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Abstract— A full order nonlinear unknown input observer
(NUIO) for a class of Lipschitz nonlinear systems with unknown
inputs is designed. A sufficient NUIO existence condition which
requires solving a nonlinear matrix inequality is derived. To
avoid solving the nonlinear matrix inequality directly, the exis-
tence condition is then reformulated as a new sufficient existence
condition in terms of an LMI. An important advantage of this
LMI based condition is that it enables us to design the proposed
full order NUIO using Matlab LMI toolbox and thus makes the
difficult NUIO design problem an easy task for the considered
class of nonlinear systems. The new sufficient condition, when
applied to linear systems, is also necessary. An example is given
to show how to use the LMI approach to design the proposed
NUIO, and simulation results are presented.

I. INTRODUCTION

Design of observers for linear systems subject to unknown

inputs has attracted considerable attention in the past. Many

types of full order and reduced order UIOs are now available.

Reduced order UIOs can be found in [1]-[4] and full order

observers have been designed in [5] and [6], to name only a

few. Sufficient and necessary conditions for the existence of

UIOs have been established in [4], [3], [6]. The approach of

[2] remains to be one of the more systematic computational

approaches for the design of reduced order UIOs. However,

in general design of UIOs for linear systems is still not easy

or systematic compuational wise, see for example the design

of UIOs proposed in [6] and [4].

Since 1990s, attempts have been made to extend the ex-

isting UIO design from linear systems to nonlinear systems.

UIOs for bilinear systems were designed in [7], [8], [9].

UIOs for more general nonlinear systems were also proposed

in [11], [12] and [13]. The NUIOs in these papers require

construction of a state transformation to change the original

nonlinear systems into canonical forms. One problem for

these NUIOs is that the required state transformation only

exists for a limited class of nonlinear systems. The other

problem is that the construction of the state transformation,

requires solving PDEs and is quite difficult. As expected, the

design of NUIOs is much more difficult of a problem than the

design of linear UIOs. Because the UIO design for general

nonlinear systems is very difficult and no systematic design

method is available, some authors have considered UIO

design for a class of Lipschitz nonlinear systems. [14] first

extended linear UIO design to a class of Lipschitz systems
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and gave an LMIs and LMEs based sufficient condition

for the existence the proposed UIOs. However, how to find

a solution satisfying the LMIs and LMEs is not an easy

task. [15] also proposed a UIO design for fault diagnosis

purpose. The difficulty here lies in solving a parametric

Lyapunov equation, which is very hard because no systematic

method could be used. In [18], a dynamic UIO was designed

for a class of Lipschitz nonlinear systems. Although the

dynamic observer introduces extra design freedom, the total

order of the UIO is higher than the non-dynamic UIOs. To

design their UIO, an iterative algorithm was proposed, which

appears to be complicated.

Recently, the LMI approach has become very powerful

in both controller and observer design, see [16] for detailed

review. LMIs can be solved very efficiently using Matlab

LMI toolbox [17]. However, the power of LMI approach is

not well recognized in the design of UIOs. To our knowledge,

the only result trying to solve UIO design problem using

LMI approach is given in [10] for a class of singular bilinear

systems.

Realizing the difficulties existed in the design of NUIOs

mentioned earlier and the power of LMI approaches, we

use the LMI approach to solve the NUIO design problem

for a class of Lipschitz nonlinear systems. Unlike [14], our

conditions for the existence of the UIO only involve LMIs

and do not need to solve LMIs together with LMEs.

The remainder of the paper is arranged as follows: In

Section 2, we introduce the nonlinear system under consid-

eration and formulate the NUIO design problem. In Section

3, using an LMI approach, we derive a sufficient existence

condition in term of an LMI. In Section 4, an example

is given to show how to use the LMI approach to design

the proposed NUIO, and simulation results are presented.

Finally, concluding remarks are made in the last section.

II. NONLINEAR SYSTEM DESCRIPTION AND

NUIO DESIGN PROBLEM FORMULATION

We consider the following nonlinear systems

ẋ = Ax + Bu + f(x) + Dv

y = Cx, (1)

where x ∈ Rn, u ∈ Rk,v ∈ Rm, and y ∈ Rp are the state

vector, known input vector, unknown input vector and the

output vector of the systems, respectively. Without loss of

generality, we assume that D is of full column rank.
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f(x) is any nonlinear function that satisfies the following

assumption.

