
ATTRIBUTE-BASED ADMINISTRATION OF ROLE-BASED ACCESS CONTROL

by

JIWAN LIMBU NINGLEKHU, M.S.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

COMMITTEE MEMBERS:
Ram Krishnan, Ph.D., Chair

Eugene John, Ph.D.
Wonjun Lee, Ph.D.
Ravi Sandhu, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Engineering

Department of Electrical and Computer Engineering
December 2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10686077

10686077

2017

Copyright 2017 Jiwan Limbu Ninglekhu
All rights reserved.

DEDICATION

To Manju

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude towards Professor Dr. Ram Krishnan. It is

my great privilege to have him as my dissertation advisor and mentor. During a course of past six

years with him, I have learned to love my work, and had an opportunity to understand some of the

key elements of creativity in technology. I shall always learn from his philosophy.

I would like to express my gratitude to Professor Dr. Ravi Sandhu, not only for providing me

with constructive feedback and agreeing to be in my dissertation committee, but also for helping

build the realm of computer security the way it stands today. In addition, for leading Institute for

Cyber Security (I.C.S.) at UTSA in a world-class manner, of which, I am a proud member.

Professor Dr. Eugene John has been a great inspiration for me since the time I took one of his

courses. I also had an opportunity to work with him previously during my masters thesis. I would

like to thank Dr. John for his constructive feedback, for believing in me, and encouraging me to

move forward.

I would like to thank Professor Dr. Wonjun Lee for his thought provoking questions and valu-

able feedbacks.

I would also like to thank Mr. Farhan Patwa for sharing his expertise on cloud computing and

software architecture. I want to thank Mr. James Benson for his support on integration of my work

in the OpenStack Cloud.

I would like to thank our College of Engineering staffs Ms. LiPing Bein and Ms. Monique

Wimberley for their help. I would also like to express my gratitude to Institute for Cyber Security

staff member, Ms. Suzanne Tanaka for her world-class help.

I would like to thank brother Indra P. Limbu for his constant encouragement and support.

I would like to thank my family members, Dad Gopal Bahadur Ninglekhu, Mom Krishna

Kumari Limbu, Little sisters Sita Limbu and Gita Limbu for their love and support.

I would like to express special gratitude towards my elder brother Bhumiraj Ninglekhu for his

continuous encouragement, support and love.

I would like to thank my wife Manju for being with me on this adventure while maintaining

iv

her patience, trust, support and love. I would like to send my love and gratitude to my daughter

Coraline. Thank you, Sanu! for your cheers and laughs which helped me regain courage when the

times were low.

Finally, I would like to express my sincere gratitude to Sushil Karki. Without him, I wouldn’t

have gathered enough courage to pursue my Ph.D. Thank you for always being there, your contin-

uous and dedicated support, and specially, for always believing in me. Sushil ! from you, I shall

always learn what a friend can do.

This research was made possible by Nation Science Foundation (NSF) research grants: CNS-

1423481 and CNS-1553696.

This Doctoral Dissertation was produced in accordance with guidelines which permit the in-
clusion as part of the Doctoral Dissertation the text of an original paper, or papers, submitted for
publication. The Doctoral Dissertation must still conform to all other requirements explained in
the Guide for the Preparation of a Doctoral Dissertation at The University of Texas at San Anto-
nio. It must include a comprehensive abstract, a full introduction and literature review, and a final
overall conclusion. Additional material (procedural and design data as well as descriptions of
equipment) must be provided in sufficient detail to allow a clear and precise judgment to be made
of the importance and originality of the research reported.

It is acceptable for this Doctoral Dissertation to include as chapters authentic copies of pa-
pers already published, provided these meet type size, margin, and legibility requirements. In such
cases, connecting texts, which provide logical bridges between different manuscripts, are manda-
tory. Where the student is not the sole author of a manuscript, the student is required to make an
explicit statement in the introductory material to that manuscript describing the students contribu-
tion to the work and acknowledging the contribution of the other author(s). The signatures of the
Supervising Committee which precede all other material in the Doctoral Dissertation attest to the
accuracy of this statement.

December 2017

v

ATTRIBUTE-BASED ADMINISTRATION OF ROLE-BASED ACCESS CONTROL

Jiwan Limbu Ninglekhu, Ph.D.
The University of Texas at San Antonio, 2017

Supervising Professor: Ram Krishnan, Ph.D.

Role-Based Access Control (RBAC) is an operational model in which if a user wants to access

an object, she does it by activating roles that are assigned to her, which in turn activates the permis-

sions that are associated with that role. This indirection allows an easy designation of permissions

to users.

Administrative Role-Based Access Control (ARBAC) models deal with the administration of

RBAC. ARBAC model primarily involves how to manage user-role assignments (URA), permission-

role assignments (PRA), and role-role assignments (RRA). A wide variety of approaches have been

proposed in the literature for URA, PRA, and RRA. In each of these models, only one or two static

properties of involved entities such as users and permissions have been used in making assignment

decisions. For example, in one of the prior models, a user’s initial membership or non-membership

on a role qualifies that user for further role assignment. In another case, a permission’s association

on either a role or an organizational unit in an organizational structure allows that permission to be

assigned to another role. These models make plausible arguments for URA, PRA or RRA assign-

ments. However, a unified approach that allows checking for all or a combination such policies,

while allowing the administrator to introduce new policies remains to be explored.

In this dissertation, a thorough study on developing administrative models that allow a uni-

fied approach that allows us to dynamically incorporate properties that can be used to make as-

signment decisions is conducted. An attribute-based access control (ABAC) approach is taken

to develop each model for enhanced URA, PRA and PRA. There is significant prior work done

in the ARBAC domain. A set of such models namely, Administrative RBAC ‘97 (ARBAC97),

Administrative RBAC ‘99 (ARBAC99), Administrative RBAC ‘02 (ARBAC02), A Unified Ad-

vi

ministrative Model for Role-Based Access Control (Uni-ARBAC) and Unnamed ARBAC (UAR-

BAC) are studied. From each of these models, URA, PRA and RRA techniques are studied and,

corresponding assignment models that yield a family of models for Attribute-Based Administra-

tion of RBAC (AARBAC) are developed. They are called attribute-based user-role assignment

(AURA), attribute-based permission-role assignment (ARPA) and, attribute-based role-role as-

signment (ARRA), respectively. These models are sufficient enough to unify URA, PRA and

RRA approach exhibited in prior models. For each attribute-based model, a translation algorithm

is developed, which can take any instance from the prior model as its input and map it into the

corresponding instance of attribute-based assignment approach.

Finally, among all the theoretical attribute-based administration models that are developed,

AURA is considered to demonstrate the advantage of attribute-based approach in the user-role

assignment, by applying it as a proof-of-concept in OpenStack Infrastructure as a Service (IaaS)

cloud’s identity service. This implementation shall demonstrate flexibility and policy specification

power brought-forward by the attribute-based approach. A performance evaluation is conducted to

compare the time variation with and without attributes using different test cases.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xiii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Problem Statement . 4

1.2 Scope and Assumption . 5

1.3 Thesis Statement . 5

1.4 Summary of Contribution . 6

1.5 Organization of Dissertation . 7

Chapter 2: Background and Literature Review . 9

2.1 Related Work . 9

2.2 Role-Based Access Control Model . 9

2.3 Administrative RBAC Models . 10

2.3.1 ARBAC97 . 10

2.3.2 SARBAC . 11

2.3.3 ARBAC99 . 11

2.3.4 ARBAC02 . 12

2.3.5 Uni-ARBAC . 12

2.3.6 UARBAC . 13

2.3.7 A Model for Attribute-Based User-Role Assignment 13

2.3.8 Other Administrative Models . 14

viii

2.4 ABAC Models and Benefits of Using Attributes 14

Chapter 3: AURA: Attribute-Based User-Role Assignment 16

3.1 AURA Model . 17

3.2 Mapping Prior URA Models in AURA . 19

3.3 URA97 in AURA . 19

3.3.1 Summary of URA97 Model . 20

3.3.2 URA97 Instance . 20

3.3.3 Equivalent URA97 Instance in AURA . 21

3.3.4 MAPURA97 Algorithm . 23

3.4 URA99 in AURA . 26

3.4.1 Summary of URA99 Model . 26

3.4.2 URA99 Instance . 28

3.4.3 Equivalent URA99 Instance in AURA . 29

3.4.4 MAPURA99 . 33

3.5 URA02 in AURA . 37

3.5.1 Summary of URA02 Model . 37

3.5.2 URA02 Instance . 39

3.5.3 Equivalent URA02 Instance in AURA . 41

3.5.4 MapURA02 . 43

3.6 Uni-ARBAC’s URA in AURA . 46

3.6.1 Summary of Uni-ARBAC’s URA Model 46

3.6.2 Uni-ARBAC’s URA Instance . 47

3.6.3 Equivalent AURA instance of Uni-ARBAC’s URA 48

3.6.4 MapURA-Uni-ARBAC . 51

3.7 UARBAC’s URA in AURA . 52

3.7.1 Summary of UARBAC’s URA Model . 52

3.7.2 An Instance of UARBAC’s URA . 56

ix

3.7.3 Equivalent AURA instance for UARBAC’s URA 58

3.7.4 MapURA-UARBAC . 61

Chapter 4: ARPA: Attribute-Based Permission-Role Assignment Model 65

4.1 ARPA Model . 65

4.2 Mapping Prior PRA Models in ARPA . 68

4.3 PRA97 in ARPA . 68

4.3.1 Summary of PRA97 Model . 68

4.3.2 PRA97 Instance . 69

4.3.3 Equivalent Example Instance of ARPA for PRA97 70

4.3.4 MapPRA97 . 72

4.4 PRA99 in ARPA . 74

4.4.1 Summary of PRA99 Model . 75

4.4.2 Equivalent PRA99 Instance in ARPA . 78

4.4.3 MapPRA99 . 81

4.5 PRA02 in ARPA . 86

4.5.1 Summary of PRA02 Model . 86

4.5.2 PRA02 Instance . 87

4.5.3 Equivalent PRA02 Instance in ARPA . 89

4.5.4 MapPRA02 . 93

4.6 Uni-ARBAC’s PRA in ARPA . 94

4.6.1 Summary of Uni-ARBAC’s PRA Model 95

4.6.2 Instance of PRA in Uni-ARBAC . 96

4.6.3 Equivalent ARPA instance of PRA in Uni-ARBAC 97

4.6.4 MapPRA-Uni-ARBAC . 102

4.7 UARBAC’s PRA in ARPA . 102

4.7.1 Summary of UARBAC’s PRA Model . 103

4.7.2 Instance of UARBAC’s PRA . 105

x

4.7.3 Equivalent ARPA instance of UARBAC’s PRA 107

4.7.4 MapPRA-UARBAC . 111

Chapter 5: ARRA: Attribute-Based Role-Role Assignment Model 115

5.1 ARRA Model . 115

5.2 Mapping Prior RRA Models in ARRA . 116

5.3 RRA97 in AARA . 116

5.3.1 An RRA97 Example Instance . 118

5.3.2 ARRA Instance Equivalent to RRA97 Instance 119

5.3.3 MapRRA97 . 123

5.3.4 UARBAC’s RRA in ARRA . 124

5.3.5 An Example Instance of UARBAC’s RRA 124

5.3.6 ARRA Instance Equivalent to UARBAC’s RRA Instance 126

5.3.7 MapRRA-UARBAC . 128

5.3.8 An Example Instance For ARRA With Role Attributes 131

Chapter 6: Implementation of AURA Model in OpenStack Cloud IaaS 133

6.1 Background . 133

6.2 Need for Attribute-Based Administrative Approach in IaaS Cloud 134

6.2.1 Flexibility and Scalability . 134

6.2.2 Least Privilege . 135

6.2.3 Fine Grained Access Control . 136

6.2.4 Principle of Minimalism . 136

6.3 OpenStack Access Control Overview . 138

6.3.1 Administrative OSAC model . 140

6.4 Proof of Concept AURA Implementation in OpenStack 141

6.4.1 The Notion of Administrative Users in OpenStack 142

6.4.2 Access Control Policy Management in OpenStack 143

xi

6.4.3 AURA Enforcement Model . 145

6.5 A Practical Scenario . 146

6.6 Experimental Setup and Application . 150

6.7 Performance Analysis . 153

6.7.1 Evaluation . 154

6.7.2 PRA and RRA in OpenStack . 156

Chapter 7: Conclusion . 159

7.1 Future Work . 160

Bibliography . 161

Vita

xii

LIST OF TABLES

Table 3.1 AURA Model . 18

Table 4.1 ARPA Model . 66

Table 5.1 ARRA Model . 117

Table 6.1 OSAC Model [61] . 139

Table 6.2 UA Relation in OSAC . 141

Table 6.3 An example for JSON format attribute assignment 148

Table 6.4 An example of attribute-based assignment policy 149

Table 6.5 Permissions assigned to aura_admin role 157

xiii

LIST OF FIGURES

Figure 1.1 Basic Access Control . 2

Figure 1.2 RBAC Adoption in IT Intensive Organizations [43] 3

Figure 2.1 Role Based Access Control Model . 9

Figure 3.1 Attribute-Based Administration of RBAC 16

Figure 5.1 Role and Administrative Role Hierarchies in RRA97 [55] 119

Figure 6.1 OSAC Model [61] . 137

Figure 6.2 Attribute-Based User-Project-Role Assignment in OpenStack 142

Figure 6.3 Keystone Authorization . 144

Figure 6.4 AURA Authorization Enforcement . 145

Figure 6.5 Avg. URA Time Comparison . 153

Figure 6.6 Avg. URR Time Comparison . 153

Figure 6.7 Avg. URA Time with Varying No. of Attributes 155

Figure 6.8 Avg. URR Time with Varying No. of Attributes 155

Figure 6.9 URA Time with Varying Attributes and Scope 156

Figure 6.10 URR Time with Varying Attributes and Scope 156

xiv

Chapter 1: INTRODUCTION

The term ‘protection’ was defined for all the mechanisms that control the access of a program to

resource in the system [36]. Since computer’s early usage, a primary concern about protection

has been the ability to share resources (in the computer) while having a mechanism to protect

them from unauthorized access [22, 36]. The rules by which a decision on whether a request to

access resources are granted or denied are known as access control policies. The components such

as subject and objects involved in the access control process can be referred to as access control

entities. These entities can be used to build access control models, which provides a structure for

specifying and introducing security policies.

The entity that requests access of resources is called the subject. A subject can be a human

user or a machine (logic) that generates access requests on behalf of humans. The resources are

commonly known as objects. A high-level access control scenario is shown in Figure 1.1. In the

diagram,the subject’s access to object is controlled by the access control block, where mechanism

and the access control policies are defined. An authenticated subject is either granted or denied

access based on the policies specified by an access control model. Access control models are

desired to be relatively flexible to incorporate security policies, be policy neutral and simple to

administer.

Role-based access control (RBAC) [18, 53, 58] is apparently, one of the most well-adopted

access control model in enterprise settings [17, 43]. In addition, it is very well-studied access

control model in the academic community [20]. The 2010 Economic Analysis of Role-Based

Access Control [43] reported by NIST shows the rate by which RBAC has been adopted in IT

intensive organizations. It estimates that over 50% of users at organizations with more than 500

employees are expected to have at least some of their permissions managed via roles [43]. A chart

in Figure 1.2 shows an increasing RBAC adoption rate since 1995 to 2010. This suggests that the

adoption rate is expected to grow.

Administrative Role-Based Access Control (ARBAC) is an approach developed for adminis-

1

Access	Control/	
Policies	

Subject	

Request	to	access	objects		

Access	Granted	or	Access	Denied	

Objects	
(e.g.,	files,	folders)	

Figure 1.1: Basic Access Control

tering RBAC. It primarily involves administration of user-role assignment (URA), permission-role

assignment (PRA) and, role-role assignment (RRA) among other operations such as creating and

updating RBAC entities like users and permissions. It is evident that ARBAC is developed based

on RBAC philosophy. Because like RBAC, ARBAC were designed to adapt simplicity, flexibility,

and ease-of-use. The development of ARBAC models starting with ARBAC97 model [55] seems

to have incorporated those qualities to their best extent. It will be later seen that the development

of these models have evolved, and thus, ARBAC models that have been published in the literature

cover many different important aspects necessary for controlled administration that obey rules of

access control like least privilege and separation of duties.

Administrative RBAC is considered both critical and challenging task [55]. ARBAC focusses

on assigning/revoking users to/from roles, permission to/from roles, etc. Many approaches have

been proposed in the literature for ARBAC [10, 33, 37, 44, 55, 56, 64]. But among all different

ARBAC models, five ARBAC models have been considered in this research work, as a founda-

tion and motivation in developing an ARBAC model with a new approach. They are ARBAC97,

ARBAC99, ARBAC02, Uni-ARBAC and UARBAC. Most of these models incorporate URA and

PRA, while only few cover RRA [37, 55]. Moreover, most of these approaches are role-driven.

For example, in URA97 [55], user-role assignment is determined based on prerequisite roles of the

target user, in URA99 [56], it is determined based on the target users’ mobile or immobile mem-

bership on roles. At the same time, these models are making use of few fixed set of properties of

2

0%	

10%	

20%	

30%	

40%	

50%	

60%	

1995	 2002	 2004	 2009	 2010	

Pe
rc
en

ta
ge
	o
f	U

se
r's
	p
er
m
is
si
on

s	m
an

ag
ed

		
vi
a	
RB

AC
	

Year	

Figure 1.2: RBAC Adoption in IT Intensive Organizations [43]

RBAC in making assignment decisions. For instance, RRA97 presents a notion of authority range

in RRA97 [55]. A user with admin role is given an authority range, over which that admin role

can conduct administrative operations such as assigning a role to a role. In addition, it can be ob-

served that latter models were developed either to incorporate or overcome (or both) the strengths

of prior models. It can also be observed that every time a new feature was created and adopted, a

new model had to be built. Therefore, there exists a need for an approach, in which features from

previously developed models can be dynamically incorporated while at the same time this new

approach would also allow the user to introduce new features.

Attribute-Based Access Control (ABAC) has recently gained a significant amount of attention

because of the flexibility it offers [6,11,23,24,29,35]. It has proven to have the ability to represent

different access control models [29]. Moreover, ABAC has been applied in different technology

domains such as the Cloud and the Internet of Things (IoT) [2, 4, 7–9, 30, 52]. However, the use

cases so far are towards the operational aspect of access control and, the usage of ABAC for

administrative purposes has not been thoroughly explored. This dissertation is an investigation

of an attribute-based approach for administration of RBAC. In the context of ARBAC, attributes

allow for more flexibility in specifying the conditions under which users and permissions can

3

be assigned to roles. For instance, the notions of prerequisite roles in ARBAC97 [55], mobility of

roles in ARBAC99 [56], and organization unit in ARBAC02 [44] can be captured as user attributes.

The notion of administrative roles in the above models and the notion of administrative unit in Uni-

ARBAC [10] can be captured as attributes of administrative users. Similarly, the notion of authority

range in RRA97 [55] can be captured using admin role attributes.

This allows for the attribute-based models developed in this research to express any of these

ARBAC models and beyond. That is, it allows the attribute-based models presented in this lit-

erature to express any combination of features from prior models, and new features that are not

intuitively expressible in those prior models. Thus, this work is motivated largely by two critical

factors: (a) since administrative RBAC has been fairly explored in the literature, it is appropriate

to explore unification of these works into building a coherent model that can be configured to ex-

press prior models and beyond, and (b) a unified model can be analyzed once for various desirable

security properties, and a single codebase can be generated to express prior models and beyond.

1.1 Problem Statement

Although administration of role-based access control has been well explored, almost all the prior

models are fairly static and limited in what they can express. Any new property, if required to

be incorporated in an administrative decision process, a new model had to be developed. In the

real world scenarios, there may be a need for more than few properties of participating entities in

making access control decisions. In addition, there may also be cases where new properties would

be needed to be added at later time. Therefore, there exists a need for a platform where one can

intuitively select or create features as needed in developing security policies.

ABAC’s potential originates from its expressive power and flexibility. It has recently gained

great attention, and thus has been explored well in the operational access control realm. However,

it hasn’t been explored well in administrative access control domain.

To this end, this work shall be driven with a confidence that access control models can be

administered in more dynamic manner, and that ABAC properties can be leveraged to achieve

4

flexibility in RBAC administration.

1.2 Scope and Assumption

The scope and assumptions of attribute based administrative models developed in this work are as

follows:

• Attribute-based administration is a need for addressing present-day administrative access

control problems.

• RBAC, ABAC and ARBAC models can be composed well for better access control.

• Minimum objective of this work is to build family of attribute-based administrative access

control models that are sufficient to express prior models, and in addition, they can express

new features for access control. Five different prior models, each for PRA and URA, and

two prior models for RRA are considered as foundation for this study. This is one of the

reasons why only few attributes from RBAC entities such as regular user and admin user are

developed.

• RBAC is the foundation for ARBAC model. In RBAC roles are central to its design. There-

fore, in the models developed in this research, roles are assumed to exist, and therefore

system maintains a mapping between user and assigned roles.

• Expressing prior models in terms of proposed attribute-based models allows one with flexi-

bility to use combination of one or more prior ARBAC models.

1.3 Thesis Statement

Thesis of this dissertation are as follows:

• Attribute-based approach can bring flexibility by its power of expression into RBAC admin-

istration.

5

• A unified and dynamic model that is sufficient to express prior ARBAC models, and that has

potential to express many other properties can be developed using attribute-based approach.

1.4 Summary of Contribution

The contributions of this dissertation includes the following:

AURA

A model known as attribute-based user-role assignment (AURA) that unifies prior URA models

(URA97, URA99, URA02, Uni-ARBAC’s URA and UARBAC’s URA) has been developed. To

demonstrate that AURA is capable of expressing prior approaches to URA, a manual translation

of an example instance from each prior model is first translated into equivalent AURA instance.

Finally, a formal mapping algorithm to translate any instance from prior URA models to equivalent

AURA instance is presented.

ARPA

A model known as attribute-based permission-role assignment (ARPA) that unifies prior PRA

models (PRA97, PRA99, PRA02, Uni-ARBAC’s PRA and UARBAC’s PRA) has been developed.

To demonstrate that ARPA model is capable of expressing prior approaches to PRA, a manual

translation of an example instance from each prior model is first translated into equivalent ARPA

instance. Then, a formal mapping algorithm that can translate any instance from prior PRA models

to equivalent ARPA instance is presented.

ARRA

A model for attribute-based role-role assignment (ARRA) that unifies prior approaches to RRA

has been developed.

To demonstrate that ARRA is capable of expressing prior RRA approaches such as RRA97

and UARBAC’s RRA that are part of ARBAC97 and UARBAC, respectively, a manual translation

6

of example instance from each prior model to an equivalent ARRA instance is presented. Then

finally, a formal mapping algorithm to map any instance from prior RRA model to its equivalent

ARRA model is developed.

Implementation of AURA

AURA model is implemented as a proof-of-concept into identity service of OpenStack Infrastruc-

ture as a Service (IaaS) cloud. Any time-overhead introduced due to newly added attributes and

values, and its enforcement code is then analyzed.

1.5 Organization of Dissertation

This dissertation is organized as follows. In chapter 2, background and related work is discussed.

It discusses all the administrative RBAC models that have been taken into account for study. It is

followed by a brief compare-and-contrast among relevant ABAC works that have been explored.

AURA, ARPA and ARRA are members of AARBAC design. In Chapter 3, AURA model is

presented. This includes a formal specification of AURA model along with supportive examples in

which example instances from each of the prior URA model is manually translated into equivalent

AURA instances. For the same process, formal translation (mapping) algorithms for each prior

model is exhibited.

In Chapter 4, formal specification of attribute-based permission-role assignment (ARPA) model

is presented. It is followed by example instances from prior models and their manual translation

into equivalent ARPA instances. Finally, formal translation algorithms to translate instances from

prior PRA models into equivalent ARPA instances is presented.

