denote s ∈ U [a,b] if s is a random variable uniformly distributed on [a,b].
Given M, N, L and S, the network used for simulation is generated in the fol-
lowing way. One randomly generates a network with M links and N users, where
|S j| ∈ U [1,S] for j ∈ L and |Li| ∈ U [1,L] for i ∈ S . One makes sure that at
least one link has S users, and at least one user uses L links. After the network
is generated, a utility function Ui(xi) = αi logxi is assigned to each user i, where
αi ∈ U [0.8,1.2]. Link j is assigned capacity c j ∈ U [0.8,1.2]. Once the network
is generated, dual-decomposition and the event-triggered augmented Lagrangian

348 M. Lemmon

rate

agent
user

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

rate

agent
user

rate

agent
user

ith user broadcasts its modified state, zi,
at times {TS

i [�]}∞�=0
when

z
2

i (t) − ρẑ
2

i (t) ≤ 0

jth link broadcasts its state, μj , at times
{TL

j [�]}∞�=0 when

LS(μj(t) − μ̂j(t))
2 ≥ ρ

∑

i∈Sj

1

L
ẑ2
i (t)

jth link continuously monitors its local
state

μj(t) =

⎛

⎝λj +
1

wj

⎛

⎝
∑

i∈Sj

xi(t) − cj

⎞

⎠

⎞

⎠

+

ith user continuously monitors its local
modified state

zi(t) =

⎛

⎝∂Ui(xi(t))

∂xi

−
∑

j∈Li

μ̂j(t)

⎞

⎠

+

Fig. 9.22 Diagram of the event-triggered primal algorithm

algorithms are simulated. The optimal rate x∗ and its corresponding utility U∗ are
calculated using a global optimization technique.

Define the error (for all algorithms) as

e(k) =
∣∣
∣
U(x(k))−U∗

U∗
∣∣
∣

where x(k) is the rate at the kth iteration. e(k) is the ‘normalized deviation’ from the
optimal point at the kth iteration. In all algorithms, one counts the number of iter-
ations K for e(k) to decrease to and stay in the neighborhood {e(k)|e(k) ≤ ed}. In
dual-decomposition, message passing from the links to the users occurs at each iter-
ation synchronously. So K is a measure of the total number of message exchanges.
In the event-triggered algorithms, events occur in a totally asynchronous way. So
one adds the total number of triggered events, and divide this number by the link
number M. This provides an equivalent iteration number K for the event-triggered
algorithms, and is a measure of the total number of message exchanges. One should
point out that since these simulations compare a primal algorithm and a dual algo-
rithm, they run at different time scales. Iteration number is then a more appropriate
measure of convergence than time [17, 34].

The default settings for the simulation are as follows: M = 60, N = 150, L =
8, S = 15, and ed = 3%. For all three algorithms, the initial condition is xi(0) ∈
U [0.01,0.05] for all i ∈S . In dual-decomposition, initial price p j = 0 for j ∈L ,
and the step size γ is calculated using equation (9.32). In the event-triggered primal
algorithm, the parameters are ρ = 0.5, λ j = 0, and wj = 0.01 for j ∈L .

9 Event-Triggered Feedback in Control, Estimation, and Optimization 349

We now consider a Monte Carlo simulation where M, N, and L are fixed and S
is varied from 7 to 26. For each S, all algorithms were run 1500 times, and each
time a random network which satisfies the above specification is generated. The
mean mK and standard deviation σK of K are computed for each S. mK is used as
the criterion for comparing the scalability of both algorithms. The left-hand plot in
figure 9.23 plots the iteration number K on a logarithmic scale as a function of S
for all algorithms. The circles represent mK for dual-decomposition and the squares
correspond to the primal algorithm.

dual-decomposition algorithm
event-triggered algorithm

104

6 8 10 12 14 16 18 20 22 24 26

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

s

S = maximum number of users any link has

103

102

101 101

102

103

104

dual-decomposition algorithm
event-triggered algorithm

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

s

2 4 6 8 10 12 14 16 18

L = maximum number of links used by any user

Fig. 9.23 Iteration number K as a function of S and L for all algorithms

For the primal algorithm, when S increases from 7 to 26, mK does not show
noticeable increase. For the primal algorithm, mK varies between 15.1 and 21.1. For
dual-decomposition, mK increases from 0.3856× 103 to 5.0692× 103. Our event-
triggered algorithm is up to two orders of magnitude faster than dual-decomposition.
These results also show that the event triggered message passing complexity scales
in a manner that is independent of S. This is stands in stark contrast to the dual-
decomposition algorithm which scales superlinearly with respect to S.

These algorithms were also simulated as a function of L. In particular, L was
varied from 4 to 18. The right-hand plot in figure 9.23 plots K (on a logarithmic
scale) as a function of L for all algorithms. For the primal algorithm, when L in-
creases from 4 to 18, mK increases slowly. In particular, mK increases from 15.0
to 18.2. For dual-decomposition, mK increases from 0.9866×103 to 3.5001×103.
The event-triggered algorithm again is up to two orders of magnitude faster than the
dual-decomposition.

This section presented a primal event-triggered distributed algorithm for solving
network utility maximization problems based on augmented Lagrangian methods.
Simulation results suggest that event-triggering greatly reduces the message passing
complexity of such distributed optimization algorithms. Optimization of networked
systems therefore represents another important application of event-triggering that
can be applied to a wide range of applications ranging from traffic control to power
dispatch in electrical power grids.

350 M. Lemmon

9.7 Research Issues

No chapter of this nature is complete without a discussion of future research issues.
Event-triggering represents a new paradigm for real-time feedback control, but the
topics covered in this chapter only touch upon what has recently been done. As
is often the case, good preliminary work presents just as many questions as it an-
swers and this is certainly the case for event-triggered research as of the writing of
this chapter. To help motivate the research issues being raised in this section, let’s
consider a real-time implementation of a state-dependent event-triggered control
system.

There are case studies examining the performance of event-driven control based
on static thresholds [64, 63]. There is, however, very little experimental work ex-
amining the implementation of the state-dependent event-triggers introduced in sec-
tions 9.3 and 9.4. Early work in this direction will be found in [10] in which a
self-triggered controller is implemented in a linear analog plant using a real-time
kernel. Another early implementation will be found in [13] where the performance
of different scheduling protocols for event-triggered controllers on a shared network
is investigated. Finally, an experimental study directly comparing the best periodic
controller to an event-triggered controller will be found in [26].

Figure 9.24 shows results from a recent experiment implementing state-
dependent event-triggered feedback-linearizing controllers for the 3 degree-of-
freedom (DOF) helicopter system. The plant is a Quanser c© 3DOF helicopter
controlled by a pentium III PC running the S.H.a.R.K. real-time kernel [22]. In
this case, a feedback-linearizing controller was designed for the system with the
objective of regulating the travel rate, τ̇ , elevation, ε , and pitch ρ of the vehicle.
Event-triggered and periodically triggered implementations of this system were im-
plemented in the S.H.a.R.K. kernel and the results from one of these experiments is
shown on the right-hand side of figure 9.24.

