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Stability Analysis of Networked Control Systems
Gregory C. Walsh, Hong Ye, and Linda G. Bushnell

Abstract—We introduce a novel control network protocol, try-
once-discard (TOD), for multiple-input–multiple-output (MIMO)
networked control systems (NCSs), and provide, for the first time,
an analytic proof of global exponential stability for both the new
protocol and the more commonly used (statically scheduled) ac-
cess methods. Our approach is to first design the controller using
established techniques considering the network transparent, and
then to analyze the effect of the network on closed-loop system
performance. When implemented, an NCS will consist of multiple
independent sensors and actuators competing for access to the net-
work, with no universal clock available to synchronize their ac-
tions. Because the nodes act asynchronously, we allow access to
the network at anytime but we assume each access occurs before a
prescribed deadline, known as the maximum allowable transfer in-
terval. Only one node may access the network at a time. This com-
munication constraint imposed by the network is the main focus
of the paper. The performance of the new, TOD protocol and the
statically scheduled protocols are examined in simulations of an
automotive gas turbine and an unstable batch reactor.

Index Terms—Limited communications, networked control sys-
tems (NCSs), stability.

I. INTRODUCTION

I N MANY complicated control systems, such as manu-
facturing plants, vehicles, aircraft, and spacecraft, serial

communication networks are employed to exchange informa-
tion and control signals between spatially distributed system
components, like supervisory computers, controllers, and
intelligent input–output (I/O) devices (e.g., smart sensors and
actuators). Each of the system components connected directly
to the network is denoted as a node. When a control loop is
closed via the serial communication channel, we label it a
networked control system (NCS). The serial communication
channel, which multiplexes signals from the sensors to the
controller and/or from the controller to the actuators, serves
many other uses besides control (see Fig. 1). In contrast to
widely used computer networks, an NCS is concerned primarily
with the quality of real-time reliable service.

NCSs are being adopted in many application areas for a
number of reasons [16] including their low cost, reduced
weight, and power requirements, simple installation and
maintenance, and higher reliability. However, using a network
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Fig. 1. Schematic diagram of a complicated control system. In this diagram,
the network is found between sensors and the controller.

presents some new analytical challenges because the network
imposes a communication constraint: only one sensor can
report its measurements at a time. Furthermore, the lack of a
universal clock and the presence of noncontrol related traffic
makes assumptions about constant sampling intervals unreal-
istic in many applications. In this paper, an access deadline, or
maximum allowable transfer interval, , is used in its place to
ensure absolute stability of an NCS.

Ample research papers in analyzing and scheduling the
real-time network traffic have been published [2], [6], [21],
[24], [25]. The significance of combining communication
constraints and control specifications has not apparently been
addressed in these papers. We propose and analyze a new
scheduling algorithm to determine the transmission order of
multiple sensor nodes in an NCS based on need. The new
scheduling algorithm efficiently allocates network resources to
multiple smart sensors and maintains good closed-loop control
system performance. Some researchers noticed the detrimental
effects of network-induced randomly time-varying delay on
the stability of feedback control systems [17], [18]. However,
all previous research is confined to the one packet transmission
problem, i.e., all system outputs are lumped and sent out in
one packet, and as a consequence, there is no competition
between smart sensors of an NCS [1], [4], [9], [11], [22],
[23]. No general explicit stability condition has been obtained
in the literature even for one packet transmission case. This
paper presents, for the first time, an analytic proof of global
stability for an NCS with general multiple-packet transmission
in addition to providing a global stability condition for the
special one packet transmission problem.

The augmented state space method and jump linear control
system method are two significant methods proposed in the lit-
erature for analyzing and designing an NCS. The former one re-
duced the problem to a finite dimensional discrete-time control
by augmenting the system model to include past values of plant
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input and output (i.e., delayed variables) as additional states [4],
[5]. A necessary and sufficient condition for system stability
was established only for the special case of periodic delays. This
technique is very useful for developing control laws to improve
the performance of an NCS [12], [13], [19], [20] except that it
fails to give a general stability condition for random delay. In
[11] and [14], distributed linear feedback control systems with
random communication delays were modeled as a jump linear
control systems, in which random variation of system delays
corresponds to randomly varying structure of the state-space
representation. Necessary and sufficient conditions were found
for zero-state mean-square exponential stability of the consid-
ered class of systems. This method requires that the transition
probability matrix is knowna priori. Furthermore, both methods
were limited to the one packet transmission problem.