Similarly, in Chapter 5, a model for attribute-based role-role assignment (ARRA) model is dis-

cussed. Again, previously published RRA models are considered that can be realized with ARRA.

Example instances for each cited prior RRA models are developed, which are then converted into

equivalent ARRA instances based on attributes. Finally, translation algorithms that maps instance

from prior model to equivalent ARRA instance are presented.

7

In Chapter 6, AURA model is integrated into the identity service of OpenStack IaaS cloud.

In that chapter, general overview of OpenStack architecture is discussed and contrasted with the

attribute-based approach. In the end, time overhead for various use cases that involves attribute-

based user-role assignment and revocation is analyzed.

Chapter 7 concludes this dissertation with future research direction.

8

Chapter 2: BACKGROUND AND LITERATURE REVIEW

2.1 Related Work

This dissertation work focuses on attribute-based user-role assignment (AURA), attribute-based

permission-role assignment (ARPA), attribute-based role-role assignment (ARRA) and, implemen-

tation of AURA in the identity service of OpenStack Cloud IaaS.

The very basis behind this research is to integrate attributes into existent RBAC model, and

hence the foundation of this work is tied to RBAC. Literature beginning with RBAC96 model [19,

57], which is also a NIST stardard for role-based access control are reviewed in the following

segments.

2.2 Role-Based Access Control Model

Role	Hierarchy	

ROLES	USERS	

SESSIONS	

OPS	

PRMS	

Permission	
Assignment	

(PA)	

session_roles	user_sessions	

SSD	

DSD	

(AR)	
Administra6ve	

Roles	

(AP)	
Admin	

Permissions	

APA	
(AUA)	

Administra6ve	
User	Assignment	

(ARH)	
Administra6ve	
Role	Hierarchy	

OBJS	

ARH	

User	
Assignment	

(UA)	

Figure 2.1: Role Based Access Control Model

Figure 2.1 presents RBAC96 model along with administrative components. In RBAC model, users

are assigned to roles, permissions are assigned to roles, and roles are assigned to roles. A user is

able to execute a permission by activating a subset of roles assigned to her, and hence activating

9

permissions that has been assigned to those roles. A user initiates a session to activate one or more

roles. RBAC model is also known as operational RBAC model. More advanced features of RBAC

involves static separation of duties (SSD), dynamic separation of duties (DOD) and constraints.

Role hierarchy defines how a senior role can inherit all the permissions from its junior roles, and

how a user with a role senior to another role can become an implicit member of junior roles.

A user with administrative role can conduct administrative operations to assign or revoke a user

to/from a role, assign or revoke a permission to/from a role, and assign or revoke a role to/from

a role among other administrative authorities such as to create or delete users and roles. A model

dedicated and designed for administration of these entities can be referred to as Administrative

RBAC model (ARBAC).

2.3 Administrative RBAC Models

ARBAC97 [54, 55], ARBAC99 [56], ARBAC02 [44], Uni-ARBAC [10] and UARBAC [37] are

some of the prominent past works in administrative RBAC. All these models deal with user-role

and permission-role assignments, and some of them include role-role assignments.

In all these models, the policies for assigning users or permissions to roles are specified based

on explicit and fixed set of properties of the relevant entities that are involved in the decision-

making process. Some of them are the administrative user, the target role, the regular user or the

permission (that is assigned to the role), and the administrative role.

2.3.1 ARBAC97

ARBAC97 [54, 55] model comprises of URA97, PRA97 and RRA97 models. In URA97, the

properties that are used to make user-role assignment include the admin role of the administrative

user and the current set of roles of the regular user. A user with an admin role can assign a regular

user to a regular role based on the regular user’s membership or non-membership on one or more

roles.

Similarly, in PRA97 a permission is assigned to a role based on the permission’s membership

10

or non-membership on role(s).

RRA97 model deals with role-role assignments. Assigning a regular role to another regular

role creates a role hierarchy. RRA97 assumes a lattice structure of role-hierarchy for regular roles

and, a set of admin roles with hierarchy. An example of role hierarchy from RRA97 is depicted

in Figure 5.1. In RRA97, each admin role is given an authority range over which that admin role

has authority to either assign or revoke a role to/from a role, or create or delete a role. ARBAC97

is also driven by decentralization of tasks. In RRA7, it furthers the concept of autonomy of roles

over their tasks. This is asserted by the notion of encapsulated ranges. An authority range must

be an encapsulated range. A general idea about encapsulated range is that any admin role must

be responsible for role administration within their authority range and, any operation should not

violate the encapsulation of any authority range.

2.3.2 SARBAC

Crampton et. al [13, 14] present models for RRA with administrative scopes, which is a semi-

response to the role-hierarchy intensive RRA [55]. Admin scopes are plausible approach for role

hierarchy operations in RBAC. However, admin scope may not be intuitive to express as an at-

tribute with models presented in this dissertation. Thus, administrative scope has been scoped out

at this point.

2.3.3 ARBAC99

ARBAC99 includes two models namely, URA99 and PRA99. URA99 presents a notion of mobile

and immobile memberships on a role. Mobile or immobile property of a user may be necessary

when a user is assigned with temporary position (e.g., a contractor). In those scenarios, an im-

mobile user cannot be assigned with any further roles. A decision on whether a regular user can

be assigned/revoked to/from a role is based in user’s mobile or immobile membership on some

pre-assigned role.

Similarly in PRA99, decisions on whether a permissions can be assigned to a role is based on

11

its mobile or immobile membership or non-membership on one or more roles.

2.3.4 ARBAC02

Like ARBAC99, ARBAC02 [45] is also composed of two different models for URA and PRA. In

ARBAC02, a concept of organization units is explored. It distinguishes the structure and impor-

tance of user-pool and permission-pool by proposing organizational structure for user-pool and,

organizational structure for permission-pool. Users in a user-pool form a hierarchy of organiza-

tional units. Similarly, permissions in permission-pool form a hierarchy of organizational units.

However, their hierarchy is opposite to each other.

It comes from a real-world scenario where users are put into some organization unit, and based

on that organization unit necessary roles can be assigned to users. However, URA02 also brings

the property from URA97 along with it as an option. Thus, in URA02, if a user is a member or a

non-member of one or more organization units then that user qualifies or disqualifies to be assigned

to a given set of roles or, user’s membership or non-membership on a role qualifies or disqualifies

the user for role assignment to a given set of roles. Similar to PRA97 and PRA99, PRA02 is a dual

of URA02.

2.3.5 Uni-ARBAC

In Uni-ARBAC [10], a set of users are put into a user-pools. The notion of user-pools and user-

pool hierarchy are adopted from ARBAC02 [44]. Similarly, set of permissions are put together

as tasks. Tasks are designed with a concept that a job may take different steps/permissions to

complete. Uni-ARBAC provides a decentralized approach for separate user administration, and

task administration. In which, an admin user is assigned to an administrative unit, either for user

administration or permission administration. Regular roles, user-pools and tasks are mapped to

admin units. If users (via user pools) and roles are mapped to the an admin unit where an admin

user is assigned then that admin user can assign a user from users set to a role from role set

mapped to same admin unit. PRA in Uni-ARBAC follows a similar approach where permissions

12

are grouped as tasks, and then mapped to an admin unit. Any admin user that has been given task

assignment authority with assignment to an admin unit can assign or revoke any role to/from the

task that has been mapped to the admin unit. Other features include flow of authority according to

the definition of hierarchy. For example, an admin user dedicated for user-role administration can

conduct user-role assignment in an admin unit that she has been assigned to, and in addition, can

perform similar actions in all the admin units that are junior to the admin unit (that she has been

assigned to).

2.3.6 UARBAC

In UARBAC [37], the properties on the basis of which user-role assignment is done include a

relationship based on access modes between the admin user, the target role and the target regular

user. One of the driving principles of this model is principle of economy of mechanism. This

allows the model to treat all the entities as objects. Hence, treated as the same. For example, a

user, a file or a role are considered as objects.

One (an admin user) can grant a particular role to a target user, if she has access modes, grant

on target role and empower on target user. Permission-role assignment follows similar approach

with different sets of access modes towards permissions and roles.

In addition to URA and PRA, UARBAC also includes role-role assignment (RRA). Role as-

signment is done based on admin user’s access mode towards each role or role class.

But because AURA, ARPA and ARRA are designed based on non-explicit and varying set of

properties (attributes) of the relevant entities involved in the decision-making process, these models

tend to be more flexible.

2.3.7 A Model for Attribute-Based User-Role Assignment

A closely related work is that of Al-Kahtani et. al [1], which presents a family of models for

automated assignment of users to roles based on user attributes. The primary focus of their work

is user-role assignment based on user attributes. Their model is also called Rule-Based Access

13

Control (RB-RBAC) model, as there are set of rules that decide what roles a user must take based

on attributes of a user. Furthermore, those rules exercise hierarchy among them. Our models take

a more holistic approach to RBAC administration based on attributes of various RBAC entities

such as regular users, admin users and permissions. The major advantage of taking such an ap-

proach is that our models both subsume prior approaches to RBAC administration, and allow for

specification of new features.

2.3.8 Other Administrative Models

Work by Kern et. al [34] presents a concept for administration of enterprise role-based access

control (A-ERBAC). They make a plausible argument over how tasks for administrators may vary

according to their association about specific sectors of an organization and, hence a need for de-

centralization of administrative tasks. They also define their own meaning of scope and, how it

can help decentralize and ease administrative tasks. However, their work does not include criteria

and constraints for administrative operations such as user-role assignment and revoking users from

roles.

Organization-based administration of RBAC is explored in [15]. It discusses URA, PRA and

UPA. It treats these assignments as views and, provides an abstraction for authority over these

views. Although this model may be plausible to address scenarios in an organization, the notion

doesn’t intuitively fit to meet some concrete assignment criteria. This model is not taken into

consideration for designing AARBAC at this time.

2.4 ABAC Models and Benefits of Using Attributes

Attribute-based access control has been well-studied [5, 24, 25, 29, 59, 62, 63]. Growing interest in

Attribute Based Access Control (ABAC) has been because of its flexibility and expressive-power.

ABAC has demonstrated that attributes are not limited to roles, subjects, users and objects but can

incorporate many other properties including identities, affiliation, time of day, qualification, age,

locations, etc. ABACα [29] has shown that ABAC model is able to demonstrate MAC, DAC and

14

RBAC and do much more.

ABAC has been popular because its simplicity and flexibility. For example, developing attribute-

based rules for allowing or denying a user from getting a permission is relatively simple. Further-

more, rules can be flexible in that additional properties can be added within a rule, a rule can be

pruned or combined with other rules.

ABAC is expressive. Assuming a computational language, ABAC’s expressive power is only

limited by the power of computational language. ABAC can provide high flexibly in that attributes

can be used to identify large sets of users or system entities, and thus can be precisely controlled.

On the other hand, rules for fine-grained control of system resources can also be developed.

The benefits of integrating attributes into an RBAC operational model has been investigated in

the literature with wide range of applications [31,32,35]. However, our work focuses on advantages

of using an attribute-based approach for RBAC administration. On the other hand, Jin et. al explore

administration of attributes using RBAC [28]

Prior ABAC works primarily focus on operational aspects of access control—that is, making

decisions when a user requests access to an object.

Integrating attribute based policies with RBAC can bring many powerful advantages from both

ABAC and RBAC [48,49]. It is these advantages that are leveraged towards making secure assign-

ment decision in administration of RBAC.

15

Chapter 3: AURA: ATTRIBUTE-BASED USER-ROLE ASSIGNMENT

Portion of materials in this chapter are published in the following venue [39]:

• Jiwan Ninglekhu and Ram Krishnan. AARBAC: Attribute-Based Administration of Role-

Based Access Control. In 2017 IEEE 3nd International Conference on Collaboration and

Internet Computing (CIC). IEEE, 2017.

In this section, an attribute-based administrative model for user-role assignment (AURA) is pre-

sented. Figure 3.1 illustrates a conceptual model for AURA and ARPA in the same diagram. Left

hand side of the diagram in Figure 3.1 shows attribute-based user-role assignment while the right

hand side of the diagram shows attribute-based permission-role assignment. It shows that the en-

tities collectively involved in AURA include admin users and their associated attributes, regular

users and their attributes, roles with a hierarchy, and the administrative operations. Similarly, it

shows that permission-role assignment (PRA) decision is based on the rules written based on the

admin user and their attributes, permissions and their attributes, and the target role.

USERS	 PERMS	ROLES	

UATT	 PATT	

AURA:	is_authorizedUop:OP(au:AU,	u:USERS,	r:ROLES)?		
ARPA:	is_authorizedPop:OP(au:AU,	p:PERMS,	r:ROLES)?		

RH	

Many-to-many	relaCon	

AssociaCon	

Input	

Control	

OP	

URA	 PRA	

AU	

AATT	

Figure 3.1: Attribute-Based Administration of RBAC

Note that this dissertation also includes a model for attribute-based role-role assignment (ARRA).

16

Assigning a role to another role is assumed to form a role hierarchy. Although AURA and ARPA

models are presented prior to ARRA, both models assume roles with a hierarchy present.

3.1 AURA Model

AURA adapts a notion of admin users who are responsible for controlling the user-role assignment

(URA) relation. Thus, in AURA, authorization decisions for assigning a regular user to a role is

made based on attributes of the admin user and that of the regular user.

Table 3.1 presents the formal AURA model. As illustrated in Figure 3.1, the entities involved

in AURA include regular users (USERS), admin users (AU), roles (ROLES) with a role hierarchy

(RH), and admin operations (AOP). The goal of AURA is to allow for an admin user in AU to per-

form an admin operation such as assign and revoke in AOP between a regular user in USERS and a

role in ROLES, by using attributes of various entities. To meet this goal, a set of attribute functions

for the regular users (UATT) and admin users (AATT) are defined. One of the motivations for de-

veloping AURA is to provide AURA with the ability to capture the features of prior URA models

such as URA97, URA99, and URA02. To this end, the only required attributes are the attributes of

regular users and admin users. While one can envision attributes for other entities in AURA such

as attributes for AOP, the scope of the model is limited based on the above-mentioned motivations.

In addition, a system maintained user attribute function called assigned_roles is assumed to exist,

which maps each user to set of roles currently assigned to them. Although the notion of roles can

be captured as a user attribute function in UATT, this design choice was made in order to reflect

the fact that role is not an optional attribute in the context of AURA.

The attribute functions (or simply attributes) are defined as a mapping from its domain (USERS

or AU as the case may be) to its range. The range of an attribute att, which can be atomic or set

valued, is derived from a specified set of scope of atomic values, denoted Scope(att). Whether an

attribute is atomic or set valued is specified by a function called attType. Also, the scope of an

attribute can be either ordered or unordered, which is specified by a function called is_ordered. If

an attribute att is ordered, a corresponding hierarchy, denoted Hatt, should be specified on its scope

17

Table 3.1: AURA Model

– USERS is a finite set of regular users.

– AU is a finite set of administrative users.

– AOP is a finite set of admin operations such as assign and revoke.

– ROLES is a finite set of regular roles.

– RH ⊆ ROLES × ROLES, a partial ordering on the set ROLES.

We assume a system maintained user attribute function called assigned_roles that specifies the roles assigned to
various regular users as follows:
– assigned_roles : USERS→ 2ROLES

– UATT is a finite set of regular user attribute functions.

– AATT is a finite set of administrative user attribute functions.

– For each att in UATT ∪ AATT, Scope(att) is a finite set of atomic values from which the
range of the attribute function att is derived.

– attType : UATT ∪ AATT→ {set, atomic}, which specifies whether the range of a given
attribute is atomic or set valued.

– Each attribute function maps elements in USERS and AU to atomic or set values.

∀uatt ∈ UATT. uatt : USERS→

 Scope(uatt) if attType(uatt) = atomic

2Scope(uatt) if attType(uatt) = set

∀aatt ∈ AATT. aatt : AU→

 Scope(aatt) if attType(aatt) = atomic

2Scope(aatt) if attType(aatt) = set

– is_ordered : UATT ∪ AATT→ {True, False}, specifies if the scope is ordered for each of the attributes.
– For each att ∈ UATT ∪ AATT,

if is_ordered(att) = True, Hatt ⊆ Scope(att) × Scope(att), a partially ordered attribute hierarchy, and Hatt 6= φ,
else, if is_ordered(att) = False, Hatt = φ

(For some att ∈ UATT ∪ AATT for which attType(att) = set and is_ordered(att) = True, if {a, b}, {c, d} ∈

2Scope(att) (where a, b, c, d ∈ Scope(att)), we infer {a, b} ≥ {c, d} if (a, c), (a, d), (b, c), (b, d) ∈ H*
att.)

AURA model allows an administrator to perform an operation on a single user or a set of users at a time. The
authorization rule for performing an operation on a single user is as follows:
For each op in AOP, is_authorizedUop(au: AU, u : USERS, r : ROLES) specifies if the admin user au is allowed
to perform the operation op (e.g. assign, revoke, etc.) between the regular user u and the role r. This rule is written
as a logical expression using attributes of the admin user au and attributes of the regular user u.

The authorization rule for performing an operation on a set of users is as follows:

For each op in AOP, is_authorizedUop(au: AU, χ : 2USERS, r : ROLES) specifies if the admin user au is allowed
to perform the operation op (e.g. assign, revoke, etc.) between the users in the set χ and the role r.
Here χ is a set of users that can be specified using a set-builder notation, whose rule is written using user
attributes.

18

Scope(att). Hatt is a partial ordering on Scope(att). Note that, even in the case of a set valued

attribute att, the hierarchy Hatt is specified on Scope(att) instead of 2Scope(att). It is inferred that the

ordering between two set values given as ordering on atomic values as explained in Table 3.1. Note

that H*
att denotes the reflexive transitive closure of Hatt.

AURA supports two ways to select a set of regular users for assigning a role. The first one

allows an admin user to identify a single regular user, a role and perform an operation such as

assign. The second one allows an admin user to identify a set of regular users, a role and perform

an operation such as assign for all those regular users. In this case, the selection criteria for the

set of regular users can be specified using a set-builder notation whose rule is stated using the

regular users’ attributes. For example, is_authorizedUassign(au, {u | u ∈ USERS ∧ aunit_1 ∈

admin_unit(u)}, r) would specify a policy for an admin user au who identifies the set of all users

who belong to the admin unit aunit_1 in order to assign a role r to all those users. Finally, the

authorization rule is specified as a usual logical expression on the attributes of admin users and

those of regular users in question.

3.2 Mapping Prior URA Models in AURA

In the sections that immediately follow, the idea that AURA can intuitively simulate the features of

prior URA models is demonstrated. In particular, these sections first present example instances for

each of the prior URA models which are then mapped into their corresponding equivalent instances

in AURA model. Finally, for each prior model, concrete algorithms that can convert any instance

of URA97, URA99, URA02, the URA model in UARBAC, and the URA model in Uni-ARBAC

into their corresponding equivalent instance of AURA are exhibited.

3.3 URA97 in AURA

One of the earliest user-role assignment models is URA97. The following sections present a detail

approach on translating an instance of URA97 and the way by which we can produce its equivalent

representation as an AURA instance. Summary of URA97 model is presented first.

19

3.3.1 Summary of URA97 Model

– USERS is a finite set of regular users.

– AR is a finite set of administrative roles.

– ROLES is a finite set of regular roles.

– RH ⊆ ROLES × ROLES a partial order on roles.

– CR is a finite set of prerequisite conditions.

A prerequisite condition is a boolean expression using the usual ∧ and ∨ operators on terms of

form x and x̄ where x is a regular role (i.e., x ∈ ROLES).

URA97 Grant Model:

The URA97 model controls the assignment by means of the relation,

can_assign ⊆ AR × CR × 2ROLES.

The meaning of can_assign(x, y, {a, b, c}) is that a member of the administrative role x (or

an administrative role that is senior to x) can assign a user whose current membership, or non-

membership in a regular role satisfies the prerequisite condition y to be a member of regular roles

a, b, or c.

A prerequisite condition is evaluated for a user u by interpreting x to be true if (∃x’ ≥ x) (u, x’)

∈ UA and x̄ to be true if (∀x’ ≥ x) (u, x’) /∈ UA.

URA97 Revoke Model:

The URA97 model controls user-role revocation by means of the following relation:

can_revoke ⊆ AR × 2ROLES.

The meaning of can_revoke(x, Y) is that a member of the administrative role x (or a member of an

administrative role that is senior to x) can revoke membership of a user from any regular role y ∈

Y. Y defines the range of revocation.

3.3.2 URA97 Instance

An example instance for URA97 can be expressed as the following:

Sets and Functions:

20

• USERS = {u1, u2, u3, u4}

• ROLES = {x1, x2, x3, x4, x5, x6}

• AR = {ar1, ar2}

• UA = {(u1, x1), (u1, x2), (u2, x3), (u2, x4)}

• AUA = {(u3, ar1), (u4, ar2)}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• ARH = {<ar1, ar2>}

• CR = {x1 ∧ x2, x̄1 ∨ (x̄2 ∧ x3)}

Let cr1 = x1 ∧ x2 and, cr2 = x̄1 ∨ (x̄2 ∧ x3) be two prerequisite conditions. Prerequisite condition

cr1 is evaluated as follows:

For any u in USERS undertaken for assignment,

(∃x ≥ x1). (u, x) ∈ UA ∧ (∃x ≥ x2). (u, x) ∈ UA

cr2 is evaluated as follows:

For any u in USERS undertaken for assignment,

(∀x ≥ x1). (u, x) /∈ UA ∨ ((∀x ≥ x2). (u, x) /∈ UA ∧ (∃x ≥ x3). (u, x) ∈ UA)

Let can_assign and can_revoke be as follows:

can_assign = {(ar1, cr1, {x4, x5}), (ar1, cr2, {x6})}

can_revoke = {(ar1, {x4, x5, x6})}

3.3.3 Equivalent URA97 Instance in AURA

In this segment, AURA instance equivalent to aforementioned URA97 instance in presented based

on the AURA model depicted in Table 3.1.

Map sets and functions from URA97 to AURA

21

• USERS ={u1, u2, u3, u4}

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {x1, x2, x3, x4, x5, x6}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• assigned_roles(u1) = {x1, x2}, assigned_roles(u2) = {x3, x4}

Define attributes and values

• UATT = {}

• AATT = {aroles}

Scope(aroles) = {ar1, ar2},

attType(aroles) = set,

is_ordered(aroles) = True,

Haroles = {<ar1, ar2>}

• aroles(u3) = {ar1}, aroles(u4) = {ar2}

Construct authorization function for user-role assignment:

Authorization rule for user-role assignment for the given instance can be expressed as follows:

– is_authorizedUassign(au : AU, u : USERS, r : ROLES) ≡ ((∃ar ≥ ar1). ar ∈ aroles(au) ∧

r ∈ {x4, x5} ∧ ((∃x ≥ x1). x ∈ assigned_roles(u) ∧ (∃x ≥ x2). x ∈ assigned_roles(u)) ∨

(∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {x6} ∧ ((∃x ≥ x1). x /∈ assigned_roles(u) ∨

((∃x ≥ x2). x /∈ assigned_roles(u) ∧ (∃x ≥ x3). x ∈ assigned_roles(u)))

Construct authorization function for revoking user from role:

Authorization rule for user-role revocation for the given instance can be expressed as follows:

22

– is_authorizedUrevoke(au : AU, u : USERS, r : ROLES) ≡ (∃ar ≥ ar1). ar ∈ aroles(au) ∧

r ∈ {x4, x5, x6}

The manual translation process primarily involves four steps. First, the sets from entities in-

volved in URA97 instance is mapped equivalently into sets in AURA instance. The notion of

admin users doesn’t exist in ARBAC97 model. Hence, the user pool for admin user and regular

user is the same set, equivalent to {u1, u2, u3, u4}. To map the assign and revoke in can_assign and

can_revoke, administrative operations assign and revoke are used. ROLES and RH represent set

of roles and role hierarchy, respectively. assigned_roles(u) function provides information on UA

relation from URA97. This function is assumed to exist because RBAC model is certain to have

roles. In second step, appropriate attributes are engineered that intuitively represent features from

URA97. In particular user attribute set UATT is kept empty as user attributes are not required to

represent feature from URA97 and, the relation between admin user and admin roles are captured

by admin user attribute aroles(au). This attribute yields admin roles that are assigned to a given

admin user. For example, aroles(u3) yields admin role ar1, which means admin user u3 has role

ar1. For attribute aroles, its corresponding attribute type, scope and order are defined. Haroles rep-

resents partial order hierarchy on admin roles. In third step, authorization rules that is equivalent to

URA97 instance’s user-role assignment authorization function based on attributes is constructed.

