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The intention of this research Is to design a system that is able to manufacture synthetic fuel, such as diesel, from recycled carbon dioxide. This Chemical Formulas for Process

Department: Chemical Engineering process was accomplished by using a hybrid catalyst promoted reverse water-gas shift followed by the Fischer-Tropsch synthesis process. The Reverse water-gas shift: CO.+H.=CO + H.O
_ catalyst utilized in this experiment is Ru/m-ZrO,, a Ruthenium-based catalyst doped with varying quantities of sodium ranging from 1% to 5%. Ciccher-T n n L C 02+ 2H2 — [CH i H.O
Area of Study: Heterogenous Catalysis This experiment allows us to observe the effects that the different percentages of sodium (Na) had on the methanation and activation energy, thus Ischer- Tropsch synthesis: 2 = [CH,; 2

changing the overall selectivity. The optimal Na percent at high pressure was found to be approximately 1.8% to 2.5% Na. Methanation: CO +3H,=CH,+ H,0

UTSA Mentor: Dr. Gary Jacobs
CO, or H,0 ME TH OD S

? + CO (or HZ)L Zr—o0 Carbon dioxide (CO,) from fossil fuels has increased approximately by 90% in the atmosphere ever since 1970. CO, emissions negatively impact / SI(TT |T |S & EXPERI ANCES \

“ H,0 ? the climate by increasing global warming. As people continue to rely on natural gas, electricity, and other forms of fossil fuels, CO, emissions
°\~(-:7° % =0 continue to be released into the air causing climate change. A solution to this problem is CO, Hydrogenation where CO, undergoes a Reverse water » X-Ray Absorption Near Edge Structure (XANES)
] 0 o gas shift (RWGS) mechanism to produce CO, followed by either a Fischer Tropsch synthesis (FTS) to convert CO into diesel fuel or methanation _ _
RN as a secondary reaction. In the research, a hybrid Na-doped 1%Ru/m-ZrO2 catalyst at an elevated pressure of 20 bar, 300°C with a space velocity » Extended X-Ray Absorption Fine Structure (EXAFS)
® - H’ O, Pﬁ co R“;t"p? cxHy+H0  0f 80,000 mL/g.h, and a H,/CO, ratio of 3:1 was utilized. After RWGS takes place, a secondary reaction of CO occurs on Ru metal on-top sites + WinXas Data Processing
_ \{ _ to produce CH, While methanation can be beneficial in creating synthetic natural gas to be used in households, the goal of this research is to
L e e tion | produce CO as a reactant for the FTS reaction. The specified elevated pressure of 20 bar suppresses the methanation, which expands the  OMNIC Spectroscopy Software
e o probability of carbon chain growth. One method to control the selectivity of CO is to increase the addition of Na-doping. Increasing the addition of « Technical Writing & Data Analvs
;- fwesselio/fa) T Na can increase surface basicity by strengthening the -CO, functional group of formate at the rate-limiting step, while the CH bond of the formate \ echnical vvriting ata Analysis /
S Peptber G weakens. Na addition also suppresses Ru on-top sites where methanation occurs, decreasing CH, selectivity. Thus, increasing Na-doping, helps to

control the products of the RWGS reaction by increasing CO selectivity that is later utilized in FTS to produce fuel.

RESULTS
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Figure 1 DRIETS of 4%C0, LATIE TS 196Ru/M-Zr0, Teduced &t 300°C in H,. Forbaseling” ' Figure 3. DRIETS of formate v(CH) Figure 4. Effect of Na.on Figure 6. Linear combination fittings of TPR-XANES spectra recorded at the Ru K edge as a function of temperature for 1%Ru/m-ZrO,,
comparison. band, during CO, hydrogenation attenuating the Ru carbonyl sites 0% Na, 0.5% Na, 1.0% Na, 1.8% Na, 2.5% Na, and 5% Na, Respectively. The point of 50% conversion increases to a higher temperature
Figure 2: DRIFTS of 4%CO, + 12%H, for 2.5%Na-1%Ru/m-ZrO, reduced at 300°C in H,. Na using 4%CO0O, + 12%H, over catalysts v(CO) band intensity following with each increase of Na percent, this indicates direct contact between Na and Ru.

addition causes the formate C-H band to be shifted to lower wave numbers, the bond weakens which  reduced at 300°C. Electronic weakening ~ adsorption at varying temps.

promotes formate formation and CO production, while methanation is suppressed. of formate C-H bond as Na Is increased. ACI{NOWLED GEMENTS
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