0 10 20 30 40 50 60 70 80 90
Time (sec)

Commanded

Event Triggered

Periodic

x 10
−4

Periodic

Event Triggered

T
ra

v
e
l

R
a
te

 (
ra

d
/s

e
c
) 0.4

0.2

0

-0.4

-0.2

C
P

U
 U

ti
li

z
a
ti

o
n

0

4

2

6

0 10 20 30 40 50 60 70 80 90
Time (sec)

τ

ε

ρ

Fig. 9.24 Real-time Hardware Implementation of State-Dependent Event-Triggered System

9 Event-Triggered Feedback in Control, Estimation, and Optimization 351

The top plot in figure 9.24 shows the travel rate as a function of time. The com-
manded travel rate is shown by the solid dashed line and the other traces show the
response of the event-triggered and periodically triggered controllers. What is im-
portant to note here is that the behavior is nearly identical in both cases. The bottom
plot shows the normalized CPU utilization of the event-triggered and periodically
triggered controllers. What one notices here is that when the vehicle is commanded
to non-zero travel rates, the event-triggered task’s utilization drops considerably.
During those periods, however, when the commanded travel rate is near zero (i.e.
the vehicle is hovering), the CPU utilization increases and actually exceeds the uti-
lization of the periodically triggered controller.

These results actually confirm what the prior analysis in section 9.3 discovered. In
particular, if one looks back at the results from [63] shown in figure (9.1), one sees
that event-triggering indeed reduces the overall CPU utilization relative to compa-
rable performing periodic controllers. For the case in [63, 24], however, a uniform
event-triggering threshold is chosen so that the system demonstrates considerable
chattering when the system is close to its equilibrium point. Under state-dependent
event-triggering, however, this type of chattering in the system response does not ap-
pear. But because the experiment’s input disturbance, w, is wideband sensor noise an
excessive number of events are triggered, just as was shown earlier in figure 9.7 of
section 9.3. What these results suggest is that state-dependent event-triggering can
reduce the jerky behavior seen under the static thresholds used in [63]. The current
theory, however, does not adequately balance that gain against the increased use of
CPU resources.

With the findings from this experiment in hand, one can now identify a num-
ber of important issues that future research into event-triggered feedback must con-
front. Probably the most immediate is that we develop a better understanding of
how to adequately trade-off control system performance against the reduction in
the use of computational or communication resources. In particular, if one exam-
ines the ISS or L2 event-triggering concepts discussed in sections 9.3 and 9.4, one
notes that while the analysis guarantees the preservation of some assumed stability
concept, it says almost nothing about the message passing complexity. To be fair,
these analyses do bound the minimum sampling period of state-dependent event-
triggering. But these bounds are obtained as an afterthought, once the stability-
preserving threshold has been determined. What is really needed is an analysis that
treats both stability-preserving performance and communication (or computational)
resource usage within the same analytical framework. To some extent, this approach
was attempted in the event-triggered estimation scheme considered in section 9.5.
In that case, the design of the event-trigger was posed as a minimization problem in
which the transmission rate between sensor and remote observer was constrained.
But that analysis is still far from being mature enough to be applied to real-life sys-
tems. The analysis constrains its attention to scalar linear systems and it is unclear
how those results might be generalized to vector or nonlinear systems with real-life
uncertainties.

Event-triggering samples the system state over time. The focus on constraining
communication in section 9.5 can be seen as trying to identify fundamental limits

352 M. Lemmon

on the rate at which information should be transmitted over the feedback chan-
nel. Sampling in time, however, is not the only way one can sample a signal. One
may also sample the signal in space, i.e. quantization. This suggests there should
be a close connection between results on minimum quantization feedback control
[43] and event-triggered feedback. In particular, an important issue involves a uni-
fied approach to quantization and sampling in distributed control and estimation
problems. Joint quantization and sampling issues were examined in [39], but a full
understanding of this relationship has yet to be completed.

Another important issue concerns the development of event-triggered output
feedback controllers. The experiment shown in figure 9.24 made use of state-
dependent event-triggers that presume full access to the state. In the experimental
system, however, the sensors only directly measure the travel angle, τ , elevation an-
gle ε , and pitch angle ρ . For the experiment a periodic task was used to estimate
the actual states of the system and then a separate event-triggering task was used
to invoke separate controllers for the travel, elevation, and pitch dynamics of the
vehicle. This implementation, however, is still far from what one would do in prac-
tice. Since most of the computational effort is actually done in the observer task, the
true reduction in CPU utilization is very modest for this experiment. To truly realize
the benefits of event-triggering, one would need an event-triggered output feedback
controller, in which triggering is done solely on the basis of observed sensor mea-
surements, rather than state estimates.

To some extent, the event-triggered estimation methods discussed in section 9.5
provide a first step at developing measurement-based event-triggers. But precisely
how this might be integrated into an output feedback system is unclear. One might,
for instance, implement an event-triggered observer, whose states are then used to
trigger the control action. But this interconnection of an event-triggered estimator
and event-triggered controller has not been studied at all. It is unclear whether one
can invoke some event-triggered separation principle. As soon as issues regarding
observer based control are raised, one must also confront traditional observability
and controllability issues. We are aware of no recent work regarding these deeper
system theoretic properties of event-triggered systems.

Finally, let’s return to the implementation questions raised in the experiment. As
noted above, the task set in this experiment consists of a hybrid combination of spo-
radic event-triggered tasks and periodically triggered tasks that work together to re-
alize state-dependent event-triggered controllers. In realizing such hybrid task sets
there are always implementation issues regarding scheduling and fault-tolerance
that need to be addressed. In particular, it is still unclear how best to schedule this
mixture of sporadic and periodically triggered tasks to ensure the determinism so
often insisted upon in safety-critical applications. One reason for insisting on pe-
riodically driven task sets in control, is that they provide a highly predictable be-
havior. When faults do occur, the impact of those faults can be readily analyzed
due to the highly deterministic nature of the resulting task environment. This type
of deterministic modeling does not seem to be available for the task sets currently
used to support event-triggered feedback and as a result it would be highly unlikely
that anyone would choose event-triggering for safety-critical applications. This need

9 Event-Triggered Feedback in Control, Estimation, and Optimization 353

not be the case, but to establish that event-triggering is suitable for safety-critical
applications one must develop a modeling framework whose predictive abilities
can provide broad assurances about the fault-tolerant properties of event-triggered
systems.