Finally, authorization function for revoking user from role based on attributes is constructed.

3.3.4 MAPURA97 Algorithm

MapURA97 is an algorithm that maps a URA97 instance into its equivalent AURA instance. For

brevity, sets and functions from URA97 and AURA are marked with superscripts 97 and A, re-

spectively. MapURA97 takes URA97 instance as its input. In particular, inputs for MapURA97 funda-

mentally consists of USERS97, ROLES97, AR97, UA97 and AUA97, RH97, ARH97, can_assign97

and can_revoke97.

The output of MapURA97 algorithm is an equivalent AURA instance, with primarily consisting

of USERSA, AUA, AOPA, ROLESA, RHA, For each u ∈ USERSA, rolesA(u), UATTA, AATTA, For

23

Algorithm 3.1 MapURA97

Input: URA97 instance

Output: AURA instance

Step 1: /* Map basic sets and functions in AURA */

a. USERS← USERS97 ; AU← USERS97 ; AOPA← {assign, revoke}

b. ROLESA← ROLES97 ; RHA← RH97

c. For each u ∈ USERSA, roles(u) = φ

d. For each (u, r) ∈ UAA, roles(u) = roles(u) ∪ r

Step 2: /* Map attribute functions in AURA */

a. UATTA← φ ; AATTA← {aroles}

b. Range(aroles) = AR97 ; attType(aroles) = set ; is_ordered(aroles) = True ; Haroles← ARH97

c. For each u ∈ AUA, aroles(u) = φ ; For each (u, ar) in AUA97, aroles(u) = aroles(u) ∪ ar

Step 3: /* Construct assign rule in AURA */

a. assign_formula = φ

b. For each (ar, cr, Z) ∈ can_assign97,

assign_formula' = assign_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧

(translate97(cr)))

c. auth_assign = is_authorizedUassign(au : AUA, u : USERSA, r : ROLESA) ≡ assign_formula'

Step 4: /* Construct revoke rule for AURA */

a. revoke_formula = φ

b. For each (ar, cr, Z) ∈ can_revoke97

revoke_formula' = revoke_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z)

c. auth_revoke = is_authorizedUrevoke(au : AUA, u : USERSA, r : ROLESA)≡ revoke_formula'

24

Support routine for algorithm 3.1 translate97

Input: A URA97 prerequisite condition, cr

Output: An equivalent sub-rule for AURA authorization assign rule.

1: rule_string = φ

2: For each symbol in cr,

3: if symbol is a role and in the form x (i.e., the user holds role x)

4: rule_string' = rule_string + (∃x' ≥ x). x' ∈ roles(u)

5: else if symbol is a role and in the form x̄ (i.e., the user doesn’t hold role x)

6: rule_string' = rule_string + (∃x' ≥ x). x' /∈ roles(u)

7: else

8: rule_string' = rule_string + symbol /* where a symbol is a ∧ or ∨ logical operator */

9: end if

each attribute att ∈ UATTA ∪ AATTA, ScopeA(att), attTypeA(att), is_orderedA(att) and HA
att, For

each user u ∈ USERSA, and for each att ∈ UATTA ∪ AATTA, att(u), Authorization rule for assign

(auth_assign) and Authorization rule for revoke (auth_revoke).

As depicted in MapURA97, there are four main steps in the traslation process. In Step 1, sets

and functions from URA97 are mapped into equivalent AURA sets and functions. In Step 2,

user attributes and administrative user attribute functions are expressed. It can be observed that

necessity for user attributes doesn’t exist in representing an equivalent AURA instance for URA97.

Hence, UATT set is empty. Admin user attribute aroles captures the notion of admin roles in

URA97. aroles is a function that takes admin user as an input and yields all the roles that admin

user has. Step 3 involves constructing assign_formula in AURA that is equivalent to can_assign97

in URA97 but are based on the entities that apply and their related attributes. can_assign97 is a set

of triples. Each triple bears an access control policy on whether an admin user with admin role can

assign a candidate user to a set of roles. Equivalent translation of can_assign97 in AURA is given

by is_authorizedUassign(au : AUA, u : USERSA, r : ROLESA). Similarly, In Step 4, revoke_formula

25

equivalent to can_revoke97 is presented.

translate97 is a piece of algorithm considered as a support routine for MapURA97 which translates

prerequisite condition (cr) from URA97 into its AURA equivalent.

3.4 URA99 in AURA

Second, URA99 model was studied. This section presents a summary of URA99 model followed

by a translation process of a URA99 model instance to its equivalent represenation in AURA

model. It is first described in detail as a manual translation, and then a formal algorithm for

mapping URA99 to AURA is presented.

3.4.1 Summary of URA99 Model

Sets and functions:

– USERS is a finite set of regular users.

– ROLES is finite set of regular roles.

– AR is a finite set of administrative roles.

– CR is set of prerequisite conditions.

A prerequisite condition is a boolean expression using the usual ∧ and ∨ operators in terms of

form x and x̄ where x is a regular role (i.e. x ∈ ROLES).

URA99 assumes two sub-roles of x ∈ ROLES to be Mx and IMx. Membership of a user u in

Mx and IMx are called mobile membership and immobile membership, respectively.

There are four kinds of user-role membership in URA99 for a given role x. They are as follows:

Explicit mobile membership: EMx ≡ (u, Mx) ∈ UA

Explicit immobile membership: EIMx ≡ (u, IMx) ∈ UA

Implicit mobile membership: ImMx ≡ (∃x’ > x)(u, Mx’) ∈ UA

implicit immobile membership: ImIMx ≡ (∃x’ > x)(u, IMx’) ∈ UA

URA99 Grant Model:

User-role assignments as mobile or immobile members are authorized by the following rela-

26

tion:

can-assign-M ⊆ AR × CR × 2ROLES

The meaning of can-assign-M(x, y, {a, b, c}) is that a member of administrative role x (or a

member of administrative role senior to x) can assign a user whose current membership, or non

membership in roles satisfies the prerequisite y to a regular roles a, b or c, as a mobile member.

Similar is the definition for assigning a qualifying user as immobile member of regular roles

given by the relation:

can-assign-IM ⊆ AR × CR × 2ROLES

A prerequisite condition is a boolean expression using the ∧ and ∨ operators in terms of the

form r and x̄.

The prerequisite condition in URA99 grant model is evaluated for a user u, by interpreting x to

be true if:

u ∈ EMx ∨ (u ∈ ImMx ∧ u /∈ EIMx)

and x̄ to be true if:

u /∈ EMx ∧ u /∈ EIMx ∧ u /∈ ImMx ∧ u /∈ ImIMx

URA99 Revoke Model:

The URA99 model authorizes revocation of mobile membership by the relation:

can-revoke-M ⊆ AR × CR × 2ROLES

and revocation of immobile membership by the relation:

can-revoke-IM ⊆ AR × CR × 2R

The meaning of can-revoke-M(x, y, {a, b, c}) is that a member of administrative role x (or a

member of a administrative role senior to x) can revoke mobile membership of a user from role a,

b or c subject to the prerequisite condition y. Similarly for can-revoke-IM with respect to immobile

membership.

There exists same interpretation for mobile and immobile membership in URA99’s revoke

model. A prerequisite condition in URA99 revoke model is evaluated for a user u by interpreting

x to be true if:

27

u ∈ EMx ∨ u ∈ EIMx ∨ u ∈ ImMx ∨ u ∈ ImIMx

and x̄ to be true if:

u /∈ EMx ∧ u /∈ EIMx ∧ u /∈ ImMx ∧ u /∈ ImIMx

Note that unlike the grant model, x and x̄ cannot be false at the same time.

3.4.2 URA99 Instance

In this segment, an example instance of URA99 model is presented as follows:

Sets and functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {x1, x2, x3, x4, x5, x6}

• AR = {ar1, ar2}

• UA = {(u1, Mx1), (u2, IMx1), (u2, IMx2), (u1, IMx3)}

• AUA = {(u3, ar1), (u4, ar2)}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• ARH = {<ar1, ar2>}

• CR = {x1 ∧ x2, x̄1}

Let cr1 = x1 ∧ x2 and, cr2 = x̄1. cr1 is evaluated as follows:

For any user u ∈ USERS undertaken for assignment,

((u, Mx1) ∈ UA ∨ ((∃x' ≥ x1). (u, Mx') ∈ UA) ∧ (u, IMx1) /∈ UA)) ∧ ((u, Mx2) ∈ UA ∨

((∃x' ≥ x2). (u, Mx') ∈ UA) ∧ (u, IMx2) /∈ UA)

cr2 is evaluated as follows:

For any user u ∈ USERS undertaken for assignment,

(u, Mx1) /∈ UA ∧ ((∃x' ≥ x1). (u, Mx') /∈ UA) ∧ (u, IMx1) /∈ UA ∧ ((∃x' ≥ x1). (u, IMx') /∈ UA)

28

Let can-assign-M and can-assign-IM in URA99 be as follows:

can-assign-M = {(ar1, cr1, {x4, x5})}

can-assign-IM= {(ar1, cr2, {x5, x6})}

Unlike URA97, there is a notion of prerequisite condition in URA99 revoke model. Same prereq-

uisite conditions for both grant and revoke models instances have been considered for simplicity.

Prerequisite conditions for URA99 revoke model are evaluated as follows:

cr1 is evaluated as follows:

For any user u ∈ USERS that needs to be revoked,

((u, Mx1) ∈ UA ∨ (u, IMx1) ∈ UA ∨ ((∃x' ≥ x1). (u, Mx') ∈ UA) ∨ ((∃x' ≥ x1). (u, IMx') ∈ UA))

∧ ((u, Mx2) ∈ UA ∨ (u, IMx2) ∈ UA ∨ ((∃x' ≥ x2). (u, Mx') ∈ UA) ∨

((∃x' ≥ x2). (u, IMx') ∈ UA))

cr2 is evaluated as follows:

For any user u ∈ USERS that needs to be revoked,

(u, Mx1) /∈ UA ∧ (u, IMx1) /∈ UA ∧ ((∃x' ≥ x1). (u, Mx') /∈ UA) ∧ ((∃x' ≥ x1). (u, IMx') /∈ UA)

can-revoke-M and can-revoke-IM are as follows:

can-revoke-M = {(ar1, cr1, {x3, x4, x5})}

can-revoke-IM= {(ar1, cr2, {x5, x6})}

3.4.3 Equivalent URA99 Instance in AURA

An equivalent AURA instance for aforementioned URA99 example instance is presented in this

segment.

Set and functions from URA99 to AURA:

• USERS = {u1, u2, u3, u4}

• AU = {u1, u2, u3, u4}

• ROLES = {x1, x2, x3, x4, x5, x6}

29

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• assigned_roles(u1) = {Mx1, IMx3},

assigned_roles(u2) = {IMx1, IMx3}

• AOP = {mob-assign, immob-assign, mob-revoke, immob-revoke}

Define attributes and its values:

• UATT= {exp_mob_mem, imp_mob_mem, exp_immob_mem, imp_immob_mem}

• Scope(exp_mob_mem) = ROLES, attType(exp_mob_mem) = set,

is_ordered(exp_mob_mem) = True

Hexp_mob_mem = RH

• exp_mob_mem(u1) = {x1}, exp_mob_mem(u2) = {},

exp_mob_mem(u3) = {}, exp_mob_mem(u4) = {},

• Scope(imp_mob_mem)= ROLES, attType(imp_mob_mem) = set,

is_ordered(imp_mob_mem) = True, Himp_mob_mem = RH

• imp_mob_mem(u1) = {x2, x3, x4, x5, x6}, imp_mob_mem(u2) = {},

imp_mob_mem(u3) = {}, imp_mob_mem(u4) = {}

• Scope(exp_immob_mem) = ROLES,

attType(exp_immob_mem) = set, is_ordered(exp_immob_mem) = True,

Hexp_immob_mem = RH

• exp_immob_mem(u1) = {x3}, exp_immob_mem(u2) = {x1, x2},

exp_immob_mem(u3) = {}, exp_immob_mem(u4) = {},

30

• Scope(imp_immob_mem) = ROLES, attType(imp_immob_mem) = set

is_ordered(imp_immob_mem) = True, Himp_immob_mem = RH

• imp_immob_mem(u1) = {x4, x5, x6}, imp_immob_mem(u2) = {x3, x4, x5, x6},

imp_immob_mem(u3) = {}, imp_immob_mem(u4) = {}

• AATT = {aroles}

• Scope(aroles) = {ar1, ar2}, attType(aroles) = set, is_ordered(aroles) = True,

Haroles = {<ar1, ar2>}

• aroles(u3) = {ar1}, aroles(u4) = {ar2}

Formulate authorization functions for mobile user-role assignment:

Authorization rules for assignment and revocation of a user as a mobile member of role can be

expressed respectively, as follows:

For any user u ∈ USERS, undertaken for assignment,

– is_authorizedUmob-assign(au : AR, u : USERS, r : ROLES) ≡

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x4, x5}∧ (x1 ∈ exp_mob_mem(u)∨ (x1 ∈ imp_mob_mem(u)

∧ x1 /∈ exp_immob_mem(u)))∧ (x2 ∈ exp_mob_mem(u)∨ (x2 ∈ imp_mob_mem(u)∧ x2 /∈

exp_immob_mem(u)))) ∨ ((∃ar ≥ ar1). ar ∈ aroles(u) ∧ r ∈ {x5, x6} ∧ (x1 /∈ exp_mob_mem

(u) ∧ x1 /∈ imp_mob_mem(u) ∧ x1 /∈ exp_immob_mem(u) ∧ x1 /∈ imp_immob_mem (u)))

Formulate authorization functions for revoking mobile user from role:

For any user u ∈ USERS that needs to be revoked,

– is_authorizedUmob-revoke(au : AR, u : USERS, r : ROLES) ≡

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x3, x4, x5}∧ ((x1 ∈ exp_mob_mem(u)∨ x1 ∈ imp_mob_mem(u)

∨ x1 ∈ exp_immob_mem(u) ∨ x1 ∈ imp_immob_mem) ∧ (x2 ∈ exp_mob_mem(u) ∨ x2 ∈

imp_mob_mem(u) ∨ x2 ∈ exp_immob_mem(u) ∨ x2 ∈ imp_immob_mem)) ∨ ((∃ar ≥ ar1).

31

ar ∈ aroles(u) ∧ r ∈ {x5, x6} ∧ x1 /∈ exp_mob_mem(u) ∧ x1 /∈ imp_mob_mem(u) ∧ x1 /∈

exp_immob_mem(u) ∧ x1 /∈ imp_immob_mem(u))

Formulate authorization functions for immobile user-role assignment:

Authorization rules for assignment and revocation of a user as an immobile member of role can be

expressed respectively, as follows:

For any user u ∈ USERS, undertaken for assignment,

– is_authorizedUimmob-assign(au : AR, u : USERS, r : ROLES) ≡

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x5, x6}∧ (x1 ∈ exp_mob_mem(u)∨ (x1 ∈ imp_mob_mem(u)

∧ x1 /∈ exp_immob_mem(u))) ∧ (x2 ∈ exp_mob_mem(u) ∨ (x2 ∈ imp_mob_mem(u) ∧

x2 /∈ exp_immob_mem(u))))∨ ((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x5, x6}∧ (x1 /∈ exp_mob_mem(u)

∧ x1 /∈ imp_mob_mem(u) ∧ x1 /∈ exp_immob_mem(u) ∧ x1 /∈ imp_immob_mem(u)))

Formulate authorization functions for revoking immobile user from role:

For any user u ∈ USERS that needs to be revoked,

– is_authorizedUimmob-revoke(au : AR, u : USERS, r : ROLES) ≡

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x5, x6}∧ ((x1 ∈ exp_mob_mem(u)∨ x1 ∈ imp_mob_mem(u)

∨ x1 ∈ exp_immob_mem(u) ∨ x1 ∈ imp_immob_mem) ∧ (x2 ∈ exp_mob_mem(u) ∨ x2 ∈

imp_mob_mem(u) ∨ x2 ∈ exp_immob_mem(u) ∨ x2 ∈ imp_immob_mem)) ∨

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x5, x6}∧ x1 /∈ exp_mob_mem(u)∧ x1 /∈ imp_mob_mem(u)

∧ x1 /∈ exp_immob_mem(u) ∧ x1 /∈ imp_immob_mem(u))

As observed, the translation process involves four basic steps. First, the primary sets from URA99

example instance is mapped to primary sets in AURA instance. URA99 can also be considered as

an extension of URA97. Therefore, there exists some similarity. Users and admin users come from

same set, {u1, u2, u3, u4}. ROLES and RH represent regular roles and their hierarchy. However,

there are two types of role memberships: mobile and immobile memberships. assigned_roles(u)

function yields mobile or immobile membership of a user on a role. There are four different types

of administrative operations: mob-assign, immob-assign, mob-revoke and immob-revoke for

32

assigning a user as a mobile member, revoking a mobile member, assigning a user as an immo-

bile member and, revoking an immobile member of a role, respectively. Secondly, appropriate at-

tributes that intuitively represent meaning in URA99 instance are engineered. Admin user attribute

aroles has same meaning as URA97. In addition, there are four user attributes, exp_mob_mem,

imp_mob_mem, exp_immob_mem, imp_immob_mem in UATT. For each attribute, appropriate at-

tribute type, scope and hierarchies are defined. They represent roles on which a target user has

explicit mobile membership, implicit mobile membership, explicit immobile membership and im-

plicit immobile membership, respectively. For example, exp_mob_mem(u1) = {x1} means u1 has

explicit mobile membership on role x1. Similarly, imp_mob_mem(u1) = {x2, x3, x4, x5, x6} means

user u1 has implicit mobile membership on roles x2 through x6. In fact, a user becomes implicit

member of all the roles that are junior to the roles to which that user is an explicit member. In other

words, the user assigned to role x can activate and use all the roles that are junior to role x. Simi-

larly, exp_immob_mem(u1) = {x3} indicates that user u1 has explicit immobile membership on role

x3 and imp_immob_mem(u1) = {x4, x5, x6} means that user u1 has implicit immobile membership

on roles x4, x5 and x6. Admin user attribute aroles(au) yields admin roles assigned to admin user.

In this mapping example, u3 has admin role ar1 and, u4 has admin role ar2 captured by aroles.

In third step and fourth steps, authorization functions that equivalently and intuitively represent

mobile user-role assignment (can-assign-M), authorization functions for revoking mobile a user

from a role (can-revoke-M), authorization function for assigning immobile user to role (can-assign-

IM), and authorization function for revoking immobile user from a role (can-revoke-IM), using

attributes are respectively established.

3.4.4 MAPURA99

Algorithm 3.2 presents MapURA99. It is an algorithm that maps a URA99 instance into an equiv-

alent AURA instance. For brevity, sets and functions from URA99 model and AURA model are

marked with superscripts 99 and A, respectively. MapURA99 takes URA99 instance as its input and

yields an equivalent instance of AURA model. In particular, input for MapURA99 fundamentally

33

Algorithm 3.2 MapURA99

Input: URA99 instance

Output: AURA instance

Step 1: /* Map basic sets and functions in AURA */

a. USERSA← USERS99 ; AUA← USERS99 ; ROLESA← ROLES99 ; RHA← RH99

b. AOPA← {mob-assign, immob-assign, mob-revoke, immob-revoke}

Step 2: /* Map attribute functions in AURA */

a. UATTA = {exp_mob_mem, imp_mob_mem, exp_immob_mem, imp_immob_mem}

b. Range(exp_mob_mem) = ROLESA ; attType(exp_mob_mem) = set

c. is_ordered(exp_mob_mem) = True ; Hexp_mob_mem = RHA

d. For each u ∈ U, exp_mob_mem(u) = φ

e. For each (u, Mr) ∈ UA99,

exp_mob_mem(u) = exp_mob_mem(u) ∪ r

f. Range(imp_mob_mem) = ROLES ; attType(imp_mob_mem) = set

g. is_ordered(imp_mob_mem) = True ; Himp_mob_mem = RHA

h. For each u ∈ USERS, imp_mob_mem(u) = φ

i. For each (u, Mr) ∈ UA99 and for each r > r',

imp_mob_mem(u) = imp_mob_mem(u) ∪ r'

j. Range(exp_immob_mem) = ROLESA ; attType(exp_immob_mem) = set

k. is_ordered(exp_immob_mem) = True ; Hexp_immob_mem = RHA

l. For each u ∈ USERS, exp_immob_mem(u) = φ

m. For each (u, IMr) ∈ UA99,

exp_immob_mem(u) = exp_immob_mem(u) ∪ r

n. Range(imp_immob_mem) = ROLESA ; attType(imp_immob_mem) = set

o. is_ordered(imp_immob_mem) = True ; Himp_immob_mem = RHA

p. For each u ∈ USERSA, imp_immob_mem(u) = φ

q. For each (u, IMr) ∈ UAA and for each r > r' ,

imp_immob_mem(u) = imp_immob_mem(u) ∪ r'

r. AATTA← {aroles}

s. Range(aroles) = AR99 ; attType(aroles) = set ; is_ordered(aroles) = True ; Haroles = RHA

34

Conitunuation of Algorithm 3.2 MapURA99

t. For each u ∈ AUA, aroles(u) = φ

u. For each (u, ar) in AUA99, aroles(u) = aroles(u) ∪ ar

Step 3: /* Construct assign rule in AURA */

a. assign-mob-formula = φ

b. For each (ar, cr, Z) ∈ can-assign-M99,

assign-mob-formula' = assign-mob-formula ∨

((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧ (translate(cr, assign)))

c. auth_mob_assign = is_authorizedUmob-assign(au : AUA, u : USERSA, r : ROLESA) ≡

assign-mob-formula'

d. assign-immob-formula = φ

e. For each (ar, cr, Z) ∈ can-assign-IM99,

assign-immob-formula' = assign-immob-formula ∨

((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧ (translate(cr, assign)))

f. auth_immob_assign = is_authorizedUimmob-assign(au : AUA, u : USERSA, r : ROLESA)≡

assign-immob-formula'

Step 4: /* Construct revoke rule in AURA */

a. revoke-mob-formula = φ

b. For each (ar, cr, Z) ∈ can-revoke-M99,

revoke-mob-formula' = revoke-mob-formula ∨

((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧ (translate(cr, revoke)))

c. auth_mob_revoke = is_authorizedUmob-revoke(au : AUA, u : USERSA, r : ROLESA) ≡

revoke-mob-formula'

d. revoke-immob-formula = φ

e. For each (ar, cr, Z) ∈ can-revoke-IM99,

revoke-immob-formula' = revoke-immob-formula ∨

((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧ (translate(cr, revoke)))

f. auth_immob_revoke = is_authorizedUimmob-revoke(au : AUA, u : USERSA, r : ROLESA) ≡

revoke-immob-formula'

End

35

Support routine for algorithm 3.2 translate99

Input: A URA99 prerequisite condition (cr), op ∈ {assign, revoke}
Output: An equivalent sub-rule for AURA authorization assign rule.
Begin:

1: rule_string = φ
2: For each symbol in cr
3: if op = assign ∧ symbol is a role and in the form x (i.e., the user holds role x)
4: rule_string = rule_string + (x ∈ exp_mob_mem(u) ∨

(x ∈ imp_mob_mem(u) ∧ x /∈ exp_immob_mem(u))
else if op = revoke ∧ symbol is a role and in the form x (i.e., the user holds role x)

5: rule_string = rule_string + (x ∈ exp_mob_mem(u) ∨ x ∈ imp_mob_mem(u) ∨
x ∈ exp_immob_mem(u) ∨ x ∈ imp_immob_mem(u))

6: else if op = assign ∨ revoke ∧ symbol is role and in the form x̄

(i.e., the user doesn’t hold role x)
7: rule_string = rule_string + (x /∈ exp_mob_mem(u) ∧ x /∈ imp_mob_mem(u) ∧

x /∈ exp_immob_mem(u) ∧ x /∈ imp_immob_mem(u))
8: else
9: rule_string = rule_string + symbol /* where a symbol is a ∧ or ∨ logical operator */

10: end if
End

includes USERS99, ROLES99, AR99, UA99, AUA99, RH99, ARH99, can-assign-M99, can-assign-

IM99, can-revoke-M99, and can-revoke-IM99.