The occurrence of transmission events on the network is time-
varying and often modeled as a random process, e.g., Poisson
process, and the resulting times that pass between each access
to the network are independent and have an exponential distri-
bution. The stochastic Lyapunov function method [8], [9] holds
much promise for determining almost-sure stability and control
system performance. This paper’s approach, however, is to pro-
vide guarantees by employing transmission deadlines. The re-
sults presented here are absolute instead of almost sure.

This paper is organized as follows. The dynamic model for the
NCS and our new TOD protocol are described in Section II. In
particular, we model the effect of different scheduling technique
as a finite error bound imposed on the system. In Section III, ab-
solute stability conditions are derived for both a multiple-packet
transmission system and a single packet transmission system.
The results of numerical simulations are presented in Section IV.
Conclusions are stated in Section V.

II. M ODELING OF A NCS

The NCS model is shown in Fig. 2. It consists of three main
parts: the plant with state and
output ; the controller with state

and output , and the network, with state
, consisting of the most recently reported

versions of and , Without loss of generality we have as-
sumed . Outputs measured locally at an actuator can be
incorporated directly into the controller and do not require treat-
ment in our model. If such outputs are needed elsewhere, the
actuator node can also be considered a smart sensor. Because of
the network, only the reported output is available to the con-
troller and its prediction processes, similarly, only is avail-
able to the actuators on the plant. Commonly used local area
networks support broadcast, hence is globally known and
in such a case the controller itself may be physically distributed.

To focus on the effect of network competition on the stability
of an NCS, we make the following assumptions. The control
law is designed in advance without considering the presence of
the network. The controller dynamics are considered continuous
and sampling delay is ignored, because the access interval of
the NCS to the network is much larger than the processing pe-
riod of the controller and smart sensors. Once access to a par-
ticular sensor node is granted, data is assumed to be transmitted

Fig. 2. Configuration of a networked control system.

instantly, since most of the NCS is connected by a local area
network with very high data rate and a physical range less than
100 m. The communication medium is error-free based on the
lower error rate of modern high-speed communication systems
and the higher reliability offered by many error detection and
correction technologies. No observation noise exists. All ma-
trices in the paper have compatible dimensions and the standard
Euclidean norm will be used unless noted otherwise.

We label the network-induced error
and the combined state of the controller and plant

. The state of the entire NCS is given by
and between transmission instances the

dynamics of the NCS can be summarized as

(1)

where

Define the matrix such that . Any prediction or
filtering process can be used to improve the estimate of.
Such predicting and filtering will add extra states and dynamics
which we incorporate in matrices and .

Without a network, , and hence the dynamics reduce
to . It is assumed that the controller has been
designed ignoring the network, hence is Hurwitz. Conse-
quently there exists a unique symmetric positive definite matrix

such that

(2)

Define the constants and , (
eigenvalue). Since we are modeling the network as a perturba-
tion on the system, choosing the right-hand side of (2) equal to

is desirable for maximizing the tolerable perturbation bound
[10, p. 206].

The behavior of the network-induced error is mainly de-
termined by the architecture of the NCS and the scheduling
strategy. In the special case of one-packet transmission, there is
only one node transmitting control data on the network, there-
fore the entire vector is set to zero at each transmission time.
For multiple nodes, transmitting measured outputs and/or
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computed inputs , the transmission order of the nodes de-
pends on the scheduling strategy chosen for the NCS. In other
words, the scheduling strategy decides which components of

are set to zero at the transmission times. Dynamic and static
scheduler are two major scheduling strategies. Both of them will
be analyzed for NCS implementation.