Event-triggered feedback represents an exciting new approach to real-time
networked control systems that has the potential of more efficiently using com-
putational and communication resources while assuring high levels of application
performance. These applications can be found in control, estimation, and optimiza-
tion. While the promise of event-triggering is great, there is still significant work
remaining to be done. A deeper understanding of the relationship between applica-
tion performance and resource usage must be cultivated. In particular, a close ex-
amination must be made of the connection between quantized and event-triggered
feedback. The current frameworks must be extended to event-triggered output con-
trollers. This extension will require a deeper understanding of the fundamental sys-
tem theoretic properties of event-triggered systems, especially as they pertain to the
separation between control and estimation. Finally, we must more critically evaluate
the scheduling and fault-tolerance of real-time implementations of event-triggered
controllers, especially as they pertain to safety-critical applications. Much has al-
ready been done, but a great deal remains to be accomplished if event-triggering
can indeed be used to build safety-critical real-time networked control systems.

Acknowledgements. The author gratefully acknowledges the partial financial support of the
National Science Foundation (NSF-CNS-07-20457 and NSF-ECCS-0925229). This work
grew out of discussions with P. Tabuada (UCLA) , M. Heemels (Eindhoven), A. Cervin
(Lund), P. Marti (Catalunya), M. Johansson (KTH), K. Johansson (KTH), and X. Hu (Notre
Dame) as well as the hard work of graduate students, X. Wang (UIUC), P. Wan, L. Li, and
J. Viramontes-Perez. Finally, the author would like to thank A. Bemporad (Siena) and the
European Union’s WIDE project for supporting the presentation of this work at the Third
WIDE Ph.D. School on Networked Control Systems.

References

1. Anta, A., Tabuada, P.: Self-triggered stabilization of homogeneous control systems. In:
Proceedings of the American Control Conference, Seattle, Washington, USA, June 11-
13, 2008, pp. 4129–4134 (2008)

2. Arzen, K.-E.: A simple event-based PID controller. In: Procedings of the 14th World
Congress of the International Federation of Automatic Control (IFAC), Beijing, P.R.
China (1999)

3. Arzen, K.-E., Cervin, A., Eker, J., Sha, L.: An introduction to control and scheduling co-
design. In: IEEE Conference on Decision and Control, Sydney, NSW, Australia, vol. 5,
pp. 4865–4870 (December 2000)

4. Astrom, K.J., Bernhardsson, B.M.: Comparison of Riemann and Lebesgue sampling for
first order stochastic systems. In: Proceedings of the 41st IEEE Conference on Decision
and Control, Las Vegas, Nevada, USA, December 10-13, vol. 2, pp. 2011–2016 (2002)

354 M. Lemmon

5. Bao, L., Skoglund, M., Johansson, K.H.: Encoder-decoder design for event-triggered
feedback control over bandlimited channels. In: American Control Conference, Min-
neapolis, Minnesota, USA (2006)

6. Bertsekas, D.P.: Nonlinear programming. Athena Scientific, Belmont (1999)
7. Bhattacharya, R., Balas, G.J.: Anytime control algorithm: model reduction approach.

Journal of Guidance, Control and Dynamics 27(5), 767–776 (2004)
8. Buttazzo, G., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In: IEEE

Real-Time Systems Symposium (RTSS), pp. 286–295 (1998)
9. Caccamo, M., Buttazzo, G., Sha, L.: Elastic feedback control. In: IEEE Euromicro Con-

ference on Real-Time Systems, ECRTS (2000)
10. Camacho, A., Marti, P., Velasco, M., Bini, E.: Demo abstract: Implementation of self-

triggered controllers. In: Demo Session of 15th IEEE Real-time and Embedded Technol-
ogy and Applications Symposium (RTAS 2009), San Francisco, California, USA (2009)

11. Carnevale, D., Teel, A.R., Nesic, D.: A Lyapunov proof of improved maximum allow-
able transfer interval for networked control systems. IEEE Transactions on Automatic
Control 52, 892–897 (2007)

12. Cervin, A., Eker, J.: Control-scheduling codesign of real-time systems: the control server
approach. Journal of Embedded Computing 1(2), 209–224 (2004)

13. Cervin, A., Henningsson, T.: Scheduling of event-triggered controllers on a shared net-
work. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun,
Mexico (December 2008)

14. Chen, W.P., Hou, J.C., Sha, L., Caccamo, M.: A distributed, energy-aware, utility-based
approach for data transport in wireless sensor networks. In: Proceedings of the IEEE
Milcom (2005)

15. Chen, W.P., Sha, L.: An energy-aware data-centric generic utility based approach in wire-
less sensor networks. In: IPSN, pp. 215–224 (2004)

16. Chiang, M., Bell, J.: Balancing supply and demand of bandwidth in wireless cellular
networks: utility maximization over powers and rates. In: Proc. IEEE INFOCOM, vol. 4,
pp. 2800–2811 (2004)

17. Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.C.: Layering as optimization de-
composition: A mathematical theory of network architectures. Proceedings of the
IEEE 95(1), 255–312 (2007)

18. Cogill, R.: Event-based control using quadratic approximate value functions. In: IEEE
Conference on Decision and Control, Shanghai, China (2009)

19. Cogill, R., Lall, S., Hespanha, J.P.: A constant factor approximation algorithm for event-
based sampling. In: Proceedings of the American Control Conference, New York City,
USA (July 2007)

20. Fleming, W.H., Rishel, R.W.: Deterministic and stochastic control. Springer, Heidelberg
(1975)

21. Fontanelli, D., Greco, L., Bicchi, A.: Anytime control algorithms for embedded real-time
systems. In: Hybrid Systems: computation and control (2008)

22. Gai, P., Abeni, L., Giorgi, M., Buttazzo, G.: A new kernel approach for modular real-
time systems development. In: Proceedings of the 13th IEEE Euromicro Conference on
Real-Time Systems (2001)

23. Heemels, W.P.M.H., Gorter, R.J.A., van Zijl, A., van den Bosch, P., Weiland, S.: Asyn-
chronous measurement and control: a case study on motor synchronization. Control En-
gineering Practice 7, 1467–1482 (1999)

24. Heemels, W.P.M.H., Sandee, J.H., van den Bosch, P.P.J.: Analysis of event-driven con-
trollers for linear systems. International Journal of Control 81(4), 571–590 (2008)

9 Event-Triggered Feedback in Control, Estimation, and Optimization 355

25. Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nesic, D.: Networked control sys-
tems with communication constraints: tradeoffs between sampling intervals, delays and
performance. Submitted to the 2009 European Control Conference, ECC (2009)

26. Henningsson, T., Cervin, A.: Comparison of LTI and event-based control for a moving
cart with quantized position measurements. In: European Control Conference, Budapest,
Hungary (August 2009)