Output from MapURA99 algorithm is an equivalent AURA instance, with primarily consisting

of following sets and functions: USERSA, AUA, ROLESA, RHA, AOPA, UATTA, AATTA, For each

attribute att ∈ UATTA ∪ AATTA, Scope(att), attType(att), is_ordered(att) and Hatt, For each user

u ∈ USERS, and for each aatt ∈ AATTA, aatt(u), For each user u ∈ USERS, and for each uatt ∈

UATTA, uatt(u), Authorization rule for mobile assign (auth_mob_assign), Authorization rule for

mobile revoke (auth_mob_revoke), Authorization rule for immobile assign (auth_immob_assign),

and Authorization rule for immobile revoke (auth_immob_revoke).

As shown in Algorithm MapURA99, there are four main steps required in mapping any instance

of URA99 model to AURA instance. In Step 1, sets and functions from URA99 instance are

mapped into AURA sets and functions. In Step 2, user attributes and administrative user attribute

functions are expressed. There are four regular user attributes, exp_mob_mem, imp_mob_mem,

36

exp_immob_mem, and imp_immob_mem. Each captures, a user’s explicit mobile membership, im-

plicit mobile membership, explicit immobile membership and implicit immobile membership on

roles, respectively. Admin user attribute aroles captures admin roles assigned to admin users. Step

3 involves constructing assign-mob-formula and assign-immob-formula in AURA that is equiv-

alent to can-assign-M and can-assign-IM in URA99, respectively. Both can-assign-M and can-

assign-IM are set of triples. Each triple bears information on whether an admin role can assign

a candidate user to a set of roles as a mobile member in the case of can-assign-M and, as an

immobile member in the case of can-assign-IM. AURA equivalent for can-assign-M is given by

is_authorizedUmob-assign(au : AUA, u : USERSA, r : ROLESA) and an equivalent translation for

can-assignp-IM is given by is_authorizedUimmob-assign(au : AUA, u : USERSA, r : ROLESA). Simi-

larly, In Step 4, revoke-mob-formula equivalent to can-revoke-M and can-revoke-IM are presented.

translate99 is a support routine for MapURA99 that translates prerequisite condition in URA99 into

its AURA equivalent. A complete example instance and its corresponding equivalent AURA in-

stances are presented in Section 3.4.2 and Section 3.4.3, respectively.

3.5 URA02 in AURA

This section first revisits a summary of URA02 model [45]. To illustrate the mapping between

URA02 and AURA models, an example instance of URA02 model is presented, which is then

manually converted to its equivalent AURA instance representation. A concrete mapping algorithm

called MapURA02 which gives a framework for mapping any instance of URA02 model to AURA

model is then exhibited.

3.5.1 Summary of URA02 Model

– USERS is a finite set of regular users.

– AR is a finite set of administrative roles.

– CR is a finite set of prerequisite conditions.

– ROLES is a finite set of regular roles.

37

– ORGU is a finite set of orgnization units.

– UUA ⊆ USERS × ORGU, regular user to organization unit assignment on OS-U (Organization

structure represented as a user-pool).

– CR is a finite set of prerequisite conditions.

A prerequisite condition of URA is a boolean expression using the ∧ and ∨ operators in terms

of the form x and x̄, where x is a regular role or organization unit in OS-U.

URA02 Grant Model:

User-role assignment is authorized in URA02 by the following relation:

can_assign ⊆ AR × CR × 2ROLES.

The meaning of can_assign(x, y, {a, b, c}) is that a member of an administrative role x (or

a member of a role that is senior to x) can assign a user whose current membership, or non-

membership, in regular role or organization unit satisfies the prerequisite condition y, to regular

roles, a, b or c.

Prerequisite condition is evaluated for user u by interpreting x to be true if:

Case 1:

x ∈ ROLES: (∃x’ ≥ x)(u, x’) ∈ UA

Case 2:

x ∈ ORGU: (∃x’ ≤ x)(u, x’) ∈ UUA

and x̄ to be true if:

Case 1:

x ∈ ROLES : ¬((∀x’ ≥ x)(u, x’) ∈ UA)

Case 2:

x ∈ ORGU: ¬((∀x’ ≤ x)(u, x’) ∈ UUA)

URA02 Revoke Model

The URA02 model controls the user-role or user-organization unit revocation by means of the

following relation:

can_revoke ⊆ AR × 2R.

38

The meanning of can_revoke(x, Y) is that a member of the administrative role x (or a member of

an administrative role senior to x) can revoke a membership of a user from any regular role or

organization unit y ∈ Y.

3.5.2 URA02 Instance

In URA02, decision to assign/revoke user-role can be made based on two factors, a user’s member-

ship on role or a user’s membership in an organization unit in organization structure of user-pool.

They can be viewed as two different cases. In this example instance roles are represented with r

and organization units with x for simplicity.

Sets and functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {r1, r2, r3, r4, r5, r6}

• AR = {ar1, ar2}

• UA = {(u1, r1), (u1, r2), (u2, r3), (u2, r4)}

• AUA = {(u3, ar1), (u4, ar2)}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>, <r4, r5>, <r5, r6>}

• ARH = {<ar1, ar2>}

• ORGU = {x1, x2, x3}

• OUH = {<x3, x2>, <x2, x1>}

• UUA = {(u1, x1), (u2, x3)}

Case 1:

• CR = {r1 ∧ r2, r1 ∨ r̄2 ∧ x3}

Let cr1 = r1 ∧ r2 and, cr2 = r1 ∨ r̄2 ∧ r3

39

Case 2:

• CR = {x1 ∧ x2, x1 ∨ x̄2 ∧ x3}

Let cr3 = x1 ∧ x2 and, cr4 = x1 ∨ x̄2 ∧ x3

Case 1:

cr1 is evaluated as follows:

For any user u ∈ USERS undertaken for assginment,

(∃r ≥ r1). (u, r) ∈ UA ∧ (∃r ≥ r2). (u, r) ∈ UA

cr2 is evaluated as follows:

For any user u ∈ USERS undertaken for assginment,

(∃r ≥ r1). (u, r) ∈ UA ∨ ¬((∀r ≥ r2). (u, r) ∈ UA) ∧ (∃r ≥ r3). (u, r) ∈ UA

Case 2:

cr3 is evaluated as follows:

For any user u ∈ USERS undertaken for assginment,

(∃x ≤ x1). (u, x) ∈ UUA ∧ (∃x ≤ x2). (u, x) ∈ UUA

cr4 is evaluated as follows:

For any user u ∈ USERS undertaken for assginment,

(∃x ≤ x1). (u, x) ∈ UUA ∨ ¬((∀x ≤ x2). (u, x) ∈ UUA) ∧ (∃x ≤ x3). (u, x) ∈ UUA

can_assign and can_revoke for respective cases are as follows:

Case 1:

can_assign = {(ar1, cr1, {r4, r5}), (ar1, cr2, {r6})}

can_revoke = {(ar1, {r1, r3, r4})}

Case 2:

can_assign = {(ar1, cr3, {r4, r5}), (ar1, cr4, {r6})}

can_revoke = {(ar1, {r1, r3, r4})}

40

3.5.3 Equivalent URA02 Instance in AURA

This sub-section presents equivalent translation of the URA02 instance into AURA instance.

Map sets and functions from URA02 to AURA:

• USERS = {u1, u2, u3, u4}

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {r1, r2, r3, r4, r5, r6}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>, <r4, r5>, <r5, r6>}

• assigned_roles(u1) = {r1, r2}, assigned_roles(u2) = {r3, r4}

Define attributes and values:

• UATT = {org_units}

• Scope(org_units) = {x1, x2, x3}, attType(org_units) = set

is_ordered(org_units) = True, Horg_units = {<x3, x2>, <x2, x1>}

• org_units(u1) = {x1}, org_units(u2) = {x3}

• AATT = {aroles}

• Scope(aroles) = {ar1, ar2}, attType(aroles) = set,

is_ordered(aroles) = True, Haroles = {<ar1, ar2>}

• aroles(u3) = {ar1}, aroles(u4) = {ar2}

Construct authorization functions for user-role assignment:

For each op in OP, authorization rule for user to role assignment and revocation can be expressed

respectively, as follows:

41

Case 1:

For any user u ∈ USERS, undertaken for assignment,

– is_authorizedUassign(au : AU, u : USERS, r : ROLES) ≡ ((∃ar ≥ ar1). ar ∈ aroles(u) ∧ r

∈ {r4, r5} ∧ ((∃r ≥ r1). r ∈ assigned_roles(u) ∧ (∃r ≥ r2). r ∈ assigned_roles(u))) ∨ ((∃ar

≥ ar1). ar ∈ aroles(u) ∧ r ∈ {r6} ∧ ((∃r ≥ r1). r ∈ assigned_roles(u) ∨ (∃r ≥ r2). r /∈

assigned_roles(u) ∧ (∃r ≥ r3). r ∈ assigned_roles(u)))

Case 2:

For any user u ∈ USERS, undertaken for assignment,

– is_authorizedUassign(au : AU, u : USERS, r : ROLES) ≡ ((∃ar ≥ ar1). ar ∈ aroles(u) ∧

r ∈ {r4, r5} ∧ ((∃x ≤ x1). x ∈ org_units(u) ∧ (∃x ≤ x2). x ∈ org_units(u))) ∨ ((∃ar ≥ ar1).

ar ∈ aroles(u) ∧ r ∈ {r6} ∧ ((∃x ≤ x1). x ∈ org_units(u) ∨ (∃x ≤ x2). x /∈ org_units(u) ∧

(∃x ≤ x3). x ∈ org_units(u)))

Construct authorization functions for revoking user from role:

Case 1:

For any user u ∈ USERS, undertaken for assignmet,

– is_authorizedUrevoke(au : AU, u : USERS, r : ROLES) ≡ (∃ar ≥ ar1). ar ∈ aroles(u) ∧

r ∈ {r1, r3, r4}

Case 2:

For any user u ∈ USERS, undertaken for assignment,

– is_authorizedUrevoke(au : AU, u : USERS, r : ROLES) ≡ (∃ar ≥ ar1). ar ∈ aroles(u) ∧

r ∈ {r1, r3, r4}

It can be seen in this subsection that the translation process involves four general stages. First,

the primary sets from URA02 example instance is mapped to primary sets in AURA equivalent in-

stance. This step is very similar to first step in translating URA97 instance to AURA instance. Sec-

ond, appropriate attributes that intuitively represent meaning in URA02 instance are engineered.

42

There exists an admin user attribute aroles(au). aroles(au) captures admin roles belonging to the

admin user. For example, aroles(u3) = {ar1} indicates that admin user u3 has admin role ar1.

There is a regular user attribute called org_units(u). org_units(u) captures a user’s association with

organization units it belongs to, in an organization structure represented as user-pool (OS-U). For

example, org_units(u1) = {x1} means user u1 has membership on organization unit x1. In third

step, authorization functions for user-role assignment for two different cases that equivalently and

intuitively represent can-assign functions in URA02 are constructed. URA02 introduces a notion

of organization units in addition to a notion of prerequisite roles. Finally, authorization function

for revoking user from role for two different cases given in can_revoke relation are established.

They are mapped into equivalent authorization functions in AURA equivalent instance using re-

lated entities and attributes.

3.5.4 MapURA02

MapURA02 is depicted in Algorighm 3.3. It is an algorithm for mapping a URA02 instance into

equivalent AURA instance. For simplicity, sets and functions from URA02 and AURA are marked

with superscripts 02 and A, respectively. An instance of MapURA02 is given as an input to this

algorithm. In particular, input for MapURA02 fundamentally includes USERS02, ROLES02, AR02,

UA02, AUA02, RH02, ARH02, can_assign02, can_revoke02, ORGU02, OUH02, and UUA02.

The output from MapURA02 algorithm is an equivalent AURA instance, with primarily consisting

of following sets and functions: USERSA, AUA, AOPA, ROLESA, RHA, For each u ∈ USERSA,

assigned_roles(u), UATTA, AATTA, For each attribute att ∈ UATTA ∪ AATTA, Scope(att), att-

Type(att), is_ordered(att) and Hatt, For each user u ∈ USERSA, aroles(u) and org_units(u), Autho-

rization rule for assign (auth_assign), and Authorization rule to revoke (auth_revoke)

A shown in MapURA02, there are four main steps required in mapping any instance of URA02

model to AURA instance. In Step 1, sets and functions from URA02 instance are mapped into

AURA sets and functions. This step takes careful identification of sets that are alike between two

models. In Step 2, user attributes and administrative user attribute functions are expressed. UATT

43

Algorithm 3.3 MapURA02

Input: URA02 instance

Output: AURA instance

Begin:

Step 1: /* Map basic sets and functions in AURA */

a. USERS← USERS02 ; AUA← AU02 ; AOPA← {assign, revoke}

b. ROLESA← ROLES02 ; RHA← ROLES02

c. For each u ∈ USERSA, assigned_roles(u) = φ

d. For each (u, r) ∈ UA02, assigned_roles(u) ∪ r

Step 2: /* Map attribute functions to AURA */

a. UATTA← {org_units}

b. Scope(org_units) = ORGU02 ; attType(org_units) = set

c. is_ordered(org_units) = True ; Horg_units = OUH02

d. For each u ∈ USERSA, org_units(u) = φ ;

e. For each (u, orgu) ∈ UUA02, org_units(u) = org_units(u) ∪ orgu

f. AATTA← {aroles}

g. Scope(aroles) = AR02 ; attType(aroles) = set

h. is_ordered(aroles) = True ; Haroles← ARH02

i. For each u ∈ AUA, aroles(u) = φ

j. For each (u, ar) in AUA02, aroles(u) = aroles(u) ∪ ar

Step 3: /* Construct assign rule in AURA */

a. assign_formula = φ

b. For each (ar, cr, Z) ∈ can_assign02,

assign_formula' = assign_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z

∧ (translate(cr)))

c. auth_assign = is_authorizedUassign(au : AU, u : USERS, r : ROLES) ≡ assign_formula'

Step 4: /* Construct revoke rule in AURA */

a. revoke_formula = φ

b. For each (ar, cr, Z) ∈ can_revoke02,

revoke_formula' = revoke_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z)

c. auth_revoke = is_authorizedUrevoke(au : AU, u : USERS, r : ROLES) ≡ revoke_formula'

44

Support routine for algorithm 3.3 translate02

Input: A URA02 prerequisite condition (cr), Case 1, Case 2
Output: An equivalent sub-rule for AURA authorization rule.

1: rule_string = φ
2: Case Of selection
3: ' Case 1 ' (cr is based on roles) :
4: translate97

5: ' Case 2 ' (cr is based on org_units):
6: For each symbol in cr
7: if symbol is an organization unit and in the form x

(i.e., the user is a member of organization unit x)
8: rule_string = rule_string + (∃x' ≤ x). x' ∈ org_units(u)
9: else if symbol an organization unit and in the form x̄

(i.e., the user is not a member of organization unit x)

10: rule_string = rule_string + (∃x' ≤ x). x' /∈ org_units(u)
11: else
12: rule_string = rule_string + symbol

/* where a symbol is a ∧ or ∨ logical operator */
13: end if
14: end Case

set has one user attribute called org_units. This attribute captures a regular user’s appointment or

association in an organization unit in organization structure of user-pool. There are two ways by

which a user assignment decision is made in URA02, marked as Case 1 and Case 2 in the model.

Case 1 checks for user’s existing membership or non-membership on roles, and Case 2 checks for

user’s membership on organization units in organizarional structure. org_units captures Case 2.

Case 1 is same as URA97. Admin user attribute aroles captures admin roles assigned to admin

users. Step 3 involves constructing assign_formula in AURA that is equivalent to can_assign02 in

URA02. can_assign02 is a set of triples. Each triple bears information on whether an admin role

can assign a candidate user to a set of roles. Equivalent translation in AURA for URA02 is given

by is_authorizedUassign(au : AUA, u : USERSA, r : ROLESA). Similarly, In Step 4, revoke_formula

equivalent to can_revoke02 is presented. Support routine for algorithm 3.5.4 presents translate02.

It translates prerequisite condition in URA02 into its equivalent in AURA. A complete example

instance and its corresponding equivalent AURA instances were presented in Section 3.5.2 and

Section 3.5.3, respectively.

45

3.6 Uni-ARBAC’s URA in AURA

This section first re-visits Uni-ARBAC’s URA model by presenting it as a short summary. To

illustrate that any instance of Uni-ARBAC’s URA model can be represented using AURA model,

an example instance for URA in Uni-ARBAC (URA-Uni) is first considered followed by its equiv-

alent AURA instance, which involves a manual process of translation. Then finally, an algorithm

is presented to intuitively realize the mapping process.

3.6.1 Summary of Uni-ARBAC’s URA Model

– USERS is a finite set of regular users.

– AU is a finite set of administrative units.

– UP is a finite set of user-pools.

– ROLES is a finite set of regular roles.

User-pools relations:

– UPH ⊆ UP × UP, user-pool partial order hierarchy.

– UUPA ⊆ USERS × UP, user to user-pool assignment relation.

AUand partitioned assignment:

– roles(au : AU)→ 2ROLES, assignment of roles.

– user_pools(au : AU)→ 2UP, assignment of user-pool.

Derived function:

– user_pools*(au : AU)→ 2UP and defined as,

– user_pools*(au) = {∃up’ | ∃ up ∈ user_pools(au)) up �up up’}

Administrative user assignment:

– UA_admin ⊆ USERS × AU

– AUH ∈ AU× AU rooted tree partial order �au

Authorization function:

– can_manage_user_role(u1 : USERS, u2 : USERS, r : ROLES)= (∃aui, auj)[(u1, aui) ∈UA_admin

∧ aui �au auj ∧ r ∈ roles(auj) ∧ (∃ up ∈ UP)][(u2, up) ∈ UUP ∧ up ∈ user_pools*(auj)]

46

3.6.2 Uni-ARBAC’s URA Instance

This segment presents an instance of URA in Uni-ARBAC model.

Sets and functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {r1, r2, r3}

• RH = {<r1, r2>, <r2, r3>}

• UA = {(u3, r1), (u4, r3)}

user-pools sets and relations

• UPH = {<up2, up1>}

• UUPA = {(u1, up1), (u2, up2), (u3, up1), (u4, up2)}

Administrative Units and Partitioned Assignments

• AU = {au1, au2}

• roles(au1) = {r1, r2}, roles(au2) = {r3}

• user_pools(au1) = {up1}, user_pools(au2) = {up2}

Derived Function

• user_pools*(au1) = {up1}

• user_pools*(au2) = {up1, up2}

Administrative User Assignments

• UA_admin = {(u1, au1), (u2, au2)}

• AUH = {<au1, au2>}

47

An instance of user-role assignment condition in Uni-ARBAC:

– can_manage_user_role(u1 : USERS, u2: USERS, r: ROLES) =

(∃aui, auj)[(u1, aui) ∈ UA_admin ∧ aui �au auj ∧ r ∈ roles(auj) ∧ (∃up ∈ UP)[(u2, up) ∈ UUPA ∧

up ∈ user_pools*(auj)]]

3.6.3 Equivalent AURA instance of Uni-ARBAC’s URA

This segment depicts an equivalent AURA instance for the example instance that was presented in

section 3.6.2.

Map sets and functions from Uni-ARBAC’s URA to AURA:

• USERS = {u1, u2, u3, u4}

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {r1, r2, r3}

• RH = {<r1, r2>, <r2, r3>}

• assigned_roles(u3) = {r1}, assigned_roles(u4) = {r3}

Define attributes and values:

• UATT = {userpools, userpool_adminunit}

• Scope(userpools) = {up1, up2}, attType(userpools) = set,

is_ordered(userpools) = True, Huserpools = {<up2, up1>}

• Scope(userpool_adminunit) = {(up1, au1), (up2, au2)},

attType(userpool_adminunit) = set,

is_ordered(userpool_adminunit) = False, Huserpool_adminunit = φ

48

• userpools(u1) = {up1, up2}, userpools(u2) = {up2},

userpools(u3) = {up1, up2}, userpools(u4) = {up2}

• userpool_adminunit(u1) = {(up1, au1), (up2, au2)}, userpool_adminunit(u2) = {(up2, au2)},

userpool_adminunit(u3) = {(up1, au1), (up2, au2)}, userpool_adminunit(u4) = {(up2, au2)}

• AATT = {admin_unit, adminunit_role}

• Scope(admin_unit) = {au1, au2}, attType(admin_unit) = set,

is_ordered(admin_unit) = True, Hadmin_unit = {<au1, au2>}

• Scope(adminunit_role) = {(au1, r1), (au1, r2), (au2, r3)},

attType(adminunit_role) = set, is_ordered(adminunit_role) = False, Hadminunit_role = φ

• admin_unit(u1) = {au1}, admin_unit(u2) = {au2}, admin_unit(u3) = {},

admin_unit(u4) = {}

• adminunit_role(u1) = {(au1, r1), (au1, r2), (au2, r3)}, adminunit_role(u2) = {(au2, r3)},

adminunit_role(u3) = {}, adminunit_role(u4) = {}

Construct authorization function for user-role assignment

For each op in OP, authorization rule to assign a user to a role can be expressed as follows:

For any user u2 ∈ USERS undertaken for assignment to a role r,

– is_authorizedUassign(u1 : USERS, u2 : USERS, r : ROLES) ≡

∃au1, au2 ∈ Scope(admin_unit). <au1, au2> ∈ Hadmin_unit ∧ (au1 ∈ admin_unit(u1) ∧

(au2, r) ∈ adminunit_role(u1)) ∧ ∃up1, up2 ∈ Scope(userpools). (up2, up1) ∈ Huserpools ∧

((up2, au2) ∈ userpool_adminunit(u2))

Construct authorization function for revoking user from role

To revoke any user u2 ∈ USERS from a role r,

49

– is_authorizedUrevoke(u1 : USERS, u2 : USERS, r : ROLES) ≡

is_authorizedUassign(u1 : USERS, u2 : USERS, r : ROLES)

This subsection presented a manual conversion process in which, an example instance was

taken from Uni-ARBAC’s URA and then mapped into an equivalent instance of AURA. Firstly,

sets from Uni-ARBAC’s URA are mapped into sets of AURA instance. User and admin users

come from same user pool, {u1, u2, u3, u4} as per the design of Uni-ARBAC’s URA. There are

two administrative operations, assign and revoke. ROLES and RH represent set of roles and

role hierarchy respectively. assigned_roles(u) function is assumed to exist as it captures existing

roles and their relation with the user. Secondly, attribute function that capture features in Uni-

ARBAC’s URA are created. There are two attributes in UATT, userpools and userpool_adminunit.

userpools(u) captures the number of user-pools that a user is associated with. For example, user-

pools(u1) = {up1, up2} means user u1 is mapped to user-pools up1 and up2. userpool_adminunit

represents all the user-pools a user is associated with and admin units to which these particular

user-pools are associated with. For example, userpool_adminunit(u1) = {(up1, au1)} indicates that

u1 is mapped to user-pool up1 and, user-pool up1 is further mapped to admin unit au1. There are

two admin user attribute as well. They are admin_unit and adminunit_role. admin_unit yields

admin unit to which an admin user has admin authority for URA. For example, admin_unit(u1)

= {au1} means that admin user u1 has an authority for user-role assignment over admin unit au1.

adminunit_role on the other hand, captures all the admin units over which that admin user has

authority for user-role assignment and, in addition, captures all the roles that are associated with

admin units. For example, adminunit_role(u1) = {(au1, r1)} indicates that u1 has admin authority

for user-role assignment over au1 and role r1 is mapped to admin unit au1. For each attribute,

scope, order and hierarchy are defined. Finally, authorization rule for user-role assignment and

user-role revocation using attributes that were defined above are constructed.