A dynamic scheduler determines the network schedule while
the system runs. Unlike dynamic scheduling processor time in
real-time control, however, the information needed to decide
which node should be granted access to the network is not
centrally located. Based on the characteristics of the real-time
NCS, we propose a novel protocol, try-once-discard (TOD)
protocol, which employs dynamic scheduling, allocating
network resource based on the need. In TOD, the node with the
greatest weighted error from the last reported value will win the
competition for the network resource. We call the scheduling
technique maximum-error-first (MEF) and the protocol TOD
because if a data packet fails to win the competition for network
access, it is discarded and new data is used next time. Such
a method is vulnerable to noise. In practice, the sensor nodes
must employ some sort of filtering to prevent a channel with a
large noise signal from dominating the network. This protocol
can be realized by using the flexible low-level software imple-
mentation and the mature hardware technology of controller
area network (CAN), which is specifically designed for bitwise
arbitration.

How does the TOD protocol work? Without loss of generality,
assume there arenodes competing, each one may be associ-
ated with one or multiple plant inputs and outputs. In the TOD
protocol, the priority level of each node’s message is propor-
tional to the norm of , which is a -dimensional subvector
of with representing the number of plant or
controller outputs transmitted by node. The weights assigned
to error signals are assumed already built into the output matrix.
At every transmission time, the node with the highest priority (or
greatest weighted error) gets transmitted. If two or more mes-
sages have equal priority, a prespecified ordering of the nodes
will be imposed to resolve the collision.

Today, static scheduling is the most common methodology,
in which the order (or pattern) of transmission is decided in
advance and fixed during system operation. We label such a
schemestatic scheduler, which is typically implemented by
polling or by token ring. Though the schedule is fixed, some
nodes may be granted access multiple times before others get
any access. If a transmission pattern is of length, every
consecutive visits form a repeated cycle. In one cycle, all nodes
are visited at least once. The pattern lengthis called the
periodicity of the static scheduler.

In order to characterize the behavior of the scheduling algo-
rithms and their relation with , we introduce a constant.
The existence of will be proved in later section by the Lips-
chitz condition of the differential equations (1), i.e., over a short
period of time the growth in error will be bounded by a con-
stant , which is dependent on the system characteristics and
initial conditions. Assume the transmission deadlineexists
such that . The bound is defined
as the maximum allowable transfer interval used to guarantee

the absolute stability of NCS. The size ofdoes not affect the
bound of . The following two lemmas characterize the sched-
uling algorithms.

Lemma 1 (Dynamic Scheduler Error Bound):Given a dy-
namic (TOD) network scheduler starting at timewith nodes
competing, maximum allowable transfer interval, maximum
growth in error in seconds strictly bounded by .
Then, for any time , .

Proof: There are at least transmissions in the interval
. Let be the last transmission times with

, , and be
the nodes that got transmitted at those times, respectively.

Suppose the first nodes being transmitted are dis-
tinct, and the th transmitted node was also transmitted
before, say at time . Then , for

. Since node was transmitted both at and
, we have with denote the

instant right before transmission. By the construction of the dy-
namic scheduler (TOD), at transmission time, node has
the greatest error. As a consequence,

and , for all , .
So .

Since
, when or , we have the worst case error bound

for the dynamic scheduler .
Lemma 2 (Static Scheduler Error Bound):Given a static net-

work scheduler starting at time, with integer periodicity ,
maximum allowable transfer interval , maximum growth in
error in seconds strictly bounded by . Then, for
any time , .

Proof: The integer periodicity allows at most nodes
competing. Assume there arenodes, . The sched-
uler design also implies that each node is visited at least once
during every consecutive transmissions.

At least once cycle (or transmissions) is completed during
the interval . Let be the last transmission
times with , , and

be the nodes that were transmitted at those times,
respectively. Then , for . Since
the set , we have

. So for any time
, .

The worst case error bound of the dynamic scheduler is the
same as that of a special case of the static scheduler, i.e., all
nodes are visited equally. The bound is conservative for both
scheduling algorithms, because represents a deadline. But
for the same transmission times distribution, the error bound for
dynamic scheduler will be better than that of the static scheduler,
because it grants access to the node with the greatest error.