27. Henningsson, T., Johannesson, E., Cervin, A.: Sporadic event-based control of first-order
linear stochastic systems. Automatica 44(11), 2890–2895 (2008)

28. Ho, Y.C., Servi, L., Suri, R.: A class of center-free resource allocation algorithms. In:
Large Scale Systems Theory and Applications: Proceedings of the IFAC Symposium,
Toulouse, France, June 24-26, 1980, p. 475. Franklin Book Co. (1981)

29. Hristu-Varsakelis, D., Kumar, P.R.: Interrupt-based feedback control over shared com-
munication medium. Technical Report TR 2003-34, University of Maryland, ISR (2003)

30. Imer, O.C., Basar, T.: Optimal estimation with limited measurements. In: Proceedings of
the IEEE Conference on Decision and Control, Seville, Spain (2005)

31. Imer, O.C., Basar, T.: To measure or to control: optimal control of LTI systems with
scheduled measurements and controls. In: American Control Conference (2006)

32. Isidori, A.: Nonlinear Control Systems II. Springer, Heidelberg (1999)
33. Johansson, B., Rabi, M., Johansson, M.: A simple peer-to-peer algorithm for distributed

optimization in sensor networks. In: Proceedings of the 46th IEEE Conference on Deci-
sion and Control, pp. 4705–4710 (2007)

34. Johansson, B., Soldati, P., Johansson, M.: Mathematical Decomposition Techniques for
Distributed Cross-Layer Optimization of Data Networks. IEEE Journal on Selected Ar-
eas in Communications 24(8), 1535–1547 (2006)

35. Karatzas, I., Wang, H.: Utility maximization with discretionary stopping. SIAM Journal
on Control and Optimization 39(1), 306–329 (2000)

36. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational Research
Society 49(3), 237–252 (1998)

37. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)
38. Kim, B.H., Baldick, R.: A comparison of distributed optimal power flow algorithms.

IEEE Transactions on Power Systems 15(2), 599–604 (2000)
39. Kofman, I., Braslavsky, J.H.: Level crossing sampling in feedback stabilization under

data-rate constraints. In: IEEE Conference on Decision and Control, San Diego, CA,
USA (2006)

40. Lehmann, D., Lunze, J.: Event-based control: a state-feedback approach. In: Proceedings
of the European Control Conference, Budapest, Hungary, pp. 1716–1721 (2009)

41. Lemmon, M., Chantem, T., Hu, X.S., Zyskowski, M.: On self-triggered full-information
h-infinity controllers. In: Hybrid Systems: computation and control, Pisa, Italy (July
2007)

42. Li, L., Lemmon, M.D.: Optimal event triggered transmission of information in dis-
tributed state estimation problems. In: American Control Conference, Baltimore, MD,
USA (2010)

43. Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans-
actions on Automatic Control 48, 304–307 (2003)

44. Low, S.H., Lapsley, D.E.: Optimization flow control, I: basic algorithm and convergence.
IEEE/ACM Transactions on Networking (TON) 7(6), 861–874 (1999)

45. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
Framework, modeling and algorithms. Real-time Systems 23(1-2), 85–126 (2002)

356 M. Lemmon

46. Madan, R., Lall, S.: Distributed algorithms for maximum lifetime routing in wireless
sensor networks. In: IEEE GLOBECOM 2004, vol. 2 (2004)

47. Matveev, A., Savkin, A.: The problem of state estimation via asynchronous commu-
nication channels with irregular transmission times. IEEE Transactions on Automatic
Control 48(4), 670–676 (2003)

48. Mazo, M., Tabuada, P.: On event-triggered and self-triggered control over sensor/actu-
ator networks. In: Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico (December 2008)

49. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control 54(1), 48–61 (2009)

50. Nesic, D., Teel, A.R.: Input-output stability properties of networked control systems.
IEEE Transactions on Automatic Control 49(10), 1650–1667 (2004)

51. Nesic, D., Teel, A.R.: Input-to-state stability of networked control systems. Automat-
ica 40(12), 2121–2128 (2004)

52. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

53. Palomar, D.P., Chiang, M.: Alternative Distributed Algorithms for Network Utility
Maximization: Framework and Applications. IEEE Transactions on Automatic Con-
trol 52(12), 2254–2269 (2007)

54. Polak, E.: Stability and graphical analysis of first order of pulse-width modulated sam-
pled data regulator systems. IRE Trans. Automatic Control AC-6(3), 276–282 (1963)

55. Qiu, Y., Marbach, P.: Bandwidth allocation in ad hoc networks: A price-based approach.
In: Proceedings of IEEE INFOCOM 2003, vol. 2, pp. 797–807 (2003)

56. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Proceedings
of the third international symposium on Information processing in sensor networks, pp.
20–27 (2004)

57. Rabi, M., Johansson, K.H., Johansson, M.: Optimal stopping for event-triggered sensing
and actuation. In: Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico (December 2008)

58. Rabi, M., Moustakides, G.V., Baras, J.S.: Efficient sampling for keeping track of an
Ornstein-Uhlenbeck process. In: Proceedings of the Mediterranean conference on control
and automation (2006)

59. Rabi, M., Moustakides, G.V., Baras, J.S.: Multiple sampling for estimation on a finite
horizon. In: 45th IEEE Conference on Decision and Control, pp. 1351–1357 (2006)

60. Rabi, M., Moustakides, G.V., Baras, J.S.: Adaptive sampling for linear state estimation.
Submitted to the SIAM journal on Control and Optimization (December 2008)

61. Rabi, M.: Packet based Inference and Control. PhD thesis, University of Maryland (2006)
62. Rabi, M., Baras, J.S.: Level-triggered control of a scalar linear system. In: Proceedings

of the 16th Mediterranean Conference on Control and Automation, Athens, Greece (July
2007)

63. Sandee, J.H.: Event-driven Control in Theory and Practice: tradeoffs in software and
control performance. PhD thesis, Technische Universiteit Eindhoven (2006)

64. Sandee, J.H., Heemels, W.P.M.H., van den Bosch, P.P.J.: Case studies in event-driven
control. In: Hybrid Systems: computation and control, Pisa, Italy (April 2007)

65. Sandee, J.H., Visser, P.M., Heemels, W.P.M.H.: Analysis and experimental validation of
processor load for event-driven controllers. In: IEEE Conference on Control and Appli-
cations (CCA), Munich, Germany, pp. 1879–1884 (2006)

66. Seto, D., Lehoczky, J.P., Sha, L., Shin, K.G.: On task schedulability in real-time control
systems. In: IEEE Real-time Technology and Applications Symposium (RTAS), pp. 13–
21 (1996)

9 Event-Triggered Feedback in Control, Estimation, and Optimization 357

67. Sijs, J., Lasar, M.: On event based state estimation. In: Majumdar, R., Tabuada, P. (eds.)
HSCC 2009. LNCS, vol. 5469, pp. 336–350. Springer, Heidelberg (2009)

68. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman
filtering with intermittent observations. IEEE Transactions on Automatic Control 49(9),
1453–1464 (2004)

69. Speranzon, A., Fischione, C., Johansson, K.H.: Distributed and Collaborative Estimation
over Wireless Sensor Networks. In: Proceedings of the IEEE Conference on Decision and
Control, pp. 1025–1030 (2006)

70. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control 52(9), 1680–1685 (2007)

71. Tabuada, P., Wang, X.: Preliminary results on state-triggered scheduling of stabilizing
control tasks. In: IEEE Conference on Decision and Control (2006)

72. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Con-
trol 31(9), 803–812 (1986)

73. Tsypkin, Y.Z.: Relay Control Systems. Cambridge University Press, Cambridge (1984)
74. van der Schaft, A.J.: L2-gain and passivity techniques in nonlinear control. Springer,

Heidelberg (2000)
75. Velasco, M., Marti, P., Fuertes, J.M.: The self triggered task model for real-time control

systems. In: Work-in-Progress Session of the 24th IEEE Real-time Systems Symposium
(RTSS 2003), Cancun, Mexico (December 2003)

76. Voulgaris, P.: Control of asynchronous sampled data systems. IEEE Transactions on Au-
tomatic Control 39(7), 1451–1455 (1994)

77. Wan, P., Lemmon, M.: Distributed Flow Control using Embedded Sensor-Actuator Net-
works for the Reduction of Combined Sewer Overflow (CSO) Events. In: Proceedings
of the 46th IEEE Conference on Decision and Control, pp. 1529–1534 (2007)

78. Wan, P., Lemmon, M.D.: Distributed network utility maximization using event-triggered
augmented lagrangian methods. In: Proceedings of the American Control Conference,
St. Louis, MO, USA (June 2009)

79. Wan, P., Lemmon, M.D.: Event-triggered distributed optimization in sensor networks.
In: Information Processing in Sensor Networks (IPSN), San Francisco, California, USA
(April 2009)

80. Wang, X., Lemmon, M.D.: Decentralized event-triggered broadcasts over networked
control systems. In: Hybrid Systems: computation and control, St. Louis, Missouri (April
2008)

81. Wang, X., Lemmon, M.D.: Event-triggered broadcasting across distributed networked
control systems. In: Proceedings of the American Control Conference, Seattle, Washing-
ton, USA (June 2008)

82. Wang, X., Lemmon, M.D.: Event-triggering in distributed networked control systems.
Submitted to the IEEE Transactions on Automatic Control (February 2009)

83. Wang, X., Lemmon, M.D.: Self-triggered feedback control systems with finite-gain l2
stability. IEEE Transactions on Automatic Control 54(3), 452–467 (2009)

84. Wang, X., Lemmon, M.D.: Self-triggered feedback systems with state-independent dis-
turbances. In: Proceedings of the American Control Conference, St. Louis Missouri,
USA (June 2009)

85. Wen, J.T., Arcak, M.: A unifying passivity framework for network flow control. IEEE
Transactions on Automatic Control 49(2), 162–174 (2004)

86. Xiao, L., Johansson, M., Boyd, S.P.: Simultaneous routing and resource allocation via
dual decomposition. IEEE Transactions on Communications 52(7), 1136–1144 (2004)

358 M. Lemmon

87. Xu, Y., Hespanha, J.P.: Optimal communication logics in networked control systems. In:
Proceedings of the IEEE Conference on Decision and Control, Nassau, Bahamas, vol. 4,
pp. 3527–3532 (2004)

88. Xu, Y., Hespanha, J.P.: Communication logic design and analysis for networked control
systems. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds.) Current Trends in Nonlinear
Systems and Control, Systems and Control: Foundations and Applications, pp. 495–514.
Birkhäuser, Boston (2006)

89. Xue, Y., Li, B., Nahrstedt, K.: Optimal resource allocation in wireless ad hoc networks:
a price-based approach. IEEE Transactions on Mobile Computing 5(4), 347–364 (2006)

90. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE
Control Systems Magazine 21(1), 84–99 (2001)

91. Zhu, B., Sinopoli, B., Poolla, K., Sastry, S.: Estimation over wireless sensor networks.
In: American Control Conference, pp. 2732–2737 (2007)

Index

Abelian Cayley graphs 88
abstraction layer 2
Aloha protocol 48
antenna switching 45
AODV 60
asynchronous communication 6
augmented Lagrangian 122
augmented Lagrangian method 342
automatic repeat request 42
automotive LAN 256

batch reactor 237
best response 133, 136
binary exponential backoff 49
Bluetooth 40
Bode’s integral formula 282, 283

carrier-sense multiple access 48
centralized control 179
Cesàro average 115, 131
channel capacity 256, 258
channel transmission blackout 160
class K functions 298
class K L functions 298
clock difference 4
cluster tree 54
co-design of real-time controllers 294
co-existence 40
coherence bandwidth 33
coherence time 35
communication constraints 204, 228
communication imperfections 203
comparison principle 307

complementary sensitivity-like function
286

completing the square 301
component-based application development

7
component economy 6
component interface 9
component reuse 6
consensus: broadcast 85
consensus: continuous time 81
consensus: delay 81
consensus: directed graphs 83
consensus: gossip 86
consensus: noise 82
consensus: optimization 85
consensus: packet loss 81
consensus: performance indices 95
consensus: problem definitions 79
consensus: quantization 81
consensus: randomized 80
consensus: time-varying 79
constraint based routing 59
constraints 152
context-aware addressing 4
continuous-time model 228
continuous-time or emulation approach

208, 247
contraction mapping 136
control application layer 2
controller synthesis 221
convergecast 56
convergence rate 112
cyclic redundancy check 42

360 Index

damage confinement 18
data rate 261

in asymptotic average sense, 265
deadline 10
de Bruijn graphs 88
decentralized control 180

dynamic problems, 188
networks, 193
optimization methods, 196
static problems, 182

decentralized model predictive control
151

decentralized prediction models 154
decentralized temperature control 166
decoupling matrices 155
delay-differential equations 207
delays 204
delay spread 33
design fault 17, 21
deterministic approach 205
discrete-time approach 206, 238
discrete-time NCS model 211
discrete-time switched linear uncertain

system 243
dispatcher 8
dispatching module 15
distributed model predictive control 151
distributed operation 5
diversity 43
doppler spread 35
dual decomposition 118, 127
duty cycle 53
dynamically scheduled medium access 52
dynamic reconfiguration 3
dynamic scheduling protocol 230

earliest deadline first scheduling 12
emulation approach 228
emulation-based method 302
entropy 284
equilibrium point 298
erasure fading 33
error 17
error control 42
error detection 18
error recovery 18
Etherware 7
Etherware architecture 8
Etherware components 8