50

3.6.4 MapURA-Uni-ARBAC

MapURA-Uni-ARBAC algorithm represents a translation process of any URA-Uni-ARBAC instance to

AURA instance. For clarity, basic sets from URA in Uni-ARBAC are marked with superscript Uni

and basic sets from AURA are marked with superscript A. It takes URA-Uni instance as input. In

particular it involves USERSUni, ROLESUni, RHUni, UAUni, UPUni, UPHUni, UUPAUni, AUUni,

For each au in AUUni, roles(au), For each au in AUUni, user_pools*(au), UA_adminUni, AUHUni,

and can_manage_user_role(u1 : USERSUni, u2 : USERSUni, r : ROLESUni).

It yields an equivalent instance of AURA as USERSA, AUA, AOPA, ROLESA, RHA, For each

u ∈ USERSA, roles(u), UATTA, AATTA, For each attribute att ∈ UATTA ∪ AATTA, Scope(att),

attType(att), is_ordered(att) and Hatt, For each user u ∈ USERSA, and for each att ∈ UATTA

∪ AATTA, att(u), Authorization rule for assign (auth_assign), and Authorization rule for revoke

(auth_revoke).

A shown in Algorithm MapURA-Uni-ARBAC, there are four main steps required in mapping any

instance of URA-Uni model to equivalent AURA instance. In Step 1, sets and functions from

URA-Uni instance are mapped into AURA sets and functions. In Step 2, user attributes and ad-

ministrative user attribute functions are expressed. There are two user attribute, userpools and

userpool_adminunit. userpools captures regular user’s binding with a group called user-pools.

Regular user attribute userpool_adminunit provides regular user’s association with user-pools, and

for each user-pool a user is associated with, user-pool’s mapping with admin unit. As a result, this

attribute captures a regular user’s association in an admin unit. Note that both these attributes are

required. Although userpool_adminunit captures regular user’s association with user-pools and

corresponding admin units, it cannot capture user association with user-pools which do not have

admin unit associated with it. It is the user-pools that are mapped to admin units. There are two

admin user attributes, admin_unit and adminunit_role. admin_unit captures UA_admin relation in

Uni-ARBAC, and adminunit_role admin user’s mapping with admin unit and for each admin unit

an admin user is mapped to, admin unit’s associated roles.

The notion of Uni-ARBAC model is to provide an admin user with admin authority (given by

51

UA_admin relation) over an admin unit to assign/revoke regular user and role if both regular user

and role are mapped to that same admin unit.

Step 3 involves constructing auth_assign in AURA that is equivalent to can_manage_user_role(u1

: USERSUni, u2 : USERSUni, r : ROLESUni) in Uni-ARBAC’s URA. Equivalent translation

of can_manage_user_role for user-role assignment in AURA is given by is_authorizedUassign(au

: AU, u : USERS, r : ROLES). Similarly, In Step 4, authorization rule to revoke user-role,

auth_revoke, which is equivalent to can_manage_user_role(u1 : USERSUni, u2 : USERSUni, r

: ROLESUni) is expressed.

3.7 UARBAC’s URA in AURA

This section shows how it is possible to represent UARBAC’s URA model in AURA. This is

gracefully done by first taking an example instance from URABC’s URA model and representing

equivalently as AURA instance. Then a complete algorithm called MapURA-UARBAC is expressed

which shows that any instance of UARBAC’s URA model can be represented in AURA model. A

summary of UARBAC’s URA is presented as follows:

3.7.1 Summary of UARBAC’s URA Model

Mao and Li [37] redefine RBAC model. They propose a notion of class of objects and access

modes in RBAC. A summary of the UARBAC’s URA model is presented below:

RBAC Model

RBAC model has the following schema:

RBAC Schema

RBAC Schema is given by following tuple.

<C, OBJS, AM>

• C is a finite set of object classes with predefined classes: user and role.

52

Algorithm 3.4 MapURA-Uni-ARBAC

Input: Instance of URA in Uni-ARBAC

Output: AURA instance

Step 1: /* Map basic sets and functions in AURA */

a. USERSA← USERSUni ; AUA← USERSUni ; AOPA← {assign, revoke}

b. ROLESA← ROLESUni ; RHA ← RHUni

c. For each u ∈ USERSA, assigned_roles(u) = φ

d. For each (u, r) ∈ UAUni, assigned_roles(u)' = assigned_roles(u) ∪ r

Step 2: /* Map attribute functions in AURA */

a. UATTA← {userpools, userpool_adminunit}

b. Scope(userpools) = UPUni ; attType(userpools) = set

c. is_ordered(userpools) = True ; Huserpools = UPHUni

d. For each u in USERSA, userpools(u) = φ

e. For each (u, up) ∈ UUPAUni, userpools(u)' = userpools(u) ∪ up

f. Scope(userpool_adminunit) = USERSUni × AUUni

g. attType(userpool_adminunit) = set ; is_ordered(userpool_adminunit) = False

h. Huserpool_adminunit

i. For each u in USERSA, userpool_adminunit(u) = φ ;

j. For each (u, up) ∈ UUPAUni and for each au in AUUni, if up ∈ user_pools(au) then

userpool_adminunit(u)' = userpool_adminunit(u) ∪ (up, au)

k. AATTA← {admin_unit, adminunit_role}

l. Scope(admin_unit) = AUUni ; attType(admin_unit) = set

m. is_ordered(admin_unit) = True ; Hadmin_unit = AUHUni

n. For each u in AUA, admin_unit(u) = φ

o. For each (u, au) ∈ UA_AdminUni, admin_unit(u)' = admin_unit(u) ∪ au

p. Scope(adminunit_role) = AUUni × ROLESUni

q. attType(adminunit_role) = set ; is_ordered(adminunit_role) = False ; Hadminunit_role = φ

r. For each u in AUA, adminunit_role(u) = φ

s. For each (u, au) ∈ UA_AdminUni and for each r ∈ roles(au),

adminunit_role(u)' = adminunit_role(u) ∪ (au, r)

53

Continuation of Algorithm 3.4 MapURA-Uni-ARBAC

Step 3: /* Construct assign rule in AURA */

a. can_manage_rule = (∃au1, au2 ∈ Scope(admin_unit). <au1, au2> ∈ Hadmin_unit ∧

(au1 ∈ admin_unit(u1) ∧ (au2, r) ∈ adminunit_role(u1)) ∧ ∃up1, up2 ∈ Scope(userpools).

<up2, up1> ∈ Huserpools ∧ (up2, au2) ∈ userpool_adminunit(u2))

b. auth_assign = is_authorizedUassign(u1 : AUA, u2 : USERSA, r : ROLESA) ≡

can_manage_rule

Step 4: /* Construct revoke rule for AURA */

a. auth_revoke = is_authorizedUrevoke(u1 : AUA, u2 : USERSA, r : ROLESA) ≡

can_manage_rule

• OBJS(c) is a function that gives all possible names for objects of the class c ∈ C. Let

USERS = OBJS(user) and ROLES = OBJS(role)

• AM(c) is function that maps class c to a set of access modes that can be applied on objects

of class c.

Access modes for two predefined classes user and role are fixed by the model and are as follows:

AM(user) = {empower, admin}

AM(role) = {grant, empower, admin}

RBAC Permissions:

There are two kinds of permissions in this RBAC model:

• Object permissions of the form,

[c, o, a], where c ∈ C, o ∈ OBJS(c), a ∈ AM(c).

• Class permissions of the form,

[c, a], where, c ∈ C, and a ∈ {create} ∪ AM(c).

54

RBAC State:

Given an RBAC Schema, an RBAC state is given by,

<OB, UA, PA, RH>

• OB is a function that maps each class in C to a finite set of object names of that class that

currently exists, i.e., OB(c) ⊆ OBJS(c). Let,

OB(user) = USERS, and OB(role) = ROLES.

Set of permissions P is given by,

P = {[c, o, a] | c ∈ C ∧ o ∈ OBJS(c) ∧ a ∈ AM(c)} ∪ {[c, a] | c ∈ C ∧ a ∈ {create} ∪

AM(c)}

• UA ⊆ USERS × ROLES, user-role assignment relation.

• PA ⊆ P × ROLES, permission-role assignment relation.

• RH ⊆ ROLES × ROLES, partial order in ROLES denoted by �RH.

Administrative permissions in UARBAC:

All the permissions of user u who performs administrative operations can be calculated as follows:

• authorized_perms[u] = {p ∈ P | ∃r1, r2 ∈ ROLES [(u, r1) ∈ UA ∧ (r1 �RH r2)

∧ (r2, p) ∈ PA]}

User-Role Administration

Operations required to assign user u1 to role r1 and to revoke u1 from role r1 are respectively listed

below:

• grantRoleToUser(r1, u1)

• revokeRoleFromUser(r1, u1)

A user requires one of the following two permissions to conduct grantRoleToUser(r1, u1) operation.

55

• [user, u1, empower] and [role, r1, grant] or,

• [user, empower] and [role, r1, grant] or,

• [user, u1, empower] and [role, grant] or,

• [user, empower] and [role, grant]

A user at least requires either of the following options to conduct revokeRoleFromUser(r1, u1)

operation.

• [user, u1, empower] and [role, r1, empower] or,

• [user, u1, admin] or,

• [role, r1, admin] or,

• [user, admin] or,

• [role, admin].

3.7.2 An Instance of UARBAC’s URA

RBAC Schema

• C = {user, role}

• OBJS(user) = USERS, OBJS(role) = ROLES

• AM(user) = {empower, admin}, AM(role) = {grant, empower, admin}

RBAC State

• USERS = OBJ(user) = {u1, u2, u3, u4}

• ROLES = OBJ(role)= {r1, r2, r3, r4}

56

• P = {[user, u1, empower], [user, u1, admin], [user, u2, empower], [user, u2, admin],

[user, u3, empower], [user, u3, admin], [user, u4, empower], [user, u4, admin], [role,

r1, grant], [role, r1, empower], [role, r1, admin], [role, r2, grant], [role, r2, empower],

[role, r2, admin], [role, r3, grant], [role, r3, empower], [role, r3, admin], [role, r4,

grant], [role, r4, empower], [role, r4, admin], [user, empower], [user, admin], [role,

empower], [role, grant], [role, admin]}

• UA = {(u1, r1), (u2, r1), (u2, r2), (u2, r3), (u3, r3), (u4, r2)}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>}

Administrative permissions for user-role assignment in UARBAC:

Following is the list of administrative permissions each user has for user-role assignment:

• authorized_perms[u1] = {[user, u1, empower], [role, r1, grant], [user, u2, empower],

[role, r3, grant], [user, u3, empower], [user, u4, empower], [role, r2, grant],

[user, u3, admin], [role, r1, admin], [role, r4, admin]}

• authorized_perms[u2] = {[user, u1, empower], [role, r1, grant], [user, u2, empower],

[role, r2, grant]}

• authorized_perms[u3] = {}

• authorized_perms[u4] = {[role, grant], [user, empower]}

User-Role assignment condition in UARBAC’s URA:

One can perform following operation to assign a user u1 to a role r1.

• grantRoleToUser(r1, u1)

To perform aforementioned operation one needs one of the following two permissions:

• [user, u1, empower] and [role, r1, grant] or,

• [user, empower] and [role, r1, grant] or,

57

• [user, u1, empower] and [role, grant] or,

• [user, empower] and [role, grant]

Condition for revoking user-role in UARBAC’s URA:

One can perform following operation to revoke a user u1 to a role r1.

• revokeRoleFromUser(r1, u1)

To perform aforementioned operation one needs one of the following permissions:

• [user, u1, empower] and [role, r1, grant] or,

• [role, r1, admin] or,

• [user, u1, admin] or,

• [role, admin] or,

• [user, admin]

3.7.3 Equivalent AURA instance for UARBAC’s URA

This section depicts an equivalent instance of AURA model for the example instance that was

presented in previous subsection.

Map sets and functions from UARBAC’s URA to AURA:

• USERS = {u1, u2, u3, u4}

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {r1, r2, r3}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>}

58

• assigned_roles(u1) = {r1}, assigned_roles(u2) = {r1, r2, r3}, assigned_roles(u3) = {r3},

assigned_roles(u4) = {r2}

Define attributes and values:

• UATT = {}

• AATT = {user_am, role_am, classp}

• Scope(user_am) = {(u1, empower), (u2, empower), (u3, empower), (u3, admin),

(u4, empower)},

attType(user_am) = set, is_ordered(user_am) = False, Huser_am = φ

• Scope(role_am) = {(r1, grant), (r2, grant), (r3, grant), (r1, admin), (r4, admin)},

attType(role_am) = set, is_ordered(role_am) = False, Hrole_am = φ

• Scope(classp) = {(user, empower), (user, admin), (role, empower), (user, grant), (role,

admin)},

attType(classp) = set, is_ordered(user_am) = False, Hclassp = φ

• user_am(u1) = {(u1, empower), (u2, empower), (u3, empower), (u4, empower),

(u3, admin)},

user_am(u2) = {(u1, empower), (u2, empower)},

user_am(u3) = {}, user_am(u4) = {}

• role_am(u1) = {(r1, grant), (r2, grant), (r3, grant), (r1, admin), (r4, admin)},

role_am(u2) = {(r1, grant), (r2, grant)},

role_am(u3) = {}, role_am(u4) = {}

59

• classp(u1) = {}, classp(u2) = {}, classp(u3) = {},

classp(u4) = {(role, grant), (user, empower)}

Construct authorization function for user-role assignment:

For each op in AOP, authorization rule to assign user to role can be expressed as follows:

For any user u2 ∈ USERS taken for assignment to role r1,

– is_authorizedassign(u1 : USERS, u2 : USERS, r1 : ROLES) ≡

((u2, empower)∈ user_am(u1)∧ (r1, grant)∈ role_am(u1))∨ ((u2, empower)∈ user_am(u1)

∧ (role, grant) ∈ classp(u1)) ∨ ((user, empower) ∈ classp(u1) ∧ (r1, grant) ∈ role_am(u1))

∨ ((user, empower) ∈ classp(u1) ∧ (role, grant) ∈ classp(u1))

Construct authorization function for revoking user from role:

To revoke any user u2 from a role r1,

– is_authorizedrevoke(u1 : USERS, u2 : USERS, r1 : ROLES) ≡

((u2, empower) ∈ user_am(u1) ∧ (r1, grant) ∈ role_am(u1)) ∨ (u2, admin) ∈ user_am(u1)

∨ (r1, admin) ∈ role_am(u1) ∨ (user, admin) ∈ classp(u1) ∨ (role, admin) ∈ classp(u1)

The mapping process for UARBC’s URA to AURA involves four primary stages. In first step,

appropriate sets are mapped. Users and admin users come from same user pool, {u1, u2, u3, u4}. In

UARBAC [37], administrative entity is not defined clearly. It uses the term one. In this dissertation,

one is considered as admin user. Function assigned_roles(u) represents UA relation in UARBAC’s

URA. UARBAC’s URA’s user-role assignment model heavily depends on the administrative user’s

authority over the target objects, user and role. The authority is defined using access modes.

Secondly, attributes are engineered intuitively to match the meaning defined in UARBAC’s URA.

Three admin user attributes, user_am, role_am and classp are defined for admin user. Regular

user attribute set is empty. user_am defines a particular admin user’s access mode towards a target

user. For example, user_am(u2) = {(u1, empower), (u2, empower)} means that admin user u2 has

empower access mode towards user u1 and u2. role_am yields admin user’s access mode towards

60

target role. For example, role_am(u2) = {(r1, grant), (r2, grant)} indicates that admin user u2 has

access mode grant on r1 and r2. classp defines admin user’s authority over class level objects,

which gives admin user an authority over all the objects of that class with particular access mode.

For example, classp(u4) = {(role, grant), (user, empower)} indicates that u4 has access modes

grant towards role class and, access mode empower over user class.

In third step, authorization functions for user-role assignment is established. In step four, an

authorization function for revoking user from role is established. This is carried out using partici-

pating entities and their attributes/values.

3.7.4 MapURA-UARBAC

Algorithm 3.5 presents MapURA-UARBAC, an algorithm for mapping any instance of UARBAC’s

URA [37] to its equivalent AURA instance. For brevity, sets and function from UARBAC model

are labeled with superscript U, and that of AURA with superscript A. There are four required

primary steps required for this mapping. Step 1 involves translating sets and functions from UAR-

BAC’s URA to AURA equivalent sets and functions. In Step 2, user attributes and admin user

attributes functions are defined. Regular user attributes set (UATT) is set to null as there is no user

attributes required. An admin user’s authority towards a regular user and a role, defined by unique

access modes towards user and role, decides whether she can assign that particular user to that

particular role. AURA defines three admin user attributes: user_am, role_am and classp. user_am

attribute captures an admin user’s access mode towards a regular user. Similarly, role_am captures

an admin user’s access mode towards a role. An admin user can also have a class level access

mode captured by attribute classp. With class level access mode, an admin user gains authority

over that entire class of object. For example, [grant, role] is an admin permission with class level

access mode about class object role, which provides an admin user with power to grant any role to

a given user.

In Step 3, assign_formula for AURA equivalent to grantRoleToUser(u1, r1) in UARBAC’s

URA is established. For example, if an admin user au1 wants to execute grantRoleToUser(u3,

61

Algorithm 3.5 MapURA-UARBAC

Input: Instance of URA in UARBAC

Output: AURA instance

Step 1: /* Map basic sets and functions in AURA */

a. USERSA← USERSU ; AUA← USERSU ; AOPA← {assign, revoke}

b. ROLESA← ROLESU ; RHA← RHU

c. For each u1 ∈ USERSA, assigned_rolesA(u1) = φ

d. For each (u1, r1) ∈ UAU, assigned_rolesA(u1)' = assigned_rolesA(u1) ∪ r1

Step 2: /* Map attribute functions in AURA */

a. UATTA = φ

b. AATTA← {user_am, role_am, classp}

c. ScopeA(user_am) = USERSU × AMU(user)

d. attTypeA(user_am) = set ; is_orderedA(user_am) = False, HA
user_am = φ

e. For each u in AUU, user_am(u) = φ

f. For each u in UU and for each [c, u1, am] ∈ authorized_permsU[u],

user_am(u)' = user_am(u) ∪ (u1, am)

g. ScopeA(role_am) = ROLESU × AMU(role)

h. attTypeA(role_am) = set

i. is_orderedA(role_am) = False, HA
role_am = φ

j. For each u in USERSA, role_am(u) = φ

k. For each u in UU and for each [c, r1, am] ∈ authorized_permsU[u],

role_am(u)' = role_am(u) ∪ (r1, am)

l. ScopeA(classp) = CU × {AM(role)U ∪ AMU(user)}

m. attTypeA(classp) = set

n. is_orderedA(classp) = False, HA
classp = φ

o. For each u in USERSA, classp(u) = φ

p. For each u in UU and for each [c, a] ∈ authorized_permsU[u],

classp(u)'= classp(u) ∪ (c, a)

62

Continuation of Algorithm 3.5 MapURA-UARBAC

Step 3: /* Construct assign rule in AURA */

a. assign_formula =

((u2, empower)∈ user_am(u1)∧ (r1, grant)∈ role_am(u1))∨ ((u2, empower)∈ user_am(u1)

∧ (role, grant) ∈ classp(u1)) ∨ ((user, empower) ∈ classp(u1) ∧ (r1, grant) ∈ role_am(u1))

∨ ((user, empower) ∈ classp(u1) ∧ (role, grant) ∈ classp(u1))

b. auth_assign = is_authorizedUassign(u1 : USERSA, u2 : USERSA, r1 : ROLESA) ≡

assign_formula

Step 4: /* Construct revoke rule for AURA */

a. revoke_formula =

((u2, empower) ∈ user_am(u1) ∧ (r1, grant) ∈ role_am(u1)) ∨ (u2, admin) ∈ user_am(u1) ∨

(r1, admin) ∈ role_am(u1) ∨ (user, admin) ∈ classp(u1) ∨ (role, admin) ∈ classp(u1)

b. auth_revoke = is_authorizedUrevoke(u1 : USERSA, u2 : USERSA, r1 : ROLESA) ≡

revoke_formula

r1), she must have one of the combination of two permissions: [user, u3, empower] and [role,

r1, grant], or [user, u3, empower] and [role, grant], or [user, empower] and [role, r1, grant],

or [user, empower] and [role, grant]. Each of this permission given to an admin user is ex-

pressed equivalently in AURA model using attributes of admin user. For instance, an admin

user having an admin permission [user, u3, empower] is expressed equivalently as (u3, em-

power) ∈ user_am(u1) and so on. Equivalent assign_formula for this example is expressed as

is_authorizedUassign(au1, u3, r1)≡ ((u3, empower) ∈ user_am(au1) ∧ (r1, grant) ∈ role_am(au1))

∨ ((u3, empower)∈ user_am(au1)∧ (role, grant)∈ classp(au1))∨ ((user, empower)∈ classp(au1)

∧ (r1, grant) ∈ role_am(au1)) ∨ ((user, empower) ∈ classp(au1) ∧ (role, grant) ∈ classp(au1)).

Thus, assign_formula checks if admin user (au1) bears any combination of the aforementioned per-

missions, but expressed in terms of admin user attributes. Step 4 establishes revoke_formula equiv-

alent to revokeRoleFromUser(u1,r1). To execute revoke function revokeRoleFromUser(u1,r1), an

admin user must have either of these permissions: [user, u1, empower] and [role, r1, grant] or,

[user, u1, admin] or, [role, r1, admin] or, [user, admin] or, [role, admin]. This requirement is

63

expressed as revoke_formula in terms of admin user attributes. For example, equivalent authoriza-

tion function to revoke a user u2 from role r1 is given as is_authorizedUrevoke(au1, u2, r1) ≡ ((u2,

empower) ∈ user_am(au1) ∧ (r1, grant) ∈ role_am(au1)) ∨ (u2, admin) ∈ user_am(au1) ∨ (r1,

admin) ∈ role_am(au1) ∨ (user, admin) ∈ classp(au1) ∨ (role, admin) ∈ classp(au1).

An article that included both attribute-based user-role assignment (AURA) model and attribute-

based permission-role assignment (ARPA) models, collectively known as ‘AARBAC: Attribute-

Based Administration of Role-Based Access Control’ was published in IEEE 3nd International

Conference on Collaboration and Internet Computing (CIC), 2017 (CIC 2017) [39]. Another ver-

sion that includes detailed description of these two models is also publicly avaliable [41].

64

Chapter 4: ARPA: ATTRIBUTE-BASED PERMISSION-ROLE

ASSIGNMENT MODEL

Portion of materials in this chapter are published in the following venue [39]:

• Jiwan Ninglekhu and Ram Krishnan. AARBAC: Attribute-Based Administration of Role-

Based Access Control. In 2017 IEEE 3nd International Conference on Collaboration and

Internet Computing (CIC). IEEE, 2017.

The ARPA model is very similar to the AURA model in that it deals with how to assign per-

missions to roles, and how to revoke permissions from roles using attributes of the involed entities.