III. STABILITY OF NETWORKEDCONTROL SYSTEMS

Two stability theorems for general multiple-packet and
one-packet transmissions are derived in this section. Both
theorems are derived based on Lyapunov’s second method and
treat the network induced-error term as a vanishing perturbation
[10, p. 204].
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We first consider the stability of a general multiple-packet
transmission NCS with either a static or dynamic (TOD) sched-
uling algorithm.

Theorem 1 (Stability of a General NCS):Given an NCS
whose continuous dynamics are described by (1) withnodes
operating under TOD, or with integer periodicityunder static
scheduling, and a maximum allowable transfer interval,,
which is less than the minimum of

and

Then, the NCS is globally exponentially stable.
Proof: Consider any initial time and the associated ini-

tial state . If , then for all
we have and , even if there are no trans-

missions, since we are at an equilibrium point of the system. For
this reason, without loss of generality, we assume .
At time , nothing is known about the magnitude of the error.
However, at time , at least transmissions of the net-
work have occurred. For anyin , we have from
Bellman–Gronwall
where is the induced norm of . Since we have chosen

, we have . This bound is con-
servative as it holds even in the case where there are no trans-
missions of data. At any transmission time ,
we have that hence .
The notation and refers to the limits from the left and
right, respectively. Because of this bound, we have that for

Hence the maximum possible growth between transmission in
this time interval is strictly bounded by

as , where is the condi-
tion number of .

Depending on the type of protocol utilized, either Lemma 1 or
Lemma 2 may be applied to verify that at time , the error
is bounded by where the constant

is . We have selected
so that is smaller than both and .
Furthermore, we have that at time ,

. Consequently, using
for we have that

with . Certainly
, . If at any time we

have , then with the
constant equal to .

At time we have both
and . We now prove by contradiction that
these two conditions imply that for all , both con-
ditions hold. If at any time any of these two con-
ditions fail, then there exists a time which is
the first time either one or both conditions have failed. In in-
terval , of minimum length seconds, both conditions

are met. The state vector changes discretely, but always
decreases in magnitude when jumping, so at a transition time
the bound cannot be jumped over. At time, either

or or both. Suppose we have
the case and , then
we have , and hence

(3)

because

Since at time , , is strictly negative. Even
if is a transition time, can only reduce instantaneously
in size hence will remain strictly negative.

Certainly then at time, and there-
fore for all including time . We
now consider the remaining possibility that at time, we have

. We can conclude not a transi-
tion time

Note that

because has been chosen so that . We now have
the conditions of Lemma 1 or Lemma 2 applying to the interval

, since the maximum growth of in seconds in the
interval is limited by . The lemmas
indicate that , manifesting our contradic-
tion. We conclude then , .

View the control system as perturbed by the bounded error
signal . If we write ,
then the state starting at time evolves according to the
variation of parameters formula:

The zero state term is the solution of the differential equation
with zero initial conditions, that

is, . At time we have
. We know that for all time, ,

consequently, , since if we
had equality, then and by (3),

. As is bounded, then

By choice of , we have and
therefore the zero state term is strictly less than .
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Given Hurwitz, there exists a time such that
. Finally,

and

with . Then by induction
. The closed-loop NCS is then exponentially stable.

One-packet transmission is a special case of multiple-packet
transmission. In the following, a general sufficient stability con-
dition of an NCS with one-packet transmission is derived in a
way different from the above proof. This derivation gives a less
conservative bound on .

In the one-packet transmission case, for ,
, ,

. The system equation can be written
as where

. Under normal operation, as ,
will go to zero because will track closely. Two lemmas are
introduced to prove the theorem. It should be noted that Lemma
3 is a variation of the commonly used Bellman–Gronwall
Lemma. The proof of Lemma 4 follows that of Lemma 3.

Lemma 3 (Bellman–Gronwall Lemma [7]):Given and
nonnegative, piecewise continuous and differentiable func-

tions of time . If the function satisfies

, then

.
Lemma 4: Given and nonnegative piecewise con-

tinuous functions of time with differentiable. If the func-
tion satisfies , ,

then ,
.

Proof: Let , then is
differentiable and

Let , then
, whose state transition matrix is

. Therefore

Since , , then

.

