Potential of Cs as a promoter of Pt/m-ZrO₂ catalysts in the Low Temperature Water-Gas Shift and Ethanol Steam Reforming Reactions

Zahra Rajabi, Michela Martinelli, Caleb D. Watson, Donald C. Cronauer, A. Jeremy Kropf and Gary Jacobs

Presenter : Zahra Rajabi

Hydrogen Applications

Hydrogen Production Processor

Nikolaidis, P. et al. A comparative overview of hydrogen production processes. *Renew. Sustain. Energy Rev.* 2017, 67, 597–611
Vignatti, C. et al. T.F. Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts. *Int. J. Hydrogen Energy* 2010, *35*, 7302–7312.

UTSA The University of Texas at San Antonio[™]

1. Ratnasamy, C. et al, Water gas shift catalysis. Catal. Rev. 2009, 51, 325-440.

2. Panagiotopoulou, P. et al, Effect of the nature of the support on the catalytic performance of noble metal catalysts. Catal. Today 2006, 112, 49–52.

Our Study

- The effect of Cs as Alkali on Pt/m-ZrO₂ in both LT-WGS and ESR reactions
- The optimal alkalis loading for activity and/or stability.
- Ability to facilitate formate dehydrogenation in WGS reaction and acetate dehydrogenation in ESR reaction

Material and Methods

Material

Name	Brand		
Monoclinic phase zirconia	No. 43815, Alfa Aesar, Haverhill, MA, USA		
Pt(NH ₃) ₄ (NO ₃) ₂	No. 88960, Alfa Aesar, Haverhill, MA, USA		
Aqueous CsNO ₃	No. 12884, Alfa Aesar, Haverhill, MA, USA		

Catalyst Preparation

Methods

 In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

• X-ray absorption near edge spectroscopy (XANES)

 \circ Temperature-programmed desorption (TPD)

 \circ Fixed bed catalytic reaction testing

Catalyst Characterization

BET surface area

Sample ID	Expected A _S Assuming No Pore Blocking [m ² /g]	Measured A _S (BET) [m²/g]	Difference between Expected & Measured [m ² /g]
ZrO ₂		95.4	
2%Pt/ZrO ₂	93.2	89.6	3.6
0.72%Cs- $2%$ Pt/ZrO ₂	92.5	88.5	4.0
1.45%Cs-2%Pt/ZrO ₂	91.7	84.6	7.1
2.17%Cs-2%Pt/ZrO ₂	91.0	85.3	5.7
2.89%Cs-2%Pt/ZrO ₂	90.3	86.6	3.7
3.87%Cs-2%Pt/ZrO ₂	89.3	86.8	2.5
4.80%Cs-2%Pt/ZrO ₂	88.3	78.7	9.6
5.78%Cs-2%Pt/ZrO ₂	87.3	74.1	13.2
7.22%Cs-2%Pt/ZrO ₂	85.9	69.1	16.8
10.41%Cs-2%Pt/ZrO ₂	82.7	62.1	20.6
14.45%Cs-2%Pt/ZrO ₂	78.6	54.9	23.7

BJH Pore Volume

Sample ID	V _P (BJH Des) [cm ³ /g]
ZrO ₂	0.289
2%Pt/ZrO ₂	0.272
0.72%Cs- $2%$ Pt/ZrO ₂	0.259
1.45%Cs-2%Pt/ZrO ₂	0.249
2.17%Cs-2%Pt/ZrO ₂	0.246
2.89%Cs- $2%$ Pt/ZrO ₂	0.251
- 3.87%Cs-2%Pt/ZrO ₂	0.256
4.80%Cs-2%Pt/ZrO ₂	0.238
5.78%Cs- $2%$ Pt/ZrO ₂	0.229
7.22%Cs- $2%$ Pt/ZrO ₂	0.211
10.41%Cs-2%Pt/ZrO ₂	0.197
14.45%Cs-2%Pt/ZrO ₂	0.177

XRD profile

UTSA. STEM-EDX images

The University of Texas at San Antonio[™]

H₂ Temperature-Programmed Reduction (TPR)

EXAFS (Extended X-ray Absorption Fine Structure) data at the L3-edge of Pt

- Average Pt particle size was calculated by using the first atomi shell Pt-Pt coordination number.
- Average Pt⁰ particle diameter increases with increase Cs loading
- \circ The dispersion, which is defined as % Pt atoms exposed to the surface, decreases with increase Cs loading.