The assignment decisions are based on attributes and their values. The model’s main difference

with respect to AURA when it comes to permission-role assignment is that it replaces regular users

(USERS) in AURA with permissions (PERMS). Similarly, it replaces user attributes (UATT) with

permission attibutes (PATT). Similar to AURA, one of the main motivations behind the develop-

ment of ARPA model is to capture the features that were used in assignment decisions processes

in the prior PRA models such as those in PRA02, UARBAC and Uni-ARBAC. The method used

to capture those features in APRA is by introducing attributes for admin users and permissions.

Likewise, ARPA also supports two ways to select permissions to which an admin user can

assign a role. First way is to assign single permission to a single role. Secondly, a set of permissions

can be selected using a set-builder notation whose rule is specified using permission attributes.

Finally, the authorization rule is specified as a logical expression in the usual way over the attributes

of the admin users and those of the permissions.

4.1 ARPA Model

Table 4.1 presents the formal ARPA model. The entities involved in ARPA include admin users

(AU), admin operations (AOP), roles (ROLES) with a role hierarchy (RH), and permissions (PERMS).

ARPA allows for an admin user in AU to perform an admin operation such as assign and revoke in

65

Table 4.1: ARPA Model

– AU is a finite set of administrative users.

– AOP is a finite set of admin operations such as assign and revoke.

– ROLES is a finite set of regular roles.

– RH ⊆ ROLES × ROLES, a partial ordering on the set ROLES.

– PERMS is a finite set of permissions.

– AATT is a finite set of administrative user attribute functions.

– PATT is a finite set of permission attribute functions.

– For each att in AATT ∪ PATT, Scope(att) is a finite set of atomic values from which the
range of the attribute function att is derived.

– attType : AATT ∪ PATT→ {set, atomic}, which specifies whether the range of given
attribute is atomic or set valued.

– Each attribute function maps elements in AU and PERMS to atomic or set values.

∀aatt ∈ AATT. aatt : AU→

 Scope(aatt) if attType(aatt) = atomic

2Scope(aatt) if attType(aatt) = set

∀patt ∈ PATT. patt : PERMS→

 Scope(patt) if attType(patt) = atomic

2Scope(patt) if attType(patt) = set

– is_ordered : AATT ∪ PATT→ {True, False}, specifies if the scope is ordered for each of the attributes.

– For each att ∈ AATT ∪ PATT,

if is_ordered(att) = True, Hatt ⊆ Scope(att) × Scope(att), a partially ordered attribute hierarchy, and Hatt 6= φ

else, if is_ordered(att) = False, Hatt = φ

(For some att ∈ PATT ∪ AATT for which attType(att) = set and is_ordered(att) = True, if {a, b}, {c, d} ∈

2Scope(att) (where a, b, c, d ∈ Scope(att)), we infer {a, b} ≥ {c, d} if H*
att.)

ARPA model allows an administrator to perform an operation on a single permission or a set of permissions at a
time. The authorization rule for performing an operation on a single permission is as follows:
For each op in AOP, is_authorizedPop(au: AU, p : PERMS, r : ROLES) specifies if the admin user au is allowed
to perform the operation op (e.g. assign, revoke, etc.) between the permission p and the role r. This rule is written
as a logical expression using attributes of the admin user au and attributes of the permission p.

The authorization rule for performing an operation on a set of permissions is as follows.

For each op in AOP, is_authorizedPop(au: AU, χ : 2PERMS, r : ROLES) specifies if the admin user au is allowed
to perform the operation op (e.g. assign, revoke, etc.) between the permissions in the set of χ and the role r.
Here χ is a set of permissions that can be specified using a set-builder notation, whose rule is written using
permission attributes.

66

AOP between a regular user in USERS and a permission in PERMS, by using attributes of various

participating entities. For that matter, sets of attribute functions for the regular users (UATT) and

admin users (AATT) are defined. A motivation behind the development of ARPA is to allow ARPA

to have the ability to capture the features of previously developed PRA models such as PRA97,

PRA99, and PRA02. As it shall be observed, only attributes for admin users and permissions are

needed to subsume the properties used by prior models considered in this dissertation. Aside from

the attributes that we have defined for certain entities, one can envision attributes for ROLES or

AOP. However, we limit the scope of model design based on the aforementioned motivation, and

hence the attributes for selected entities.

The attributes are defined as a mapping from its domain (AU or PERMS as the case may be)

to its range. The range of an attribute att, which can be atomic or set valued, is derived from a

specified set of scope of atomic values denoted Scope(att). Whether an attribute is atomic or set

valued is specified by a function called attType. Also, the scope of an attribute can be either ordered

or unordered, which is specified by a function called is_ordered. If an attribute att is ordered, we

require that a corresponding hierarchy, denoted Hatt, be specified on its scope Scope(att). Hatt is a

partial ordering on Scope(att). Note that, even in the case of a set valued attribute att, the hierarchy

Hatt is specified on Scope(att) instead of 2Scope(att). We infer the ordering between two set values

given an ordering on atomic values as explained in Table 4.1. Note that H*
att denotes the reflexive

transitive closure of Hatt.

Like AURA, ARPA supports two ways to select a set of permissions for assigning them to a

roles. The first one allows an admin user to identify a single permission, a role and perform an

operation such as assign. The second one allows an admin user to identify a set of permissions, a

role and perform an operation such as assign for all those permissions. In this case, the selection

criteria for the set of permissions can be specified using a set-builder notation whose rule is stated

using the regular permission attributes. For example, is_authorizedUassign(au, {p | p ∈ PERMS ∧

t1 ∈ admin_unit(p)}, r) would specify a policy for an admin user au who identifies the set of all

permissions that are associated with the task t1 in order to assign a role r to all those permissions.

67

Finally, the authorization rule is specified as a usual logical expression on the attributes of admin

users and those of the set of permissions in question.

4.2 Mapping Prior PRA Models in ARPA

In this section, an idea that ARPA can intuitively simulate the features of prior PRA models is

demostrated. To clarify the same, it presents example instance for each prior model that are taken

into consideration, and they are manually mapped to equivalent ARPA model instance. Concrete

algorithms that can convert any instance of PRA97, PRA99, PRA02, the PRA model in UARBAC,

and the PRA model in Uni-ARBAC into an equivalent instance of ARPA is presented to demon-

strate that any instance from each of these models can be mapped intuitively into ARPA model

instance using attributes.

4.3 PRA97 in ARPA

This section presents how an instance from PRA97 model can be translated into equivalent ARPA

model instance. Following that demonstration, a mapping algorithm called MapPRA97 is exhibited

to show that any instance from PRA97 can be automated to map into an equivalent instance of

ARPA model. A summary of PRA97 is reviewed in the following segment:

4.3.1 Summary of PRA97 Model

Sets and functions:

– USERS is a finite set of users.

– PERMS is a finite set of permissions.

– AR is a finite set of administrative roles.

– ROLES is a finite set of regular roles.

– RH ⊆ ROLES × ROLES a partial order on roles.

– CR is a finite set of prerequisite conditions.

A prerequisite condition is a boolean expression using the usual ∧ and ∨ operators on terms of

68

form x and x̄ where x is a regular role (i.e., x ∈ ROLES).

PRA97 Grant Model:

The PRA97 model controls the assignment by means of the relation,

can_assign ⊆ AR × CR × 2ROLES.

The meaning of can_assign(x, y, {a, b, c}) is that a member of the administrative role x (or an

administrative role that is senior to x) can assign a permission whose current membership, or non-

membership in a regular role satisfies the prerequisite condition y to be a member of regular roles

a, b, or c.

The notion of a prerequisite condition is identical to that in URA97, except the boolean ex-

pression is now evaluated for membership and nonmembership of a permission in specified roles.

PRA97 Revoke Model:

The URA97 model controls user-role revocation by means of the following relation:

can_revoke ⊆ AR × 2ROLES.

The meaning of can_revoke(x, Y) is that a member of the administrative role x (or a member of

an administrative role that is senior to x) can revoke membership of a permission from any regular

role y ∈ Y. Y defines the range of revocation.

4.3.2 PRA97 Instance

An example instance of aforementioned PRA97 model is instantiated with few prequisite condi-

tions. The sets are as follows:

Sets and functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {x1, x2, x3, x4, x5, x6}

• AR = {ar1, ar2}

• PERMS = {p1, p2, p3, p4}

69

• AUA = {(u1, ar1), (u3, ar2)}

• PA = {(p1, r1), (p2, r2), (p2, r4), (p3, r3), (p4, r3), (p4, r4)}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• ARH = {<ar1, ar2>}

• CR = {x1 ∧ x2, x̄1 ∨ x3}

Let cr1 = x1 ∧ x2 and, cr2 = x̄1 ∨ x3.

Prerequisite condition cr1 is evaluated as follows:

For each p that is undertaken for assignment,

(∃x ≤ x1)(p, x) ∈ PA ∧ (∃x ≤ x2)(p, x) ∈ PA

cr2 is evaluated as follows:

For each p that is undertaken for assignment,

(∃x ≤ x1)(p, x) /∈ PA ∨ (∃x ≤ x3)(p, x) ∈ PA

Let can_assignp and can_revokep be as follows:

can_assignp = {(ar1, cr1, {x4, x5}), (ar1, cr2, {x6})}

can_revokep = {(ar1, ROLES)}

4.3.3 Equivalent Example Instance of ARPA for PRA97

This section presents an equivalent ARPA instance for the aforementioned PRA97 example in-

stance.

Map set and functions from PRA97 to ARPA:

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {x1, x2, x3 x4, x5, x6}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x5, x6>}

70

• PERMS = {p1, p2, p3, p4}

Define attributes and values:

• AATT = {aroles}

• Scope(aroles) = {ar1, ar2}

attType(aroles) = set, is_ordered(aroles) = True, Haroles = {<ar1, ar2>}

• aroles(u1) = {ar1}, aroles(u2) = {}, aroles(u3) = {ar2}, aroles(u4) = {}

• PATT = {rolesp}

• Scope(rolesp) = ROLES, attType(rolesp) = set, is_ordered(rolesp) = True, Hrolesp = RH

• rolesp(p1) = {r1}, rolesp(p2) = {r2, r4}, rolesp(p3) = {r3}, rolesp(p4) = {r3, r4}

Construct authorization functions for permission-role assignment:

Authorization rule for user-role assignment can be expressed as follows:

For any permission p ∈ PERMS undertaken for assignment,

– is_authorizedPassign(au : AU, p : PERMS, r : ROLES) ≡

((∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {x4, x5} ∧ (∃x ≤ x1). x ∈ rolesp(p) ∧ (∃x ≤ x2). x ∈

rolesp(p) ∨ (∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {x6} ∧ (∃x ≤ x1). x /∈ rolesp(p)

∨ (∃x ≤ x3). x ∈ rolesp(p)

Construct authorization functions for revoking permission from role:

Authorization rule to revoke a permission from a role can be expressed as follows:

To revoke any permission p ∈ PERMS from a role,

– is_authorizedPrevoke(au : AU, p : PERMS, r : ROLES) ≡ ((∃ar ≤ ar1). ar ∈ aroles(au) ∧

r ∈ ROLES)

71

The translation process follows the following process. First, appropriate sets from PRA97

model is mapped to the sets from ARPA model. In particular, sets for admin users, permissions,

roles and their hierarchy, and administrative operations are mapped. Second, attributes and its

values are defined. In particular, admin user attribute aroles(au) captures admin roles for each

admin user. aroles(u1) = {ar1} specifies that admin user u1 has admin role ar1. There is one

permission attribute rolesp(p) that captures roles that a permission is assigned to. For example,

rolesp(p1) yields role r1, which means permission p1 is assigned to role r1. For both the attributes,

corresponding range, type, order and hierarchies are defined. The attributes, values and their defi-

nition should reflect same meaning from the PRA97 model. In third step , authorization functions

for assigning permission to role is constructed. In final step, authorization function for revoking

permission from role is expressed.

4.3.4 MapPRA97

Algorithm MapPRA97 is an algorithm for mapping any PRA97 instance into equivalent ARPA in-

stance. For brevity, sets and functions from PRA97 and ARPA are marked with superscripts 97 and

A, respectively. MapPRA97 takes PRA97 instance as its input. In particular, input for MapPRA97 fun-

damentally has USERS97, ROLES97, AR97, PERMS97, AUA97, PA97, RH97, ARH97, can_assignp97,

and can_revokep97.

Output from MapPRA97 algorithm is an equivalent ARPA instance, with primarily consisting

of AUA, AOPA, ROLESA, RHA, PERMSA, AATTA, PATTA, For each attribute att ∈ AATTA ∪

PATTA, ScopeA(att), attTypeA(att), is_orderedA(att) and HA
att, For each user u ∈ AUA, and for each

att ∈ AATTA, att(u), For each permission p ∈ PERMSA, and for each att ∈ PATTA, att(p), Au-

thorization rule for permission assign (auth_assign) and Authorization rule for permission revoke

(auth_revoke)

As indicated in MapPRA97, there are four main steps for mapping. In Step 1, sets and functions

from PRA97 are mapped into ARPA sets and functions. In Step 2, permission attributes and admin-

istrative user attribute functions are expressed. There exists one permission attribute called rolesp.

72

Algorithm 4.1 MapPRA97

Input: PRA97 instance

Output: ARPA instance

Step 1: /* Map basic sets and functions in ARPA */

a. AUA← USERS97 ; AOPA← {assign, revoke}

b. ROLESA← ROLES97 ; RHA← RH97 ; PERMSA← PERMS97

Step 2: /* Map attribute functions in ARPA */

a. AATTA← {aroles}

b. ScopeA(aroles) = AR97 ; attTypeA(aroles) = set

c. is_orderedA(aroles) = True ; HA
aroles← ARH97

d. For each u ∈ AUA, aroles(u) = φ

e. For each (u, ar) in AUA97,

aroles(u)' = aroles(u) ∪ ar

f. PATTA← {rolesp}

g. ScopeA(rolesp) = ROLESA

h. attTypeA(rolesp) = set ; is_orderedA(rolesp) = True ; HA
rolesp ← RHA

i. For each p in PERMSA, rolesp(u) = φ

j. For each (p, r) in PA97, rolesp(p)'= rolesp(p) ∪ r

Step 3: /* Construct assign rule in ARPA */

a. assign_formula = φ

b. For each (ar, cr, Z) ∈ can_assign97,

assign_formula' = assign_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧

(translatep97(cr)))

c. auth_assign = is_authorizedPassign(au : AUA, p : PERMSA, r : ROLESA) ≡ assign_formula'

Step 4: /* Construct revoke rule for ARPA */

a. revoke_formula = φ

b. For each (ar, cr, Z) ∈ can_revokep97

revoke_formula' = revoke_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z)

c. auth_revoke = is_authorizedPassign(au : AUA, p : PERMSA, r : ROLESA) ≡ assign_formula'

73

Support routine for algorithm 4.6 translatep97

Input: A PRA97 prerequisite condition, cr
Output: An equivalent sub-rule for ARPA authorization assign rule.
1: rule_string = φ
2: For each symbol in cr
3: if op = (mob-assignp ∨ immob-assignp) ∧ symbol is a role and in the form x

(i.e., the permission has membership on role x)
4: rule_string = rule_string + (x ∈ exp_mob_mem(p) ∨

(x ∈ imp_mob_mem(p) ∧ x /∈ exp_immob_mem(p))
else if op = (mob-revokep ∨ immob-revokep) ∧ symbol is a role and in the form x

(i.e., the permission has membership on role x)
5: rule_string = rule_string + (x ∈ exp_mob_mem(p) ∨ x ∈ imp_mob_mem(p) ∨

x ∈ exp_immob_mem(p) ∨ x ∈ imp_immob_mem(p))
6: else if op = (mob-assignp ∨ immob-assignp ∨ mob-revokep ∨ immob-revokep) ∧

symbol is role and in the form x̄
(i.e., the permission doesn’t have membership on role x)

7: rule_string = rule_string + (x /∈ exp_mob_mem(p) ∧ x /∈ imp_mob_mem(p) ∧
x /∈ exp_immob_mem(p) ∧ x /∈ imp_immob_mem(p))

8: else
9: rule_string = rule_string + symbol /* where a symbol is a ∧ or ∨ logical operator */

10: end if

It is an association between a permission and roles it has been assigned to. Admin user attribute

aroles captures the association between admin users and admin roles in PRA97. Step 3 involves

constructing assign_formula in ARPA that is equivalent to can_assignp in PRA97. can_assignp

is a set of triples. Each triple bears information on whether an admin role can assign a candidate

permission to a set of roles.

Equivalent translation equivalent to can_assignp in ARPA is given by is_authorizedPassign(au :

AUA, p : PERMSA, r : ROLESA). Similarly, In Step 4, revoke_formula equivalent to can_revokep

is presented. A support routine translatep97 translates prerequisite condition.

4.4 PRA99 in ARPA

In the sections that follow, a method of mapping an instance of PRA99 model to an equivalent

instance of ARPA model is presented. To realize that any instance from PRA99 model can be

translated to ARPA model’s equivalent instance, a concrete mapping algorithm is presented. A

74

summary of PRA99 is re-visited as follows:

4.4.1 Summary of PRA99 Model

Sets and functions:

– USERS is a finite set of regular users.

– ROLES is a finite set of regular roles.

– PERMS is a finite set of permissions.

– AR is a finite set of administrative roles.

– CR is set of prerequisite conditions.

A prerequisite condition is a boolean expression using the usual ∧ and ∨ operators on terms of

form x and x̄ where x is a regular role (i.e. x ∈ ROLES).

PRA99 assumes two sub-roles of x ∈ ROLES to be Mx and IMx. Membership of a user u in

Mx and IMx are called mobile membership and immobile membership, respectively.

There are four kinds of permission-role membership in PRA99 for a given role x. They are as

follows:

Explicit mobile member EMx

p ∈ EMx ≡ (p, Mx) ∈ PA

Explicit immobile member EIMx

p ∈ EIMx ≡ (p, IMx) ∈ PA

Implicit mobile member ImMx

p ∈ ImMx ≡ (∃x’ < x)(p, Mx’) ∈ PA

implicit immobile member ImIMx

p ∈ ImIMx ≡ (∃x’ < x)(p, IMx’) ∈ PA

PRA99 Grant Model:

User-role assignments as mobile or immobile members are authorized by the following relation:

can-assignp-M ⊆ AR × CR × 2ROLES.

The meaning of can-assignp-M(x, y, {a, b, c}) is that a member of administrative role x (or a

75

member of administrative role senior to x) can assign a permission whose current membership, or

non membership in roles in R satisfies the prerequisite y to a regular roles a, b or c, as a mobile

member.

Similar is the definition for assigning a qualifying permission as immobile member of regular

roles given by the relation:

can-assignp-IM ⊆ AR × CR × 2ROLES.

A prerequisite condition is a boolean expression using the ∧ and ∨ operators in terms of the

form r and x̄.

The prerequisite condition in PRA99 grant model is evaluated for a permission p, by interpret-

ing x to be true if:

p ∈ EMx ∨ (p ∈ ImMx ∧ p /∈ EIMx)

and x̄ to be true if:

p /∈ EMx ∧ p /∈ EIMx ∧ p /∈ ImMx ∧ p /∈ ImIMx

PRA99 Revoke Model:

The PRA99 model authorizes revocation of mobile membership by the relation:

can-revokep-M ⊆ AR × CR × 2ROLES.

and revocation of immobile membership by the relation:

can-revokep-IM ⊆ AR × CR × 2R.

The meaning of can-revokep-M(x, y, {a, b, c}) is that a member of administrative role x (or a

member of a administrative role senior to x) can revoke mobile membership of a permission from

role a, b or c subject to the prerequisite condition y. Similarly for can-revokep-IM with respect to

immobile membership.

For the revoke model we do not distinguish mobile and immobile membership. Thus we have

the following interpretation. A prerequisite condition in PRA99 revoke model is evaluated for a

user p by interpreting x to be true if:

p ∈ EMx ∨ p ∈ EIMx ∨ p ∈ ImMx ∨ p ∈ ImIMx

and x̄ to be true if:

76

p /∈ EMx ∧ p /∈ EIMx ∧ p /∈ ImMx ∧ p /∈ ImIMx

PRA99 Instance

In this section, an example instance of the PRA99 model is presented.

Sets and functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {x1, x2, x3, x4, x5, x6}

• AR = {ar1, ar2}

• PERMS = {p1, p2, p3, p4}

• AUA = {(u3, ar1), (u4, ar2)}

• PA = {(p1, Mx1), (p2, IMx3), (p3, IMx2), (p4, Mx4)}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• ARH = {<ar1, ar2>}

• CR = {x2, x̄1}

Let cr1 = x2 and, cr2 = x̄1. Prerequisite condition cr1 is evaluated as follows:

For any p ∈ PERMS that is undertaken for assignment,

((p, Mx2) ∈ PA ∨ ((∃x' ≤ x2). (p, Mx') ∈ PA) ∧ (p, IMx2) /∈ PA) cr2 is evaluated as follows:

For any p ∈ PERMS that is undertaken for assignment,

(p, Mx1) /∈ PA ∧ ((∃x' ≤ x1). (p, Mx') /∈ PA) ∧ (p, IMx1) /∈ PA ∧ ((∃x' ≤ x1). (p, IMx') /∈ PA)

Let can-assign-M and can-assign-IM in PRA99 be as follows:

can-assign-M = {(ar1, cr1, {x4, x5})}

can-assign-IM= {(ar1, cr2, {x3})}

For simplicity, same prerequisite conditions and target role sets are considered for grant and

revoke models. Prerequisite conditions for PRA99 revoke model are evaluated as follows:

77

cr1 is evaluated as follows:

((p, Mx2) ∈ PA ∨ (p, IMx2) ∈ PA ∨ ((∃x' ≤ x2). (p, Mx') ∈ PA) ∨ ((∃x' ≤ x2). (p, IMx') ∈ PA))

cr2 is evaluated as follows:

(p, Mx1) /∈ PA ∧ (p, IMx1) /∈ PA ∧ ((∃x' ≤ x1). (p, Mx') /∈ PA) ∧ ((∃x' ≤ x1). (p, IMx') /∈ PA)

Let can-revoke-M and can-revoke-IM sets be as follows:

can-revoke-M = {(ar1, cr1, {x3, x4, x5})}

can-revoke-IM= {(ar1, cr2, {x5, x6})}

4.4.2 Equivalent PRA99 Instance in ARPA

This section presents an equivalent ARPA instance for the aforementioned PRA99 example in-

stance.