Substitute , then

. Thus

, .
Theorem 2 (Single-Packet Transmission Stability):Let
be a globally exponentially stable equilibrium point of the

nonnetworked system. If the maximum transmission interval
satisfies:

a)

b)

where

then the origin is a globally exponentially stable equilib-
rium point of the NCS.

Proof: When , define ,
. The system equation

can be written as

then and

where stands for vector norm or induced matrix norm.
Using Bellman–Gronwall Lemma 3, we get

Since

(4)

Because is a constant vector in , as-
sume , then

. In order to derive the relation between
and , we fix the final time and let the initial time be
changeable, i.e., . So

Using Lemma 4, we get

Let , . Since , then
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Let . Since

then

Using this and inequalities (4), we derive

Since is a globally exponentially stable equilibrium
point of the nonnetworked system , there exists
a unique symmetric positive definite matrix, satisfying the
Lyapunov equation: .

Let be a Lyapunov function of the non-
networked system satisfying the following inequalities:

The derivative of along the trajectories of the perturbed
system satisfies .

Since the equation shown at the bottom of the page is true,
then for . So,
when satisfies the inequalities a) and b), in any
transmission interval, only when .

The origin is a globally exponentially stable equilibrium point
of the NCS.

IV. SIMULATION RESULTS AND DISCUSSION

We explore the application of networking technology to two
example systems, an unstable batch reactor and an automotive
gas turbine. The network is considered transparent for the pur-
pose of controller design. The two models are taken from the lit-
erature and the reported controller is used without modification.
The bounds on the maximum allowable transfer interval derived
in the theorems are very conservative, as both examples demon-
strate. The simulations explore not only better estimates for the
bound but also the impact of different packet arrival models on
the system performance. Our experience suggests that the com-
monly used Poisson packet arrival model is unlikely to accu-
rately reflect the traffic on a control network, as most packets are
relatively short and frequent, and because TOD control traffic
does not use queues. Alternate packet arrival models are com-
pared in the unstable batch reactor simulation. The differences

between dynamic and static scheduling are explored in a simula-
tion of an automotive gas turbine, because the analysis also does
not differentiate between the approaches. A token ring scheduler
alternating access between the two nodes and the dynamic TOD
scheduling algorithm are compared, using a Poisson packet ar-
rival model.

A. Unstable Batch Reactor

The first example, an unstable batch reactor [3, p. 62], is a
coupled two-input–two-output NCS. Based on the linearized
process model

a proportional-plus-integral controller

is designed in advance to stabilize the feedback system and
achieve good performance.

Only the system outputs and need to be transmitted to
the controller via the network, each with its associated node. In
the simulations, the network model is placed between the output
of the plant and the input of the controller. A Poisson process
with mean is used to model the packet arrival events. In
unit time, the probability of transmission events occurring
is , where stands for the expectation of
number of events occurring in unit time. Its inverse, ,
is the average transfer interval length.

The system remains stable foraround 0.06 s. The theoret-
ical bound of on the linearized system from Theorem 2 is
around 10 s. This discrepancy is due to the conservative na-
ture of the Bellman–Gronwall Lemma. In Fig. 3, we show both
a stable trajectory of the system, for s, and an unstable
trajectory for s.

The transmission intervals in an NCS were modeled as
random variables because of the effect of bursty traffic on the
network. In our former simulation, the access to the network
was modeled as the Poisson process. Two other models are
proposed. The first, which we refer to as the spiked Poisson,
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Fig. 3. Resulting trajectories of the batch reactor system with one-packet transmission. Note the different magnitude scales.

disallows any packets arrivals before , and places half of
the transmission interval times at exactly, the others, spread
like a Poisson process. This emulates the controllers receiving
access half of the time after a precise time interval, and on
occasion being interrupted by other traffic on the network.
Arbitrarily long delays are possible. The second model, which
we refer to as the MATI (maximum allowable transfer interval)
model, disallows arbitrarily long delays. Some mechanism in
the network ensures that a deadline of is always met.
Such a model is more consistent with the theorems.