Assumption A1: For f(x), there exists a positive constant

γ such that

|f(x) − f(x̂)| ≤ γ|x − x̂| (2)

for all x, x̂.

The NUIO design problem is: Construct an observer such

that it can estimate the states of the considered nonlinear

systems asymptotically without any knowledge of the input

v.

III. AN NUIO AND AN LMI BASED SUFFICIENT

CONDITION FOR ITS EXISTENCE

In this section, we will first present the structure of the

proposed full order NUIO, then derive a sufficient existence

condition in term of an LMI for the NUIO, and finally

will show that the sufficient condition in terms of LMI

actually provides a necessary and sufficient condition for the

existence of UIO for linear systems.

A. NUIO Design

Inspired by the full order UIO defined in [6], we propose

an NUIO with the following structure.

ż = Nz + Gu + Ly + Mf(x̂)
x̂ = z − Ey (3)

where N, G, L,M are defined as

N = MA − KC, G = MB

L = K(I + CE) − MAE

M = I + EC (4)

and E and K are chosen by the designers.

Let’s define the state estimation error as

e(t) = x̂ − x = z − x − Ey = z − Mx (5)

It is easy to verify that the state estimation error satisfies

ė(t) = Ne + (NM + LC − MA)x
+(G − MB)u + M(f(x̂) − f(x))
−MDv (6)

B. Sufficient Condition of the Existence of NUIO

Now we can give a sufficient condition under which the

observer given by (3) and (4) is indeed an NUIO.

Theorem 1: If there exist two matrices E and K and a

positive definite symmetric matrix P > 0 such that

ECD = −D;
NT P + PN + γPMMT P + γI < 0 (7)

then the observer given by (3) and (4) can make e(t) tend

to zero asymptotically for any initial value e(0).
Proof:

Based on (4), it is easy to derive G−MB = 0 and NM +
LC − MA = 0. Using these facts, (6) can be rewritten as

ė(t) = Ne + M(f(x̂) − f(x)) − MDv (8)

Because ECD = −D implies that MD = 0, (8) becomes

ė(t) = Ne + M(f(x̂) − f(x)) (9)

Choose a Lyapunov function as V (t) = e(t)T Pe(t), then

it follows from (9) and (2) that

V̇ = eT (NT P + PN)e + 2eT PM(f(x̂) − f(x))
≤ eT (NT P + PN)e + 2‖eT PM‖‖(f(x̂) − f(x))‖
≤ eT (NT P + PN)e + 2‖eT PM‖γ‖e‖
≤ eT (NT P + PN)e

+γ(‖eT PM‖2 + ‖e‖2)
= eT (NT P + PN + γPMMT P + γI)e (10)

Note that NT P + PN + γPMMT P + γI < 0, (10)

implies that e(t) tends to zero asymptotically for any initial

value e(0).
In order to design the NUIO, from Theorem 1, it is clear

that we only need to find E, K and P such that (7) is

satisfied. One way to find them is try to solve (7) directly.

However, this is very difficult because there is no systematic

way to do it. This motivates us to reformulate (7) as an LMI.

To reformulate (7) as an LMI, we first give all possible

solutions of E such that ECD = −D. Because D is of full

column rank, one necessary condition for ECD = −D to

have solutions is that CD is also of full column rank. If

CD is of full column rank, then all possible solutions of

ECD = −D must have the following form

E = −D(CD)+ + Y (I − (CD)(CD)+) (11)

where (CD)+ = ((CD)T (CD))−1(CD)T and Y can be

chosen arbitrarily. For notational convenience, let’s define

U = −D(CD)+ and V = I − (CD)(CD)+, then (11) can

be rewritten as

E = U + Y V (12)

If we substitute E given by (12) into the matrix inequality

in (7), we get

((I + UC)A)T P + P (I + UC)A

+(V CA)T Y T P + PY (V CA)

−CT KT P − PKC

+γ(P (I + UC) + PY (V C))(P (I + UC) + PY (V C))T

+γI < 0 (13)

The problem of finding E, K and P > 0 is now equivalent

to the problem of solving (13) for Y , K and P > 0. In the
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following lemma, we will show the matrix inequality given

by (13) can be reformulated as an LMI.