Map sets and functions from PRA99 to ARPA:

• AU = {u1, u2, u3, u4}

• AOP = {mob-assign, immob-assign, mob-revoke, immob-revoke}

• ROLES = {x1, x2, x3, x4, x5, x6}

• RH = {<x1, x2>, <x2, x3>, <x3, x4>, <x4, x5>, <x5, x6>}

• PERMS = {p1, p2, p3, p4}

Define attributes and values:

• AATT = {aroles}

• Scope(aroles) = {ar1, ar2}, attType(aroles) = set,

is_ordered(aroles) = True, Haroles = {<ar1, ar2>}

• aroles(u1) = {}, aroles(u2) = {}, aroles(u3) = {ar1}, aroles(u4) = {ar2}

• PATT= {exp_mob_mem, imp_mob_mem, exp_immob_mem, imp_immob_mem}

78

• Scope(exp_mob_mem) = ROLES, attType(exp_mob_mem) = set,

is_ordered(exp_mob_mem) = True, Hexp_mob_mem = RH

• exp_mob_mem(p1) = {x1}, exp_mob_mem(p2) = {},

exp_mob_mem(p3) = {}, exp_mob_mem(p4) = {x4},

• Scope(imp_mob_mem)= ROLES, attType(imp_mob_mem) = set,

is_ordered(imp_mob_mem) = True, Himp_mob_mem = RH

• imp_mob_mem(p1) = {}, imp_mob_mem(p2) = {},

imp_mob_mem(p3) = {}, imp_mob_mem(p4) = {x1, x2, x3}

• Scope(exp_immob_mem) = ROLES, attType(exp_immob_mem) = set

is_ordered(exp_immob_mem) = True, Hexp_immob_mem = RH

• exp_immob_mem(p1) = {}, exp_immob_mem(p2) = {x3},

exp_immob_mem(p3) = {x2}, exp_immob_mem(p4) = {},

• Scope(imp_immob_mem) = ROLES, attType(imp_immob_mem) = set

• is_ordered(imp_immob_mem) = True, Himp_immob_mem = RH

• imp_immob_mem(p1) = {}, imp_immob_mem(p2) = {x1, x2},

imp_immob_mem(p3) = {x1}, imp_immob_mem(p4) = {}

Construct authorization function for moble permission-role assignment:

Authorization rule to assign a permission as a mobile member of a role can be expressed as follows:

To assign any permission p ∈ PERMS as a mobile member,

79

– is_authorizedPmob-assign(au : AU, p : PERMS, r : ROLES) ≡

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x4, x5}∧ (x2 ∈ exp_mob_mem(p)∨ (x2 ∈ imp_mob_mem(p)

∧ x2 /∈ exp_immob_mem(p)))

Construct authorization function for revoking mobile permission from role:

Authorization rule to revoke a mobile permission from a role can be expressed as follows:

To revoke any mobile permission p ∈ PERMS from a role,

– is_authorizedPmob-revoke(au : AU, p : PERMS, r : ROLES) ≡

((∃ar≥ ar1). ar ∈ aroles(u)∧ r ∈ {x3, x4, x5}∧ (x2 ∈ exp_mob_mem(p)∨ x2 ∈ imp_mob_mem(p)

∨ x2 ∈ exp_immob_mem(p) ∨ x2 ∈ imp_immob_mem))

Construct authorization function for assigning immobile permission to role:

Authorization functions to assign any permission p ∈ PERMS as an immobile member of role can

be expressed as follows:

To assign any permission p ∈ PERMS as an immobile member,

– is_authorizedPimmob-assign(au : AU, p : PERMS, r : ROLES)≡ ((∃ar ≥ ar1). ar ∈ aroles(u)

∧ r ∈ {x3} ∧ (x1 /∈ exp_mob_mem(p) ∧ x1 /∈ imp_mob_mem(p) ∧ x1 /∈ exp_immob_mem(p)

∧ x1 /∈ imp_immob_mem(p)))

Construct authorization function for revoking immobile permission from role:

Authorization rule to revoke any immobile permission from a role can be expressed as follows:

To revoke any immobile permission p ∈ PERMS from a role,

– is_authorizedPimmob-revoke(au : AU, p : PERMS, r : ROLES)≡ ((∃ar≥ ar1). ar ∈ aroles(p)

∧ r ∈ {x5, x6}∧ x1 /∈ exp_mob_mem(p)∧ x1 /∈ imp_mob_mem(p)∧ x1 /∈ exp_immob_mem(p)

∧ x1 /∈ imp_immob_mem(p))

The manual translation involved the following process. First, the sets from PRA99 model are

mapped to the sets of APRA model. Sets for admin users, perimissions, roles and their hierarchy

and, administrative operations are mapped. There are four administrative operations, mob-assign,

80

immob-assign, mob-revoke, and immob-revoke for assigning permission as a mobile member,

assigning a permission as an immobile member, revoking a mobile permission, and revoking an

immobile permission, respectively. Second, the relations pertained in PRA99 are intuitively trans-

lated as attributes in ARPA. attribute aroles captures admin roles for given admin user. There

are four different permission attributes exp_mob_mem, imp_mob_mem, exp_immob_mem, and

imp_immob_mem. exp_mob_mem attribute yields all the roles to which a given permission has

explicit mobile membership. For example, exp_mob_mem(p1) = {x1} signifies permission p1 has

explicit mobile membership on role x1. imp_mob_mem yields roles to which a permission has

implicit mobile membership. For example, imp_mob_mem(p4) = {x1, x2, x3} specifies that p4

has implicit mobile membership on roles x1 through x3. exp_immob_mem yields roles to which

a permission has explicit immobile membership. For example, exp_immob_mem(p2) = {x3} in-

dicates that p2 has explicit immobile membership on role x3 and, imp_immob_mem yields roles

to which a permission has implicit immobile membership. For example, imp_immob_mem(p3) =

{x1} function indicates that permission p3 has implicit immobile membership on role x1. For all

the attributes, their corresponding range, type, order and hierarchies were mapped.

In step three, an equivalent authorization functions for permission-role assignment and permission-

role revocation were constructed respectively for mobile users using related entities and their at-

tributes. Finally in step four, authorization functions for assigning and revoking immobile user

to/from role, respectively were constructed using related entities and their attributes.

4.4.3 MapPRA99

Algorithm MapPRA99 is an algorithm for mapping any PRA99 instance into equivalent ARPA in-

stance. Sets and functions from PRA99 and ARPA are marked with superscripts 99 and A, respec-

tively. MapPRA99 takes PRA99 instance as its input. In particular, input for MapPRA99 fundamentally

has USERS99, PERMS99, ROLES99, AR99, PA99, AUA99, RH99, ARH99, can-assignp-M99, can-

assignp-IM99, can-revokep-M99, and can-revokep-IM99.

Output from MapPRA99 algorithm is an equivalent ARPA instance, with primarily consisting

81

of AUA, AOPA, ROLESA, RHA, PERMSA, AATTA, PATTA, For each attribute att ∈ AATTA ∪

PATTA, RangeA(att), attTypeA(att), is_orderedA(att) and HA
att, For each user u ∈ AUA, and for

each att ∈ AATTA, att(u), For each permission p ∈ PERMSA, and for each att ∈ PATTA, att(p),

Authorization rule for mobile assign (auth_mob_assign), Authorization rule for mobile revoke

(auth_mob_revoke), Authorization rule for immobile assign (auth_immob_assign), and Autho-

rization rule for immobile revoke (auth_immob_revoke)

As shown in Algorithm MapPRA99, there are four main steps required in mapping any instance of

PRA99 model to ARPA instance. In Step 1, sets and functions from PRA99 instance are mapped

into ARPA sets and functions. In Step 2, permission attributes and administrative user attribute

functions are expressed. There are four permission attributes: exp_mob_mem, imp_mob_mem,

exp_immob_mem, and imp_immob_mem. Each captures, a permission’s explicit mobile member-

ship, implicit mobile membership, explicit immobile membership and implicit immobile member-

ship, respectively, on roles. Admin user attribute aroles captures admin roles assigned to admin

users. Step 3 involves constructing assign-mob-formula and assign-immob-formula in ARPA that

is equivalent to can-assignp-M and can-assignp-IM in PRA99, respectively, in PRA99. Both can-

assignp-M and can-assignp-IM are set of triples. Each triple bears information on whether an

admin role can assign a candidate permission to a set of roles as a mobile member in the case

of can-assignp-M and, as an immobile member in the case of can-assignp-IM. AURA equivalent

for can-assignp-M is given by is_authorizedPmob-assign(au : AUA, u : USERSA, r : ROLESA) and

an equivalent translation for can-assignp-IM is given by is_authorizedPimmob-assign(au : AUA, u :

USERSA, r : ROLESA). Similarly, In Step 4, revoke-mob-formula equivalent to can-revokep-M

and can-revokep-IM are presented. A support routine translatep99 translates prerequisite condition

in PRA99 into its ARPA equivalent. A complete example instance and its corresponding equivalent

APRA instances were presented in Section 4.4.1 and Section 4.4.2, respectively.

82

Algorithm 4.7 MapPRA99

Input: PRA99 instance

Output: ARPA instance

Step 1: /* Map basic sets and functions in ARPA */

a. AUA← USERS99 ; AOPA← {mob-assign, mob-revoke, immob-assign, immob-revoke}

b. ROLESA← ROLES99 ; RHA← RH99 ; PERMSA← PERMS99

Step 2: /* Map attribute functions in ARPA */

a. AATTA← {aroles}

b. ScopeA(aroles) = AR99 ; attTypeA(aroles) = set

c. is_orderedA(aroles) = True ; HA
aroles← ARH99

d. For each u ∈ AUA, aroles(u) = φ

e. For each (u, ar) in AUA99, aroles(u) = aroles(u) ∪ ar

f. PATTA← {exp_mob_mem, imp_mob_mem, exp_immob_mem, imp_immob_mem}

g. ScopeA(exp_mob_mem) = ROLESA ; attTypeA(exp_mob_mem) = set

h. is_orderedA(exp_mob_mem) = True ; HA
exp_mob_mem← RHA

i. For each p in PERMSA, exp_mob_mem(p) = φ

j. For each (p, Mr) in PA99, exp_mob_mem(p)' = exp_mob_mem(p) ∪ r

k. ScopeA(imp_mob_mem) = ROLESA ; attTypeA(imp_mob_mem) = set ;

l. is_orderedA(imp_mob_mem) = True ; HA
imp_mob_mem← RHA

m. For each p in PERMSA, imp_mob_mem(p) = φ

n. For each (p, Mr) in PA99 and for each role r' > r,

imp_mob_mem(p)' = imp_mob_mem(p) ∪ r'

o. ScopeA(exp_immob_mem) = ROLESA ; attTypeA(exp_immob_mem) = set

p. is_orderedA(exp_immob_mem) = True ; HA
exp_immob_mem← RHA

q. For each p in PERMSA, exp_immob_mem(p) = φ ;

r. For each (p, IMr) in PA99, exp_immob_mem(p)' = exp_immob_mem(p) ∪ r

s. ScopeA(imp_immob_mem) = ROLESA ; attTypeA(imp_immob_mem) = set

t. is_orderedA(imp_immob_mem) = True ; HA
imp_immob_mem← RH

83

Algorithm 4.7 MapPRA99

u. attTypeA(imp_immob_mem) = set ; is_orderedA(imp_immob_mem) = True

v. HA
imp_immob_mem← RHA ; For each p in PERMSA, imp_immob_mem(p) = φ

w. For each (p, IMr) in PA99 and for each role r' > r,

imp_immob_mem(p)'= imp_immob_mem(p) ∪ r'

Step 3: /* Construct assign rule in ARPA */

a. assign-mob-formula = φ

b. For each (ar, cr, Z) ∈ can-assign-M99,

assign-mob-formula' = assign-mob-formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧

(translatep99(cr, mob-assign)))

c. auth_mob_assign = is_authorizedPmob-assign(au : AU, p : PERMS, r : ROLES) ≡

assign-mob-formula'

d. assign-immob-formula = φ

e. For each (ar, cr, Z) ∈ can-assign-IM99,

assign-immob-formula' = assign-immob-formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z

∧ (translatep99(cr, immob-assign)))

f. auth_immob_assign = is_authorizedPimmob-assign(au : AU, p : PERMS, r : ROLES) ≡

assign-immob-formula'

Step 4: /* Construct revoke rule in ARPA */

a. revoke-mob-formula = φ

b. For each (ar, cr, Z) ∈ can-revoke-M99,

revoke-mob-formula' = revoke-mob-formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧

(translatep99(cr, mob-revoke)))

c. auth_mob_revoke = is_authorizedPmob-revoke(au : AU, p : PERMS, r : ROLES) ≡

revoke-mob-formula'

d. revoke-immob-formula = φ

e. For each (ar, cr, Z) ∈ can-revoke-IM99,

revoke-immob-formula' = revoke-immob-formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧

r ∈ Z ∧ (translatep99(cr, immob-revoke)))

f. auth_immob_revoke = is_authorizedPimmob-revoke(au : AU, p : PERMS, r : ROLES) ≡

revoke-immob-formula'

84

Support routine for algorithm 4.7 translatep99

Input: A PRA99 prerequisite condition (cr),

op ∈ {mob-assign, immob-assign, mob-revoke, immob-revoke}

Output: An equivalent sub-rule for AURA authorization assign rule.

1: rule_string = φ

2: For each symbol in cr

3: if op = (mob-assignp ∨ immob-assignp) ∧ symbol is a role and in the form x

(i.e., the permission has membership on role x)

4: rule_string = rule_string + (x ∈ exp_mob_mem(p) ∨

(x ∈ imp_mob_mem(p) ∧ x /∈ exp_immob_mem(p))

else if op = (mob-revokep ∨ immob-revokep) ∧ symbol is a role and in the form x

(i.e., the permission has membership on role x)

5: rule_string = rule_string + (x ∈ exp_mob_mem(p) ∨ x ∈ imp_mob_mem(p) ∨

x ∈ exp_immob_mem(p) ∨ x ∈ imp_immob_mem(p))

6: else if op = (mob-assignp ∨ immob-assignp ∨ mob-revokep ∨ immob-revokep) ∧

symbol is role and in the form x̄

(i.e., the permission doesn’t have membership on role x)

7: rule_string = rule_string + (x /∈ exp_mob_mem(p) ∧ x /∈ imp_mob_mem(p) ∧

x /∈ exp_immob_mem(p) ∧ x /∈ imp_immob_mem(p))

8: else

9: rule_string = rule_string + symbol /* where a symbol is a ∧ or ∨ logical operator */

10: end if

85

4.5 PRA02 in ARPA

In this section, a method by which any instance of PRA02 model is translated into an equivalent

instance of APRA model is demonstrated. For that matter, firstly, a summary of PRA02 model

is presented. An example, instance for PRA02 model is manually converted into its equivalent

representation in ARPA model. This shows an intuitive approach by which attributes can represent

the properties presented in PRA02 model. Finally, a concrete algorithm that can take any instance

of PRA02 and map it into ARPA model is shown. The summary of PRA02 model is presented

below:

Sets and functions:

4.5.1 Summary of PRA02 Model

– USERS is a finite set of regular users.

– PERMS is a finite set of permissions.

– AR is a finite set of administrative roles.

– CR is a finite set of prerequisite conditions.

– ROLES is a finite set of regular roles.

– ORGU is a finite set of orgnization units.

– PPA ⊆ PERMS × ORGU, regular user to organization unit assignment on OS-P (Organization

structure represented as a permission-pool).

– CR is a finite set of prerequisite conditions.

A prerequisite condition of PRA is a boolean expression using the ∧ and ∨ operators on terms

of the form x and x̄, where x is a regular role or organization unit in OS-P.

PRA02 Grant Model:

User-role assignment is authorized in PRA02 by the following relation:

can_assignp ⊆ AR × CR × 2ROLES.

The meaning of can_assign(x, y, {a, b, c}) is that a member of an administrative role x (or a

member of a role that is senior to x) can assign a pemrission whose current membership, or non-

86

membership, in regular role or organization unit satisfies the prerequisite condition y, to regular

roles, a, b or c.

PRA02 has same grant model as PRA97 but the prerequisite condition is different. A prereq-

uisite condition is evaluated for user u by interpreting x to be true if:

Case 1:

x ∈ ROLES : (∃x’ ≤ x)(u, x’) ∈ PA

Case 2:

x ∈ ORGU : (∃x’ ≥ x)(u, x’) ∈ PPA

and x̄ to be true if:

Case 1:

x ∈ ROLES : ¬((∀x’ ≤ x)(u, x’) ∈ PA)

Case 2:

x ∈ ORGU : ¬((∀x’ ≥ x)(u, x’) ∈ PPA)

PRA02 Revoke Model

The PRA02 model controls the permission-role or permission-organization unit revocation by

means of the following relation:

can_revokep ⊆ AR × 2R.

The meaning of can_revokep(x, Y) is that a member of the administrative role x (or a member of

an administrative role senior to x) can revoke a membership of a permission from any regular role

or organization unit y ∈ Y.

4.5.2 PRA02 Instance

In PRA02, decision about permission-role assignment and revocation is made on the basis of

two factors: a permission’s membership on role(s) or a permission’s membership in organiza-

tion unit(s). They can be viewed as two different cases. In this example instance we represent roles

with r and organization units with x, for simplicity and clarity.

87

Sets and functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {r1, r2, r3, r4, r5, r6}

• AR = {ar1, ar2}

• PERMS = {p1, p2, p3, p4}

• AUA = {(u3, ar1), (u4, ar2)}

• PA = {(p1, r1), (p1, r2), (p2, r3), (p2, r4)}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>, <r4, r5>, <r5, r6>}

• ARH = {<ar1, ar2>}

• ORGU = {x1, x2, x3}

• OUH = {<x3, x2>, <x2, x1>}

• PPA = {(p1, x1), (p2, x2), (p3, x3), (p1, x3)}

Case 1:

• CR = {r1 ∧ r2, r1 ∨ r̄2 ∧ x3}

Let cr1 = r1 ∧ r2 and, cr2 = r1 ∨ r̄2 ∧ r3

Case 2:

• CR = {x1 ∧ x2, x1 ∨ x̄2 ∧ x3}

Let cr3 = x1 ∧ x2 and, cr4 = x1 ∨ x̄2 ∧ x3

Prerequisite conditions are evaluated as follows:

Case 1:

cr1 is evaluated as follows:

For each p that is undertaken for assignment,

88

(∃r ≤ r1). (p, r) ∈ PA ∧ (∃r ≤ r2). (p, r) ∈ PA

cr2 is evaluated as follows: For each p that is undertaken for assignment,

(∃r ≤ r1). (p, r) ∈ PA ∨ ¬((∀r ≤ r2). (p, r) ∈ PA) ∧ (∃r ≤ r3). (p, r) ∈ PA

Case 2:

cr3 is evaluated as follows:

For each p that is undertaken for assignment,

(∃x ≥ x1). (p, x) ∈ PPA ∧ (∃x ≥ x2). (p, x) ∈ PPA

cr4 is evaluated as follows:

For each p that is undertaken for assignment,

(∃x ≥ x1). (p, x) ∈ PPA ∨ ¬((∀x ≥ x2). (p, x) ∈ PPA) ∧ (∃x ≤ x3). (p, x) ∈ PPA

Let can_assign and can_revoke be as follows:

Case 1:

can_assign = {(ar1, cr1, {r4, r5}), (ar1, cr2, {r6})}

can_revoke = {(ar1, {r1, r3, r4})}

Case 2:

can_assign = {(ar1, cr3, {r4, r5}), (ar1, cr4, {r6})}

can_revoke = {(ar1, {r1, r3, r4})}

4.5.3 Equivalent PRA02 Instance in ARPA

Map sets and functions from PRA02 to ARPA:

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {r1, r2, r3, r4, r5, r6}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>, <r4, r5>, <r5, r6>}

• PERMS = {p1, p2, p3, p4}

89

Define attributes and values:

• AATT = {aroles}

• Scope(aroles) = {ar1, ar2}, attType(aroles) = set

is_ordered(aroles) = True, Haroles = {<ar1, ar2>}

• aroles(u3) = {ar1}, aroles(u4) = {ar2}

• PATT = {rolesp, org_units}

• Scope(rolesp) = ROLES, attType(rolesp) = set

is_ordered(rolesp) = True, Hrolesp = RH,

• rolesp(p1) = {r1, r2}, rolesp(p2) = {r3, r4}, rolesp(p3) = {}, rolesp(p4) = {}

• Scope(org_units) = {x1, x2, x3} ; attType(org_units) = set

is_ordered(org_units) = True ; Horg_units = {(x3, x2), (x2, x1)}

• org_units(p1) = {x1, x3}, org_units(p2) = {x2}, org_units(p3) = {x3}

For each op in OP, authorization rule for permission to role assignment and revocation can be

expressed respectively, as follows:

Construct authorization function for permission-role assignment:

Case 1:

For any permission p ∈ PERMS undertaken for assignment,

– is_authorizedPassign(au : AU, p : PERMS, r : ROLES) ≡

((∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {r4, r5} ∧ ((∃r ≤ r1). r ∈ rolesp(p) ∧ (∃r ≤ r2). r ∈

rolesp(p))) ∨ ((∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {r6} ∧ ((∃r ≤ r1). r ∈ rolesp(p)

∨ (∃r ≤ r2). r /∈ rolesp(p) ∧ (∃r ≤ r3). r ∈ rolesp(p)))

90

Case 2:

or any permission p ∈ PERMS undertaken for assignment,

– is_authorizedPassign(au : AU, p : PERMS, r : ROLES) ≡

((∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {r4, r5} ∧ ((∃x ≥ x1). x ∈ org_units(p) ∧ (∃x ≥ x2).

x ∈ org_units(p))) ∨ ((∃ar ≥ ar1). ar ∈ aroles(au) ∧ r ∈ {r6} ∧ ((∃x≥ x1). x ∈ org_units(p)

∨ (∃x ≥ x2). x /∈ org_units(p) ∧ (∃x ≥ x3). x ∈ org_units(p)))

Construct authorization function for revoking permission from role:

Case 1:

For any pemrission p ∈ PERMS undertaken for revocation,

– is_authorizedPrevoke(au : AU, p : PERMS, r : ROLES) ≡ (∃ar ≥ ar1). ar ∈ aroles(u) ∧

r ∈ {r1, r3, r4}

Case 2:

For any pemrission p ∈ PERMS undertaken for revocation,

– is_authorizedPrevoke(au : AU, p : PERMS, r : ROLES) ≡ (∃ar ≥ ar1). ar ∈ aroles(p) ∧

r ∈ {r1, r3, r4}

The manual translation shows that it is possible to convert an instance of PRA02 model into

an instance of ARPA model. It primarily takes few steps for translation. First, it maps all the sets

from PRA02 model into sets of ARPA model. In particular, sets for admin users, administrative

operations, roles and their hierarchy and, permissions are mapped. There are two administrative

operations assign and revoke. Second, the relations and functions are intuitively engineered us-

ing attributes. The only admin role attribute aroles yields admin roles assigned to admin user. For

example, aroles(u3) = {ar1} specifies that admin user u3 has admin role ar1. There are two permis-

sion attributes org_units and rolesp. Permission attribute org_units gives back all the organization

units that a permission is associated with. For example, org_units(p1) = {x1, x3} specifies that p1 is

mapped to organization units, x1 and x3. Attribute rolesp yields roles that a permission is assigned

91

Algorithm 4.8 MapPRA02

Input: PRA02 instance

Output: AURA instance

Step 1: /* Map basic sets and functions in ARPA */

a. AUA← AU02 ; AOPA← {assign, revoke} ; ROLESA← ROLES02

b. RHA← RH02 ; PERMSA← PERMS02

Step 2: /* Map attribute functions to ARPA */

a. AATTA← {aroles}

ScopeA(aroles) = AR02 ; attTypeA(aroles) = set

b. is_orderedA(aroles) = True ; HA
aroles← ARH02

c. For each u ∈ AUA, aroles(u) = φ

d. For each (u, ar) in AUA02, aroles(u)' = aroles(u) ∪ ar

e. PATTA← {org_units, rolesp}

f. ScopeA(org_units) = ORGU02 ; attTypeA(org_units) = set

g. is_orderedA(org_units) = True ; HA
org_units = OUH02

h. For each p ∈ PERMSA, org_units(p) = φ

i. For each (p, orgu) ∈ PPA02, org_units(p)' = org_units(p) ∪ orgu

j. ScopeA(rolesp) = ROLESA ; attTypeA(rolesp) = set

k. is_orderedA(rolesp) = True ; HA
rolesp = RHA

l. For each p ∈ PERMSA, rolesp(p) = φ

m. For each (p, r) ∈ PPA02, rolesp(p)' = rolesp(p) ∪ r

Step 3: /* Construct assign rule in ARPA */

a. assign_formula = φ

b. For each (ar, cr, Z) ∈ can_assign02,

assign_formula' = assign_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z ∧

(translatep02(cr)))

c. auth_assign = is_authorizedassign(au : AU, p : PERMS, r : ROLES) ≡ assign_formula'

Step 4: /* Construct revoke rule in ARPA */

a. revoke_formula = φ

b. For each (ar, cr, Z) ∈ can_revoke02,

revoke_formula' = revoke_formula ∨ ((∃ar' ≥ ar). ar' ∈ aroles(au) ∧ r ∈ Z)

c. auth_revoke = is_authorizedrevoke(au : AU, p : PERMS, r : ROLES) ≡ revoke_formula'

92

Support routine for algorithm 4.8 translatep02

Input: A PRA02 prerequisite condition (cr), Case 1, Case 2
Output: An equivalent sub-rule for ARPA authorization rule. STATE rule_string = φ
1: Case Of selection
2: ' Case 1 ' (cr is based on roles) :
3: translatep97

4: ' Case 2 ' (cr is based on org_units):
5: For each symbol in cr
6: if symbol is an organization unit and in the form x

(i.e., the permission has a membership on organization unit x)
7: rule_string = rule_string + (∃x' ≥ x). x' ∈ org_units(p)
8: else if symbol an organization unit and in the form x̄

(i.e., the permission doesn’t have a membership on organization unit x)

9: rule_string = rule_string + (∃x' ≥ x). x' /∈ org_units(p)
10: else
11: rule_string = rule_string + symbol /* where a symbol is a ∧ or ∨ logical operator

*/
12: end if
13: end Case

to. For example, rolesp(p1) = {r1, r2} indicates that p1 is assigned to roles, r1 and r2. Range, type,

order and hierarchy for values of each attribute are mapped. In step three, authorization functions

that intuitively translate the meaning of can_assignp for two different cases, as per PRA02 are

established. In the final step, authorization functions equivalent to can_revokep in PRA02 for two

different cases are constructed using attributes.