Fig. 4 compares the three different packet arrival models.
Monte Carlo simulation is used because of the random nature
of the network traffic. For each, a number of simulations
were run and for each we checked if the control specifications
(such as overshoot, rise time and settling time) were met. A
constant transfer interval simulation was also run as a point of
comparison. Notice that using the popular constant transfer in-
terval (constant delay) network model would delude the control
system designer into believing he or she need less network band-
width than is actually required to meet control specifications. Of
the three probabilistic models chosen, the plain Poisson arrival
model shows the worst behavior, while the spiked Poisson and
the MATI model are of comparable performance, close to but
more conservative than the constant delay model. The simula-
tion results reveal that the theoretical bound, on the order of tens
of nanoseconds, is conservative since with average transfer in-
terval ms, all simulation results pass the test.

B. Automotive Gas Turbine

The two-shaft automotive gas turbine is basically a coupled
two-input two-output system [15, p. 249]. The two system out-
puts to be controlled are gas generator speed and inlet-turbine
temperature. The two input variables are fuel pump excitation

Fig. 4. Comparison of differing packet arrival models. Plant: Batch reactor,
protocol: TOD.

and nozzle actuator excitation. The linearized plant model
is shown in the equation at the bottom of the next page. The con-
troller is designed in advance to reduce cross-channel interac-
tion (or to realize “diagonal dominant”), to remove steady-state
error and increase the system response speed without consid-
ering the network effects

The controller for a two-shaft gas turbine has many functions,
for example, engine health monitoring (EHM) is currently of
great interest. In the simulation, we show that the performance
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Fig. 5. Each point in this figure is the ratio of the number of simulations
meeting the control specifications over the total number of simulations for fixed
� . The total number of simulations was either 100 or 200, and the difference
between these resulting data points allows us to quantify our confidence in the
data obtained using 100 simulations.

of the steady-state operation control system is maintained when
it is closed via a serial network, which is shared with other mon-
itor and alarm nodes (like the flame detector and the lubrication
monitor).

A study similar to that of the batch reactor was conducted.
For each , a number of simulations were run and for each we
checked if the control specifications were met. Fig. 5 shows the
simulation results for the same system using the TOD sched-
uling algorithm. The difference is in the number of simulations
used to approximate the probability of success. The graph gives
us reason to be confident in a data point obtained even after only
100 simulations.

Two hundred simulations were used for each point to gen-
erate Fig. 6, which compares the performance of the dynamic
TOD scheduler and the static scheduler. With enough effort,
a static scheduling plan matching the performance of the dy-
namic scheduler can be found, but the best static schedule would
most likely depend on initial conditions and perturbations. Com-
pared with the simulation results (all runs pass the test when

milliseconds), Theorem 1 again returns a bound in the
nanosecond range, because it is worst-case analysis and suitable
for any kind of traffic distribution.

V. CONCLUSION

This paper makes three primary contributions. Foremost,
it introduces in the form of the TOD protocol the concept of

Fig. 6. The difference between a dynamic scheduler (using TOD) and a
static scheduler (using a token ring) is shown. This simulation illustrates
the advantage of our new TOD scheduling algorithm over the popular static
scheduling algorithm.

dynamically allocating network resources to those information
sources with critical information. Second, it provides for the
first time an analytic proof of stability for both the new protocol
and the more common statically scheduled protocols. Finally,
a proof of stability for the noncompetitive single packet case
is given.

There are many important questions yet to be answered
about the design of NCS. For example, the bounds provided
by the theorems are based on perturbation theory and are
shown to be conservative in the simulation studies. Finding
tighter bounds on the required network speed is an area of
great interest to the system designer. Also of importance to
the system designer is the relative weights of errors between
channels. Finding the best set of relative weights is an im-
portant question. In addition, we assume continuous priority
levels as CAN II uses 29 bits in the identifier. A system de-
signer may wish to allocate only a small subset of these bits
to the competition, so generating the best mapping from error
to discrete identifier (priority level) is also a subject of further
research. Furthermore, output smoothing (or filtering) is an-
other important application problem since the TOD protocol
is more sensitive to sensor noise than static scheduler.
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