Lemma 1: The matrix inequality given by (13) has a

solution for Y , K and a symmetric matrix P > 0 if and

only if the following LMI has a solution for Ȳ , K̄ and the

same P . (
X X12

XT
12 −I

)
< 0 (14)

where X is defined as

X = ((I + UC)A)T P + P (I + UC)A
+(V CA)T Ȳ T + Ȳ (V CA)
−CT K̄T − K̄C + γI

X12 =
√

γ[P (I + UC) + Ȳ (V C)] (15)

with Y = P−1Ȳ and K = P−1K̄
Proof: It is straightforward to check that

(
I W
0 I

)(
X W

WT −I

)(
I 0

WT −I

)
=

(
X + WWT 0

0 −I

)
(16)

This implies that

(
X W

WT −I

)
< 0 is equivalent to(

X + WWT 0
0 −I

)
< 0, and thus equivalent to X +

WWT < 0. Using this fact and by letting W =
√

γ[P (I +
UC) + Ȳ (V C)] the lemma is proved.

Now we are able to reformulate the sufficient condition

given by Theorem 1 as an LMI, and the existence of a

feasible solution of the LMI guarantees the existence of the

NUIO given by (3) and (4).

Theorem 2: Assume that CD is of full column rank and

if the LMI defined by (14) and (15) has feasible solutions

for Ȳ , K̄ and a symmetric matrix P > 0, the NUIO given

by (3) and (4) can be designed such that the state estimation

error e(t) tends to zero asymptotically for any initial value

of e(0).
Proof: Under the conditions of the theorem, it follows

from Lemma 1 that the matrix inequality given by (13) has

a solution of Y = P−1Ȳ , K = P−1K̄ and P > 0. If

we let E = U + Y V and N = MA − KC, (13) can be

rewritten as NT P +PN +γPMMT P +γI < 0. Note also

that E = U + Y V implies ECD = −D, we know all the

conditions required by Theorem 1 are met, the theorem is

proved immediately.

Based on Theorem 2, we can give an NUIO design algorithm

as follows.

1) Compute U = −D(CD)+ and V = I−(CD)(CD)+.

2) Solve the LMI defined by (14) and (15) for Ȳ , K̄ and

a symmetric matrix P > 0.

3) Let Y = P−1Ȳ and K = P−1K̄.

4) Using Y and K, all the observer gains can be computed

as

E = U + Y V

M = I + EC

N = MA − KC, G = MB

L = K(I + CE) − MAE

(17)

Remark 1: Theorem 2 shows that the NUIO design can be

carried out through solving an LMI defined by (14) and (15).

To solve an LMI, we have now a very powerful Matlab LMI

toolbox to use. This provides a systematic way to design the

NUIOs, which overcomes the design difficulties encountered

in the NUIO for a class of nonlinear Lipschitz systems.

Remark 2: Although only full order NUIO is designed,

a reduced order NUIO can also be designed for nonlinear

Lipschitz systems by combining the UIO design technique

in [4] and the NUIO design technique in this paper.

C. UIO Design For Linear systems–A Special case

Note that (1) becomes a linear system when f(x) = 0,

hence a UIO design for linear systems can be viewed as a

special case of NUIO design for Lipschitz nonlinear systems

and the results obtained for NUIO are also applicable to UIO

for linear systems. In fact, for linear system, we can derive

a sufficient and necessary condition given in terms of LMI

based on Theorem 2.

When f(x) = 0, the NUIO given by (3) and (4) becomes

ż = Nz + Gu + Ly

x̂ = z − Ey (18)

where N, G,L, M are defined as

N = MA − KC, G = MB

L = K(I + CE) − MAE, M = I + EC (19)

and E and K are chosen by the designers.

To obtain a sufficient and necessary condition given in

terms of LMI, we introduce the following LMI.

((I + UC)A)T P + P (I + UC)A
+(V CA)T Ȳ T + Ȳ (V CA)
−CT K̄T − K̄C < 0 (20)

with Y = P−1Ȳ and K = P−1K̄.

Remark 3: If we let γ = 0, it is easy to show that the

LMI defined by (14) and (15) is reduced to (20).

Now, we can give a sufficient and necessary condition

given in terms of LMI for the existence of UIO for linear

systems.

Theorem 3: Assume that f(x) = 0, that is, (1) is a linear

system and also that CD is of full column rank, then the UIO

given by (18) and (19) exists in and only if the LMI defined
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by (20) has feasible solutions of Ȳ , K̄ and a symmetric

matrix P > 0.