Etherware kernel 8
event-driven system 10
event-trigger condition

L2, 308
ISS, 303
NUM algorithm, 347
remote estimation problem, 333

event-triggered NUM algorithm 344
scaling and convergence, 347

event-triggering 294
3DOF helicopter example, 350
dropouts and delays, 325
embedded control systems, 302
intersample interval, 313
networked control system, 322
optimization, 340
remote estimation, 330
state-dependent, 319
under delay, 313

execution time 11, 15
expander graphs 88
expected transmission count 58

fault 17
fault management policy 21
fault-tolerant component model 21
fault tolerance 18
fault treatment 18
flat fading 33
forward error correction 42
frequency-division multiple access 47
frequency hopping 44
frequency-selective fading 33
Frii’s equation 35

gain
L2, 300
induced, 300

gap (estimation) 332
generalized averages 90
Gilbert-Elliot model 39
gradient method 111

projected gradient method, 113
graph based routing 59
graph properties 77
gridding method 244

Hamilton-Jacobi inequality (HJI) 301
hard real-time 11
heavy-ball method 112

Index 361

heterogeneity 2, 5
hierarchical model predictive control 172
hybrid ARQ 43
hybrid model predictive control 172
hybrid system 232

IEEE 802.11 40
IEEE 802.15.1 40
IEEE 802.15.4 40
IETF 6LoWPAN 66
IETF ROLL 66
impulsive DDEs 207
impulsive delay-differential equations

223
incentive compatible 138
information constraints 180, 182

networks, 193–194
skyline, 191

information theory 257, 282
inter-application communication mecha-

nisms 6
interaction fault detection service 21
interaction model 162
inverted pendulum 257
inverted pendulum control system 22
ISA 100 65
ISM band 40
ISS-Lyapunov function 299

job 10
job placement rule (JPR) 16

Kalman filtering 93
Krasovskii’s method 142

Lagrangean duality 118
Laplacian weights 83
large-scale fading 35
LaSalle’s invariance principle 143
least squares 91
lifted model 212
lifted state feedback 222
lifted state vector 212
link gain 37
link metrics 58
Lipschitz 298
local temporal autonomy 20
location difference 4
LR-WPAN 40

Lyapunov function 139, 141, 143, 298
Lyapunov-Krasovskii functional 207, 221

MAD (maximal allowable delay) 313
MANSD (maximum allowed number of

successive dropouts) 329
maximally allowable delay 229
maximally allowable transmission interval

229
mean time between failures 17
mean time to repair 17
medium access control 45
medium access delay 47, 49
mesh topology 54
message-oriented communication 6
Metropolis-Hastings 130
Metropolis-Hastings weights 83
middleware 2, 5, 7
minimum data rate problem 261, 265
model predictive control 150, 152
motion control example 213
multi-step methods 112
mutual information 285

N-version programming 19
naming service 6, 9
Nash equilibrium 133, 162
networked control 1
networked control system

event-triggered, 320
networked control systems 203
networked optimization 126
network-induced imperfections 204
network topology 54
network utility maximization (NUM) 341
non-cooperative game 133
non-functional requirements 5, 22
NUM problem 341

on-demand routing 60
open-loop stepsize rules 112
operational fault 17
optimal control problem 152
outage 37
outage model 38
overapproximation techniques 215

packet dropouts 204
packet loss 160, 272

362 Index

packet-loss probability 170
parameter-dependent Lyapunov functions

220
Pareto optimality 137
path loss 36
period 11, 15
periodic protocol 243
permanent fault 17
polytopic models 207
polytopic overapproximation 207, 215,

216
portability 4, 7
potential game 135, 141
preamble sampling 53
predictability 10
price of anarchy 137
primal decomposition 124
primal function 124
priority inheritance protocol 13
priority inversion 13
processor utilization factor 11
proximal point method 122

quadratic invariance 190
quadratic programming 153
quadratic protocol 243
quality of service (QoS) 14
quantization 256
quantization errors 204
quantized control 258

adaptive, 276
quantizer 260

coarsest, 267, 275, 281
density of, 269
dynamic, 264, 280
logarithmic, 269, 280
uniform, 259

Random geometric graphs 88
rate monotonic scheduling 12
real Jordan form 215
receding horizon control 153
receiver sensitivity 37
recovery block scheme 19
relative deadline 11, 15
reliability 5, 17, 20
remote estimation problem 331
request-oriented communication 6
resource sharing protocol 13

reusability 4, 7
Riccati equation 159
robust stability analysis 215
Round Robin protocol 230
routing 58
runtime component migration 9, 25
runtime component upgrade 9, 25
runtime system management 3, 5

safety-critical system 4
sampled-data approach 207, 246
sampled-data NCS 224
sampled-data system 302
sampler 302
sampling/transmission intervals 204
schedulable 10
schedule 10
scheduling policy 10
second-guessing 187
self-triggered control 319
semantic addressing 4, 9
sensor calibration 92
separation of concerns 294
service components 8
set-point tracking 160
shortest path routing 58
signal-to-noise ratio 37
Slater’s conditions 118
small-scale fading 33
small-world graphs 88
soft real-time 11
software design patterns 9
software fault injection 18
spectral factorization 197–198
sporadic sampling 308
stability

L2, 300
asymptotic, 298
input-to-state (ISS), 299
Lyapunov, 298

stability analysis 205, 218
stabilization problem 205
stable 139

asymptotically stable, 139
globally asymptotically stable, 139

standard function 136
two-sided scalable function, 136

star topology 54
static protocol 230

Index 363

stochastic approach 205
strong duality 118
subgradient 114

incremental subgradient, 115
networked incremental subgradient, 132
projected subgradient, 115

supermodular game 134
switching function 243
synchronous communication 6

task 10
TCP 61
thread scheduling rule (TSR) 15
time-critical system 4
time-division multiple access 47
timeliness 5, 10
tradeoff curves 235
tradeoffs 204
transient fault 17

Try-Once-Discard protocol 230
two-player problem 198–199

UDP 61
uncertain systems 276
unreliable channels 272

value function
event-triggered estimator, 334

vehicle spacing example 180
solution, 184

weak duality 118
WirelessHART 63
wireless propagation 32
Witsenhausen’s counterexample 181
WLAN 40

Zeno behavior 306
zero-order hold 302
Zigbee PRO 62

Lecture Notes in Control and Information Sciences

Edited by M. Thoma, F. Allgöwer, M. Morari

Further volumes of this series can be found on our homepage:
springer.com

Vol. 406: Bemporad, A., Heemels, M.,
Johansson, M.:
Networked Control Systems
363 p. 2010 [978-0-85729-032-8]