	Sample Description	N Pt-Pt Metal	R Pt-Pt (Å) Metal	e ₀ (eV)	σ ² (Å ²)	r-Factor	Est. Number of Atoms *	Est. Diam. (nm) */**	Est. % Disp. (%)
- C	Pt ⁰ foil	12 (fixed)	2.766 (0.0061)	8.99 (0.657)	0.00537 (0.00045)	0.0094	-	-	-
	2%Pt/m-ZrO ₂	5.2 (0.44)	2.681 (0.0090)	4.70 (0.612)	0.010 (0.00143)	0.0062	13	→ 0.86 — 0.78	→ 92
3	2.89%Cs-2%Pt/m-ZrO ₂	5.3 (0.36)	2.709 (0.0069)	6.15 (0.471)	0.00905 (0.00110)	0.0041	13	0.87 0.79	92
-	4.80%Cs-2%Pt/m-ZrO ₂	6.3 (0.36)	2.725 (0.0057)	6.55 (0.397)	0.00797 (0.00090)	0.0031	22	1.0 0.93	87
-	5.78%Cs-2%Pt/m-ZrO ₂	6.9 (0.51)	2.742 (0.0070)	7.11 (0.507)	0.00660 (0.00110)	0.0054	31	1.1 1.0	84
-	10.41%Cs-2%Pt/m-ZrO ₂	8.2 (0.24)	2.755 (0.0026)	8.32 (0.200)	0.00474 (0.00041)	0.00089	82	→ ^{1.5} —	→ 73
	14.45%Cs-2%Pt/m-ZrO ₂	8.0 (0.67)	2.754 (0.0076)	7.38 (0.560)	0.00594 (0.00119)	0.0067	68	1.4 1.3	77

1- Jentys, A. Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059-4063. The University of Texas 2- Marinkovic', N.S.; Sasaki, K.; Adzic, R.R. Nanoparticle size evaluation of catalysts by EXAFS: Advantages and limitations. Zaštita 18.Mater. 2016, 57, 101-109.

XANES (X-ray absorption near edge structure) Spectra at the Pt L-3 edge, and L-2 edge

- Overlays of L3–L2 difference spectra, showing an increase in intensity with Cs loading.
- No evidence for etransfer to Pt from Cs was found, which should result in an opposite trend

Study of Low Temperature Water Gas Shift Rection (LT-WGS)

Proposed Mechanisms for LT-WGS

1.

2.

Shido, T. et all. Reactant-promoted reaction mechanism for water-gas shift reaction on Rh-doped CeO2. J. Catal. 1993, 141, 71–78.

Wang, Y.X. et all. A systematic theoretical study of the water gas shift reaction on the Pt/ZrO2 interface and Pt (111) Catal. Sci. Technol. 2020, 10, 876–892.

In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) LT-WGS

The decomposition of formate through the monitoring of the v(CH)

DRIFTS results showed an improvement in the forward formate decomposition rate with Cs loading until a maximum rate in the range of 4.80%–5.78%Cs.

Optimal cesium loading Excessive cesium loading

Reactor Testing

Stability test on 0.72%Cs-promoted and unpromoted Pt/ZrO2 at similar CO conversion

Study of the Ethanol Steam Reforming Reaction (ESR)

Proposed Mechanisms for Ethanol Steam Reforming Reaction

Temperature-Programmed Reaction (TPR) of Ethanol and Water

14.45%Cs-2%Pt/ZrO2 10.41%Cs-2%Pt/ZrO2 7.22%Cs-2%Pt/ZrO2 CH₄ signal 5.78%Cs-2%Pt/ZrO2 4.80%Cs-2%Pt/ZrO2 3.87%Cs-2%Pt/ZrO2 2.89%Cs-2%PtZrO2 2%Pt/ZrO2

Reactor test

Catalvet	Conv. C ₂ H ₅ OH (%)	C-Selectivity (%)						
Calalysi		CH ₄	CO ₂	СО	C_2H_6	C_2H_4	C ₃ H ₆	CH ₃ CHO
2% Pt/ZrO ₂	86.91	45.20 ± 2.26	28.5 ± 1.42	21.16 ± 1.05	0.92 ± 0.04	0.39 ± 0.02	0.34 ± 0.02	3.49 ± 0.34
0.7% Cs-2% Pt/ZrO ₂	77.45	48.41 ± 2.42	40.40 ± 2.02	9.44 ± 0.47	0.40 + 0.02	-	-	1.35 ± 0.14
1.5% Cs-2% Pt/ZrO ₂	78.42	48.02 ± 2.4	44.66 ± 2.23	6.33 ± 0.32	0.31 ± 0.02	-	-	0.68 ± 0.07
2.9% Cs-2% Pt/ZrO ₂	72.95	53.76 ± 2.69	45.62 ± 2.28		-	-	-	0.62 + 0.06
5.8% Cs-2% Pt/ZrO ₂	63.45	55.74 ± 2.77	43.88 ± 2.17		-	-	-	0.68 ± 0.07

 $C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 6H_2 (\Delta H_{298}^{\circ} = 173 \text{ kJ/mol})$

 $C_2H_5OH + H_2O \rightarrow 2CO + 4H_2 \text{ } (\Delta H_{298}^{\circ} = 55 \text{ kJ/mol}).$

- Cs promotes the decarboxylation/demethanation pathway over decarbonylation by increasing the basicity of the catalyst and weakening the C–C bond of the acetate intermediate.
- The addition of just 2.9% Cs promoted decarboxylation and virtually nullified the unselective decarbonylation route with a decrease in ethanol conversion of just 16%
- Cs promoter loadings of 3.87% to 7.22% resulted in significant acceleration of the forward formate decomposition in steam at 130 °C.

Thank You For Your Attention