Proof: The sufficient part is implied in the proof of

Theorem 2. The necessity part can be proved easily using

Theorem 2 in [6].

Remark 4: As pointed out in [6], the design of UIO for

linear systems is usually carried in a trial and error manner

in the literature. The new sufficient and necessary condition

provided here presents a systematic approach since it is

given in terms of LMI, which can be solved efficiently using

Matlab LMI toolbox.

IV. ILLUSTRATIVE EXAMPLES

In this section, a NUIO is designed for a nonlinear system

and simulation results are presented. The following nonlinear

Lipschitz system is considered.

ẋ = Ax + Bu + f(x) + Dv

y = Cx (21)

where

A =

⎛⎝−1 −1 0
−1 0 0
0 −1 −1

⎞⎠
B = 0 D =

⎛⎝−1
0
0

⎞⎠ ,

C =
(

1 0 0
0 0 1

)
(22)

and f(x) = ( 0.5sin(x2) 0.6cos(x3) 0 )T
, v =

2sin(5t).

A. NUIO design

For this example, we have

U =

⎛⎝−1 0
0 0
0 0

⎞⎠ V =
(

0 0
0 1

)
(23)

and

‖f(x) − f(x̂)‖ ≤ 0.6‖x − x̂‖ (24)

¿From (24), we know that we may choose γ = 0.65. Now,

using the Matlab LMI toolbox, we can solve the LMI defined

by (14) and (15) for P > 0,Ȳ , and K̄. One feasible solution

for them is found as follows.

P =

⎛⎝ 50.25 0 0
0 0.8992 0
0 0 50.25

⎞⎠

Ȳ =

⎛⎝ 0 0
0 1.3874
0 −50.25

⎞⎠

K̄ =

⎛⎝ 173.5441 0.2944
−0.8992 −1.3874
−0.2944 −173.5441

⎞⎠
Therefore, we can obtain Y and K as

Y = P−1Ȳ =

⎛⎝ 0 0
0 1.543
0 −1

⎞⎠
and

K = P−1K̄ =

⎛⎝ 3.4536 0.0059
−1 −1.543

−0.0059 3.4536

⎞⎠ .

With Y at hand, we get

E = U + Y V =

⎛⎝−1 0
0 1.543
0 −1

⎞⎠
Using K and E, all NUIO gain matrices can be computed

and are given below.

N =

⎛⎝−3.4536 0 −0.0059
0 −1.543 0

−0.0059 0 −3.4536

⎞⎠

M =

⎛⎝ 0 0 0
0 1 1.543
0 0 0

⎞⎠

L =

⎛⎝ 0 0
−1 0.8378
0 0

⎞⎠ G = 0

With N, M, L, E, the NUIO given by (3) can be easily

constructed as

ż = Nz + Ly + Mf(x̂)
x̂ = z − Ey (25)

B. Simulation results

To see the effectiveness of the proposed NUIO, simulation

results are presented in Figures 1 and 2. Figure 1 shows the

result for initial conditions given by

x(0) = 0, z(0) = ( 0.3 0.3 0.3 )T

while Figure 2 shows the result for initial conditions given

by

x(0) = 0, z(0) = ( 3 3 3 )T

Based on Figures 1 and 2, it can seen that the observer

performs as expected and the state estimation errors for the

two different initial values do tend to zero asymptotically as

expected.
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Fig. 1. State estimation error
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Fig. 2. State estimation error

V. CONCLUSIONS

A full order nonlinear unknown input observer (NUIO)

was proposed and designed for a class of Lipschitz nonlinear

systems with unknown inputs. Sufficient existence conditions

were derived for the NUIO. The main advantage of the LMI

based condition is that it enables us to design the proposed

full order NUIO using Matlab LMI toolbox and thus makes

the difficult NUIO design problem an easy task for the

considered class of nonlinear systems. The new sufficient

condition, when applied to linear systems, is also shown to

be necessary. An example was given to show how to use the

LMI approach to design an NUIO, and simulation results

show that the designed NUIO can indeed make the state

estimation error to asymptotically converge to zero regardless

of the unknown inputs. How to extend LMI based NUIO

design technique to more general nonlinear systems is a

subject future research.
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