Vol. 405: Stefanovic, M., Safonov, M.G.:
Safe Adaptive Control
appro. 153 p. 2010 [978-1-84996-452-4]

Vol. 404: Giri, F.; Bai, E.-W. (Eds.):
Block-oriented Nonlinear System Identification
425 p. 2010 [978-1-84996-512-5]

Vol. 403: Tóth, R.;
Modeling and Identification of
Linear Parameter-Varying Systems
319 p. 2010 [978-3-642-13811-9]

Vol. 402: del Re, L.; Allgöwer, F.;
Glielmo, L.; Guardiola, C.;
Kolmanovsky, I. (Eds.):
Automotive Model Predictive Control
284 p. 2010 [978-1-84996-070-0]

Vol. 401: Chesi, G.; Hashimoto, K. (Eds.):
Visual Servoing via Advanced
Numerical Methods
393 p. 2010 [978-1-84996-088-5]

Vol. 400: Tomás-Rodríguez, M.;
Banks, S.P.:
Linear, Time-varying Approximations
to Nonlinear Dynamical Systems
298 p. 2010 [978-1-84996-100-4]

Vol. 399: Edwards, C.; Lombaerts, T.;
Smaili, H. (Eds.):
Fault Tolerant Flight Control
appro. 350 p. 2010 [978-3-642-11689-6]

Vol. 398: Hara, S.; Ohta, Y.;
Willems, J.C.; Hisaya, F. (Eds.):
Perspectives in Mathematical System
Theory, Control, and Signal Processing
appro. 370 p. 2010 [978-3-540-93917-7]

Vol. 397: Yang, H.; Jiang, B.;
Cocquempot, V.:
Fault Tolerant Control Design for
Hybrid Systems
191 p. 2010 [978-3-642-10680-4]

Vol. 396: Kozlowski, K. (Ed.):
Robot Motion and Control 2009
475 p. 2009 [978-1-84882-984-8]

Vol. 395: Talebi, H.A.; Abdollahi, F.;
Patel, R.V.; Khorasani, K.:
Neural Network-Based State
Estimation of Nonlinear Systems
appro. 175 p. 2010 [978-1-4419-1437-8]

Vol. 394: Pipeleers, G.; Demeulenaere, B.;
Swevers, J.:
Optimal Linear Controller Design for
Periodic Inputs
177 p. 2009 [978-1-84882-974-9]

Vol. 393: Ghosh, B.K.; Martin, C.F.;
Zhou, Y.:
Emergent Problems in Nonlinear
Systems and Control
285 p. 2009 [978-3-642-03626-2]

Vol. 392: Bandyopadhyay, B.;
Deepak, F.; Kim, K.-S.:
Sliding Mode Control Using Novel Sliding
Surfaces
137 p. 2009 [978-3-642-03447-3]

Vol. 391: Khaki-Sedigh, A.; Moaveni, B.:
Control Configuration Selection for
Multivariable Plants
232 p. 2009 [978-3-642-03192-2]

Vol. 390: Chesi, G.; Garulli, A.;
Tesi, A.; Vicino, A.:
Homogeneous Polynomial Forms for
Robustness Analysis of Uncertain
Systems
197 p. 2009 [978-1-84882-780-6]

Vol. 389: Bru, R.; Romero-Vivó,
S. (Eds.):
Positive Systems
398 p. 2009 [978-3-642-02893-9]

Vol. 388: Jacques Loiseau, J.; Michiels, W.;
Niculescu, S-I.; Sipahi, R. (Eds.):
Topics in Time Delay Systems
418 p. 2009 [978-3-642-02896-0]

Vol. 387: Xia, Y.;
Fu, M.; Shi, P.:
Analysis and Synthesis of
Dynamical Systems with Time-Delays
283 p. 2009 [978-3-642-02695-9]

Vol. 386: Huang, D.;
Nguang, S.K.:
Robust Control for Uncertain
Networked Control Systems with
Random Delays
159 p. 2009 [978-1-84882-677-9]

Vol. 385: Jungers, R.:
The Joint Spectral Radius
144 p. 2009 [978-3-540-95979-3]

Vol. 384: Magni, L.; Raimondo, D.M.;
Allgöwer, F. (Eds.):
Nonlinear Model Predictive Control
572 p. 2009 [978-3-642-01093-4]

Vol. 383: Sobhani-Tehrani E.:
Khorasani K.;
Fault Diagnosis of Nonlinear Systems
Using a Hybrid Approach
360 p. 2009 [978-0-387-92906-4]

Vol. 382: Bartoszewicz A.;
Nowacka-Leverton A.:
Time-Varying Sliding Modes for Second
and Third Order Systems
192 p. 2009 [978-3-540-92216-2]

Vol. 381: Hirsch M.J.; Commander C.W.;
Pardalos P.M.; Murphey R. (Eds.):
Optimization and Cooperative
Control Strategies: Proceedings of the 8th
International Conference on Cooperative
Control and Optimization
459 p. 2009 [978-3-540-88062-2]

Vol. 380: Basin M.:
New Trends in Optimal Filtering and Control for
Polynomial and Time-Delay Systems
206 p. 2008 [978-3-540-70802-5]

Vol. 379: Mellodge P.; Kachroo P.:
Model Abstraction in Dynamical Systems:
Application to Mobile Robot Control
116 p. 2008 [978-3-540-70792-9]

Vol. 378: Femat R.; Solis-Perales G.:
Robust Synchronization of Chaotic Systems
Via Feedback
199 p. 2008 [978-3-540-69306-2]

Vol. 377: Patan K.:
Artificial Neural Networks for
the Modelling and Fault
Diagnosis of Technical Processes
206 p. 2008 [978-3-540-79871-2]

Vol. 376: Hasegawa Y.:
Approximate and Noisy Realization of
Discrete-Time Dynamical Systems
245 p. 2008 [978-3-540-79433-2]

Vol. 375: Bartolini G.; Fridman L.;
Pisano A.; Usai E. (Eds.):
Modern Sliding Mode Control Theory
465 p. 2008 [978-3-540-79015-0]

Vol. 374: Huang B.; Kadali R.:
Dynamic Modeling, Predictive Control
and Performance Monitoring
240 p. 2008 [978-1-84800-232-6]

Vol. 373: Wang Q.-G.; Ye Z.; Cai W.-J.;
Hang C.-C.:
PID Control for Multivariable Processes
264 p. 2008 [978-3-540-78481-4]

Vol. 372: Zhou J.; Wen C.:
Adaptive Backstepping Control of Uncertain
Systems
241 p. 2008 [978-3-540-77806-6]

Vol. 371: Blondel V.D.; Boyd S.P.;
Kimura H. (Eds.):
Recent Advances in Learning and Control
279 p. 2008 [978-1-84800-154-1]

Vol. 370: Lee S.; Suh I.H.;
Kim M.S. (Eds.):
Recent Progress in Robotics:
Viable Robotic Service to Human
410 p. 2008 [978-3-540-76728-2]

Vol. 369: Hirsch M.J.; Pardalos P.M.;
Murphey R.; Grundel D.:
Advances in Cooperative Control and
Optimization
423 p. 2007 [978-3-540-74354-5]

Vol. 368: Chee F.; Fernando T.
Closed-Loop Control of Blood Glucose
157 p. 2007 [978-3-540-74030-8]

Vol. 367: Turner M.C.; Bates D.G. (Eds.):
Mathematical Methods for Robust and
Nonlinear Control
444 p. 2007 [978-1-84800-024-7]

Vol. 366: Bullo F.; Fujimoto K. (Eds.):
Lagrangian and Hamiltonian Methods for
Nonlinear Control 2006
398 p. 2007 [978-3-540-73889-3]

Vol. 365: Bates D.; Hagström M. (Eds.):
Nonlinear Analysis and Synthesis
Techniques for Aircraft Control
360 p. 2007 [978-3-540-73718-6]

	Title
	Foreword
	Contents
	List of Contributors
	The Importance, Design and Implementation of a Middleware for Networked Control Systems
	Introduction
	Networked Control Systems
	Domain Characteristics
	Domain Requirements

	Middleware for Networked Control Systems
	Middleware Fundamentals
	Etherware

	Real-Time Operation of Networked Control Systems
	Real-Time System Fundamentals
	Real-Time Support in Etherware

	Reliability for Networked Control Systems
	Fundamentals of Reliable System
	Reliability Support in Etherware

	Case Study: Networked Inverted Pendulum Control System
	Inverted Pendulum Control System
	Periodic Control under Stress
	Runtime System Management

	Conclusion
	References

	Wireless Networking for Control: Technologies and Models
	Introduction
	Understanding the Single Link
	Wireless Propagation and Outage
	Markov Models for the Wireless Channel
	The ISM Band, Co-existence and Interference
	Means for Increasing Reliability

	Multiple Links: Medium Access Control
	Scheduled Medium Access: TDMA and FDMA
	Contention-Based Medium Access: Aloha, CSMA and Beyond
	Dynamic Access Scheduling via Polling and Reservation
	Energy-Efficient Medium Access Control

	From Single Links to Network: The Upper Networking Layers
	Topologies and Multi-hop Communications
	Routing
	Transport Layer Protocols and Traffic Patterns
	Standards and Specifications for Industrial Wireless Networking

	Control Relevant Models of Latency and Loss
	Conclusions
	References

	A Survey on Distributed Estimation and Control Applications Using Linear Consensus Algorithms
	Introduction
	Linear Consensus Algorithms: Definitions andMain Results
	Analysis
	Design

	Estimation and Control Problems as Average Consensus
	Parameter Estimation with Heterogeneous Sensors
	Node Counting in a Network
	Generalized Averages
	Vehicle Rendezvous
	Least Squares Data Regression
	Sensor Calibration
	Kalman Filtering

	Control-Based Performance Metrics for Consensus Algorithms
	Performance Indices
	Evaluation and Optimization of Performance Indices

	Conclusion
	References

	Distributed Optimization and Games: A Tutorial Overview
	Introduction
	Convex Optimization Using First-Order Methods
	Gradient Methods for Smooth Problems
	Subgradient Methods for Non-smooth Problems
	Incremental Subgradient Methods

	Decomposition Techniques
	Dual Decomposition
	Augmented Lagrangian and Proximal Point Methods
	Primal Decomposition

	Networked Optimization
	Networked Optimization via Dual Decomposition
	Consensus-Subgradient Schemes
	Networked Incremental Subgradient Methods

	Game Theory in Distributed Optimization
	Basics of Game Theory
	Properties of Nash Equilibria

	Dynamics of Gradient Algorithms
	Connection between Lyapunov Functions and Objective Functions
	Krasovskii’s Method
	Non-strictly Convex Problem

	Conclusions
	References

	Decentralized Model Predictive Control
	Introduction
	Model Predictive Control
	Existing Approaches to DMPC
	DMPC Approach of Alessio, Barcelli, and Bemporad
	DMPC Approach of Jia and Krogh
	DMPC Approach of Venkat, Rawlings, and Wright
	DMPC Approach of Dunbar and Murray
	DMPC Approach of Keviczy, Borrelli, and Balas
	DMPC Approach of Mercang¨oz and Doyle
	DMPC Approach of Magni and Scattolini

	Example of Decentralized Temperature Control in a Railcar
	Example Description
	Simulation Results

	Hierarchical MPC
	Problem Description
	Illustrative Example

	Conclusions
	References

	Decentralized Control
	Motivating Examples
	Vehicle Spacing
	Witsenhausen’s Counterexample

	Static Problems
	Solution of the Multi-vehicle Problem
	Nonlinear Policies

	Dynamic Problems
	Quadratic Invariance
	Skyline Information Structures
	Control of Networks
	Non-convex Systems
	Unstable Plants

	Solving the Optimization Problem
	Spectral Factorization
	Solution of the Two-Player Problem

	Summary
	References

	Stability and Stabilization of Networked Control Systems
	Introduction
	Overview of Existing Approaches
	The Types of Network-Induced Phenomena
	Different Approaches in Modeling/Analysis of NCS

	NCS with Delays, Varying Sampling Intervals and Packet Loss
	Description of the NCS
	Discrete-Time Modeling Approaches
	Sampled-Data Modeling Approaches

	NCS Including Communication Constraints
	Continuous-Time (Emulation) Approaches
	Discrete-Time Approach
	Comparison of Discrete-Time and Continuous-Time Approaches

	Conclusions
	References

	Feedback Control over Limited Capacity Channels
	Introduction
	Control under Capacity Constraints: System Setup and Background
	The Minimum Data Rate for Stabilization
	Problem Formulation and Initial Results
	Dynamic Quantizers
	The Solution to the Minimum Data Rate Problem

	The Coarsest Quantization for Stabilization
	The Coarsest Quantizers
	The Coarsest Quantizer for Stabilization over Lossy Channels
	Quantized Adaptive Control for Uncertain Systems

	Information Theoretic Approach to Bode’s Integral Formula
	Bode’s Integral Formula for Complementary Sensitivity Functions
	Entropy and Mutual Information
	Characterization of Complementary Sensitivity Properties

	Conclusion
	References

	Event-Triggered Feedback in Control, Estimation, and Optimization
	Introduction
	Mathematical Preliminaries
	Event-Triggered Feedback in Embedded Control Systems
	Event-Triggered Feedback in Networked Control Systems
	Event-Triggered Estimation
	Event-Triggered Approaches to Optimization
	Research Issues
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