4.5.4 MapPRA02

Algorithm 4.8 presents MapPRA02. It maps a PRA02 instance into an equivalent ARPA instance. For

brevity, sets and functions from PRA02 and ARPA are marked with superscripts 02 and A, respec-

tively. MapPRA02 takes PRA02 instance as its input. In particular, input for MapPRA02 fundamen-

tally has USERS02, ROLES02, AR02, PERMS02, AUA02, PA02, RH02, ARH02, can_assignp02,

can_revokep02, ORGU02, OUH02, and PPA02

Output from MapPRA02 algorithm is an equivalent ARPA instance, with primarily consisting of

93

AUA, AOPA, ROLESA, RHA, PERMSA, AATTA, PATTA, For each attribute att ∈ AATTA ∪ PATTA,

RangeA(att), attTypeA(att), is_orderedA(att) and HA
att, For each user p ∈ PERMSA and for each att

∈ PATTA, att(p), For each user u ∈ AUA and for each att ∈ AATTA, att(u), Authorization rule to

assign (auth_assignp), and Authorization rule to revoke (auth_revokep).

As shown in Algorithm 4.8, there are four main steps required in mapping any instance of

PRA02 model to ARPA instance. In Step 1, sets and functions from PRA02 instance are mapped

into ARPA sets and functions. In Step 2, permission attributes and administrative user attribute

functions are expressed. PATT set has two permission attributes, org_units and rolesp. org_units

attribute captures a permission’s association in an organization unit and, rolesp captures roles to

which permission have been assigned to. There are two options for user-role assignment in PRA02.

They are marked as Case 1 and Case 2 in the model. Case 1 checks for permission’s existing

membership on roles while Case 2 checks for user’s membership on organization units. org_units

is captured in Case 2. Case 1 is same as PRA97 in Section 4.4. Admin user attribute aroles

captures admin roles assigned to admin users. Step 3 involves constructing assignp_formula in

ARPA that is equivalent to can_assignp02 in PRA02. can_assignp02 is a set of triples. Each

triple bears information on whether an admin role can assign a candidate permission to a set of

roles. Equivalent translation in ARPA for PRA02 is given by is_authorizedUassign(au : AUA, u :

USERSA, r : ROLESA). Similarly, In Step 4, revoke_formula equivalent to can_revokep02 given

by is_authorizedUrevoke(au : AUA, u : USERSA, r : ROLESA) is presented. A support routine

translate02 translates prerequisite condition in PRA02 into its equivalent in ARPA. A complete

example instance and its corresponding equivalent ARPA instances were presented in Section 4.5.2

and Section 4.5.3, respectively.

4.6 Uni-ARBAC’s PRA in ARPA

This seciton shows that it is possible to represent Uni-ARBAC’s URA in ARPA. Firstly, it is

shown by a manual translation process of an example instance of Uni-ARBAC’s PRA into its

equivalent instance in ARPA model. Then to prove that any instance of Uni-ARBAC’s PRA can

94

be represented in ARPA, a formal algorithm for mapping Uni-ARBAC’s PRA to ARPA equivalent

instance is presented. A summary of Uni-ARBAC’s PRA model is given as follows:

4.6.1 Summary of Uni-ARBAC’s PRA Model

Traditional RBAC Sets & Relations

– USERS is a finite set of regular users.

– ROLES is a finite set of regular roles.

– RH ⊆ ROLES × ROLES, partial order hierarchy on roles.

– PERMS is a finite set of permissions.

Additional RBAC Sets & Relations

– T is a finite set of tasks.

– TH ⊆ T × T is a partial order hierarchy on tasks.

– PA ⊆ PERMS × T permission task assignment relation.

– TA ⊆ T × ROLES, task-role assignment relation.

Derived functions

authorized_perms(r : ROLES)→ 2PERMS

Administrative Units and Partitioned Assignments

– AU is a finite set of administrative units.

– roles(au : AU)→ 2ROLES, assignment of roles.

- tasks(au : AU)→ 2T, assignment of tasks

Derived functions

– tasks*(au : AU)→ 2T, defined as tasks*(au) = {t’ | (∃t ∈ tasks(au)) ∧ �t t’}

Administrative user assignment:

– TA_admin ⊆ USERS × AU

– AUH ∈ AU× AU rooted tree partial order �au

Authorization function:

– can_manage_task_role(u1 : USERS, t : T, r : ROLES)= (∃aui, auj)[(u1, aui) ∈ TA_admin ∧ aui

95

�au auj ∧ r ∈ roles(auj) ∧t ∈ tasks*(auj)]

4.6.2 Instance of PRA in Uni-ARBAC

In this section an example instance for PRA in UARBAC (PRA-U) model is presented.

Traditional RBAC Sets & Relations:

• USERS = {u1, u2, u3, u4}

• ROLES = {r1, r2, r3, r4}

• PERMS = {p1, p2, p3, p4}

• RH = {<r1, r2>, <r2, r3>}

Additional RBAC Sets & Relations:

• T = {t1, t2, t3, t4}

• TH = {<t1, t2>, <t2, t3>, <t2, t4>}

• PA = {(p1, t1), (p1, t4), (p2, t4), (p4, t3), (p3, t2)}

• TA = {(t1, r2), (t2, r1), (t3, r4), (t4, r3)}

Derived functions

• authorized_perms(r1) = {p3}

• authorized_perms(r2) = {p1}

• authorized_perms(r3) = {p1, p2}

• authorized_perms(r4) = {p4}

Administrative Units and Partitioned Assignments

• AU = {au1, au2}

96

• roles(au1) = {r1, r2}, roles(au2) = {r3}

• tasks(au1) = {t1, t2}, tasks(au2) = {t3, t4}

Derived Function

• tasks*(au1) = {t1, t2, t3, t4}

• tasks*(au2) = {t3, t4}

Administrative User Assignments

• TA_admin = {(u1, au1), (u2, au2)}

• AUH = {<au1, au2>}

Task-role assignment condition in uni-ARBAC:

– can_manage_task_role(u : USERS, t: T, r: ROLES) =

(∃aui, auj)[(u, aui) ∈ TA_admin ∧ aui �au auj ∧ r ∈ roles(auj) ∧ t ∈ tasks*(auj)]

4.6.3 Equivalent ARPA instance of PRA in Uni-ARBAC

This section presents an equivalent instance of ARPA for the example instance presented above in

section 4.6.2.

Map set and functions:

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {r1, r2, r3, r4}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>}

• PERMS = {p1, p2, p3, p4}

Define attributes and values:

97

• AATT = {admin_unit, adminunit_role}

• Scope(admin_unit) = {au1, au2}, attType(admin_unit) = set,

is_ordered(admin_unit) = True, Hadmin_unit = {<au1, au2>}

• admin_unit(u1) = {au1}, admin_unit(u2) = {au2},

admin_unit(u3) = {}, admin_unit(u4) = {}

• Scope(adminunit_role) = {(au1, r1), (au1, r2), (au2, r3)}, attType(adminunit_role) = set,

is_ordered(adminunit_role) = False, Hadminunit_role = φ

• adminunit_role(u1) = {(au1, r1), (au1, r2), (au2, r3)}, adminunit_role(u2) = {(au2, r3)},

adminunit_role(u3) = {}, adminunit_role(u4) = {}

• PATT = {tasks, task_adminu}

• Scope(tasks) = {t1, t2, t3, t4}, attType(tasks) = set, is_ordered(tasks) = True, Htasks = TH

• tasks(p1) = {t1, t2, t4}, tasks(p2) = {t1, t2, t4}, tasks(p3) = {t1, t2}, tasks(p4) = {t1, t2, t3}

• Scope(task_adminu) = {(t1, au1), (t2, au2)}, attType(task_adminu) = set,

is_ordered(task_adminu) = False, Htask_adminu = φ

• task_adminu(p1) = {(t1, au1), (t4, au2)}, ittask_adminu(p2) = {(t4, au2)},

task_adminu(p3) = {(t2, au1)}, task_adminu(p4) = {(t3, au2)}

Set of permissions that are mapped to each task in T can be expressed as follows:

Let each set be represented with χi as shown below.

• χ1 = {p | t1 ∈ tasks(p)}

• χ2 = {p | t2 ∈ tasks(p)}

98

• χ3 = {p | t3 ∈ tasks(p)}

• χ4 = {p | t4 ∈ tasks(p)}

Construct authorization function for permission-role assignment:

For each χi in {χ1 , χ2 , χ3 , χ4}, authorization rule for whether an admin user in AU is authorized

to assign χi to a roles r in ROLES is given below:

– is_authorizedPassign(u : USERS, χi : 2PERMS, r : ROLES) ≡

∃au1, au2 ∈ Scope(admin_unit). <au1, au2> ∈ Hadmin_unit ∧ (au1 ∈ admin_unit(u) ∧

(au2, r) ∈ adminunit_role(u)) ∧ ∃t1, t2 ∈ Scope(tasks). [<t1, t2> ∈ TH ∧ ∀q ∈ χ. t2 ∈ tasks(q)

∧ ∃q' ∈ (PERMS - χ). t2 /∈ tasks(q') ∧ (t2, au2) ∈ tasks_adminu(q)]

Construct authorization function for revoking permission from role:

For each χi in {χ1 , χ2 , χ3 , χ4}, authorization function for whether an admin user in AU is autho-

rized to revoke χ from a roles r ∈ ROLES is given below:

– is_authorizedPrevoke(u : USERS, χi : 2PERMS, r : ROLES) ≡

is_authorizedPassign(u : USERS, χi : 2PERMS, r : ROLES)

This manual translation shows that there are four steps involved in mapping Uni-ARBAC’s

PRA instance to ARPA model instance. Firstly, the sets from Uni-ARBAC’s PRA instance is

mapped to ARPA instance. In particular, sets for admin users, administrative operations, roles and

their hierarchy and, permissions are mapped in ARPA. Then the relations and appropriate func-

tions that capture the features from Uni-ARBAC’s PRA are intuitively engineered as attributes

with their corresponding values in the range. There are two admin user attributes admin_unit and

adminunit_role. admin_unit captures an admin user’s task assignment authority over admin units.

For example, admin_unit(u1) = {au1} specifies that admin user u1 has task assignment authority

in admin unit au1. adminunit_role yields admin unit to which admin user has task-role assignment

authority and all the roles that have been associated with those admin units. For example, admin-

unit_role(u2) = {(au2, r3)} specifies u2 has admin authority over admin unit au2 and r3 is mapped

99

to admin unit, au2. There are two permission attributes defined, tasks and task_adminu. Attribute

tasks yields all the tasks that a permission is grouped to. For example, tasks(p1) = {t1, t2, t4} means

permission p1 is in tasks t1, t2, t4. Attribute task_adminu(p) yields all the tasks that a permission

p belongs to and all those admin units to which those tasks (with permission p) is associated with.

For example, task_adminu(p3) = {(t2, au1)} indicates that permission p3 belongs to task t2 and task

t2 is mapped to admin unit au1. For all the attributes, their range, type, order and hierarchies are

mapped. Since, Uni-ARBAC’s PRA involves task assignment, which are group of permissions, it

needs to be translated into ARPA equivalent. Fortunately, ARPA has a mechanism for group of

permission to a role assignment function. Therefore, permissions are put together as a set builder

notion based on permission attribute represented by χi .

In third step, authorization functions that translate task-role assignment is established using

defined attributes and values. In step four, attributes are used to construct task-role revocation

authorization functions.

100

Algorithm 4.9 MapPRA-Uni-ARBAC

Input: Instance of PRA in Uni-ARBAC
Output: AURA instance

Step 1: /* Map basic sets and functions in ARPA */
a. AUA← USERSUni ; AOPA← {assign, revoke} ; ROLESA← ROLESUni

b. RHA← RHUni ; PERMSA← PERMSUni

Step 2: /* Map attribute functions in ARPA */
a. AATTA← {admin_unit, adminunit_role}
b. ScopeA(admin_unit) = AUUni ; attTypeA(admin_unit) = set
c. is_orderedA(admin_unit) = True, HA

admin_unit = AUHUni

d. For each u in AUA, admin_unit(u) = φ
e. For each (u, au) ∈ TA_adminUni, admin_unit(u)' = admin_unit(u) ∪ au
f. ScopeA(adminunit_role) = AUUni × ROLESUni ; attTypeA(adminunit_role) = set
g. is_orderedA(adminunit_role) = False, Hadminunit_role = φ
h. For each u in AUA, adminunit_role(u) = φ
i. For each (u, au) ∈ TA_adminUni and for each r ∈ assigned_rolesUni(au),

adminunit_role(u)' = adminunit_role(u) ∪ (au, r)
j. PATTA← {tasks, task_adminu}
k. ScopeA(tasks) = TUni ; attTypeA(tasks) = set
l. is_orderedA(tasks) = True ; HA

tasks = THUni

m. For each p in PERMSA, tasks(p) = φ ;
n. For each (p, t) ∈ PAUni, tasks(p)' = tasks(p) ∪ t
o. ScopeA(task_adminu) = TUni × AUUni ; attTypeA(task_adminu) = set ;
p. is_orderedA(task_adminu) = False ; HA

task_adminu = φ
q. For each p in PERMSA, task_adminu(p) = φ
r. For each (p, t) ∈ PAUni and for each t ∈ tasks*Uni(au),

task_adminu(p)' = task_adminu(p) ∪ (t, au)
Step 3: /* Construct assign rule in ARPA */

a. can_manage_rule = ∃au1, au2 ∈ Range(admin_unit). (au1, au2) ∈ Hadmin_unit ∧
(au1 ∈ admin_unit(u) ∧ (au2, r) ∈ adminunit_role(u)) ∧
∃t1, t2 ∈ Scope(tasks). [(t1, t2) ∈ TH ∧ ∀q ∈ χ. t2 ∈ tasks(q) ∧
∃q' ∈ (PERMS - χ). t2 /∈ tasks(q') ∧ (t2, au2) ∈ tasks_adminu(q)]

b. auth_assign = is_authorizedPassign(u : AUA, χ : 2PERMSA , r : ROLESA) ≡ can_manage_rule
Step 4: /* Construct revoke rule for ARPA */

a. auth_revoke = is_authorizedPrevoke(u : AUA, χ : 2PERMSA , r : ROLESA) ≡ can_manage_rule

101

4.6.4 MapPRA-Uni-ARBAC

Algorithm 4.9 presents MapPRA-Uni. It translates any instance of Uni-ARBAC’s PRA to an equiv-

alent instance of ARPA. For brevity, sets and functions from Uni-ARBAC’s PRA and ARPA are

labeled as Uni and superscript A, respectively.

In Step 1, sets and functions from PRA-Uni instance are mapped to ARPA instance. In Uni-

ARBAC, both admin users and regular users belong to same set, USERSUni. Thus, USERSUni is

mapped to AUA. In Step 2, admin user attributes and permission attributes are defined. There are

two admin user attributes: admin_unit and adminunit_role. admin_unit captures the TA_adminUni

relation in Uni-ARBAC’s URA, and adminunit_role captures admin user’s mapping with admin

unit, and the roles mapped to that admin unit. There are two permission attributes defined: tasks

and task_adminu. Attribute tasks gives a mapping between permission and tasks. That is for

each permission p, tasks(p) yields set of tasks it is mapped to. For a given permission, attribute

task_adminu gives its mapping with tasks, and admin units that each task is mapped to. Step

3 constructs an assignment rule equivalent to can_manage_task_role(u : USERSUni, t: TUni, r:

ROLESUni) in Uni-ARBAC. In PRA-Uni, it evaluates if an admin user u can assign/revoke a task

t to/from a role r if admin user u has Task_Admin relation with some admin unit au to which

task t and role r are mapped. An equivalent assignment rule in ARPA is expressed in Step 3 as

is_authorizedPassign(u, χ, r). Finally, auth_revoke, which represents an equivalent revoke function

to revoke a task (or set of permissions) from a role for can_manage_task_role(u : USERSUni,

t: TUni, r: ROLESUni) in Uni-ARBAC is expressed in Step 4 as is_authorizedPrevoke(u, χ, r).

Authorization criteria for assign and revoke is identical in Uni-ARBAC’s PRA.

4.7 UARBAC’s PRA in ARPA

This section shows that UARBAC’s PRA model can be mapped to ARPA model. To illustrate this

in detail, first, a manual translation of UARBAC’s PRA example instance into its equivalent ARPA

instance is presented. Next, a formal algorithm for mapping any instance of UARBAC’s PRA into

equivalent ARPA instance is exhibited. A brief summary of UARBAC’s PRA model is re-visited

102

as follows:

4.7.1 Summary of UARBAC’s PRA Model

RBAC Model

UARBAC model is designed with a notion of class objects. Thus, in addition to object level

permissions, it also includes class level administrative permissions. RBAC schema is for this

RBAC model is as follows:

RBAC Schema:

RBAC Schemas is given by following tuple.

<C, OBJS, AM>

• C is a finite set of object classes with predefined classes: user and role.

• OBJS(c) is a function that gives all possible names for objects of the class c ∈ C.

Let USERS = OBJS(user) and ROLES = OBJS(role)

• AM(c) is function that maps class c to a set of access modes that can be applied on objects

of class c.

Access modes for two predefined classes user and role are fixed. By observation we find it relevant

to consider files as resource objects. We take file as example resource object to which we will define

access.

AM(user) = {empower, admin}

AM(role) = {grant, empower, admin}

AM(file) = {read, write, append, execute, admin}

RBAC Permissions:

There are two kinds of permissions in this RBAC model:

• Object permissions of the form,

103

[c, o, a], where c ∈ C, o ∈ OBJS(c), a ∈ AM(c).

• Class permissions of the form,

[c, a], where, c ∈ C, and a ∈ {create} ∪ AM(c).

RBAC State:

Given an RBAC Schema, an RBAC state is given by,

<OB, UA, PA, RH>

• OB is a function that maps each class in C to a finite set of object names of that class that

currently exists, i.e., OB(c) ⊆ OBJS(c).

Let OB(user) = USERS, OB(role) = ROLES and, let OB(file) = FILES

Set of permissions, P is given by,

P = {[c, o, a] | c ∈ C ∧ o ∈ OBJS(c) ∧ a ∈ AM(c)} ∪ {[c, a] | c ∈ C ∧ a ∈ {create} ∪

AM(c)}

• UA ⊆ USERS × ROLES, user-role assignment relation.

• PA ⊆ P × ROLES, permission-role assignment relation.

• RH ⊆ ROLES × ROLES, partial order in ROLES denoted by �RH.

Administrative permissions in UARBAC:

All the permissions of user u who performs administrative operations can be calculated as follows:

• authorized_perms[u] = {p ∈ P | ∃r1, r2 ∈ R [(u, r1) ∈ UA ∧ (r1 �RH r2) ∧ (r2, p) ∈ PA]}

Permission-Role Administration

Operations required to assign object permission [c, o1, a1] to role r1 and to revoke object permission

[c, o1, a1] from role r1 are respectively listed below:

• grantObjPermToRole([c, o1, a1], r1)

104

• revokeObjPermFromRole([c, o1, a1], r1)

A user at requires one of the following two permissions to conduct grantObjPermToRole([c, o1,

a1], r1) operation.

• [c, o1, admin] and [role, r1, empower] or,

• [c, o1, admin] and [role, empower] or,

• [c, admin] and [role, r1, empower] or,

• [c, admin] and [role, empower]

A user at least requires one of the following (two) options to conduct revokeObjPermFromRole([c,

o1, a1], r1) operation.

• [c, o1, admin] and [role, r1, empower] or,

• [c, o1, admin] or,

• [role, r1, admin] or,

• [c, admin] or,

• [role, admin]

4.7.2 Instance of UARBAC’s PRA

RBAC Schema

Let us consider objects to which users need access via roles to be of file object class.

• C = {user, role, file}

• OBJS(user) = USERS,

• OBJS(role) = ROLES

• OBJS(file) = FILES

105

Access modes for role class and file class are as follows:

• AM(role) = {grant, empower, admin}

• AM(file) = {read, write, append, execute, admin}

RBAC State

• USERS = OBJ(user)= {u1, u2, u3, u4}

• ROLES = OBJ(role)= {r1, r2, r3, r4}

• O = OBJ(file)= {o1, o2, o3}

• P = {[role, r1, grant], [role, r1, empower], [role, r1, admin], [role, r2, grant], [role, r2,

empower], [role, r2, admin], [role, r3, grant], [role, r3, empower], [role, r3, admin],

[role, r4, grant], [role, r4, empower], [role, r4, admin], [file, o1, read], [file, o1, write],

[file, o1, append], [file, o1, execute], [file, o1, admin], [file, o2, read], [file, o2, write], [file,

o2, append], [file, o2, execute], [file, o2, admin], [file, o3, read], [file, o3, write], [file, o3,

append], [file, o3, execute], [file, o3, admin], [file, read], [file, write], [file, append],

[file, execute], [file, admin]}

• PA = {([file, o1, read], r1), ([file, o2, execute], r1), ([file, o2, execute], r2), ([file, o3,

admin], r3), ([file, o1, read], r3), ([file, o3, write], r2)}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>}

Authorized permissions in UARBAC

Following is the list of authorized permissions each user has that includes administrative permis-

sions for permission-role assignment:

• authorized_perms[u1] = {[file, o1, read], [role, r1, grant], [file, o1, write], [role, r3, grant],

[file, o2, admin], [file, o3, append],[role, r2, grant], [file, o3, admin], [role, r1, admin],

[role, r4, admin]}

106

• authorized_perms[u2] = {[file, o1, append], [role, r1, grant], [file, o2, admin], [role, r2,

grant]}

• authorized_perms[u3] = {[file, admin]}

• authorized_perms[u4] = {}

Permission-Role assignment condition in PRA-UARBAC:

One can perform following operation to assign a permission [file, o1, a] to a role r1.

• grantObjPermToRole([file, o1, a], r1)

To perform aforementioned operation one needs the following two permissions:

• [file, o1, admin] and [role, r1, empower]

Condition for revoking permission-role in PRA-UARBAC:

One can perform following operation to revoke a user [file, o1, a] to a role r1.

• revokeObjPermFromRole([file, o1, a], r1)

To perform aforementioned operation one needs one of the following permissions:

• [file, o1, admin] or,

• [role, r1, admin]

4.7.3 Equivalent ARPA instance of UARBAC’s PRA

Map sets and functions:

• AU = {u1, u2, u3, u4}

• AOP = {assignp, revokep}

• ROLES = {r1, r2, r3, r4}

• RH = {<r1, r2>, <r2, r3>, <r3, r4>}

107

• PERMS = {[role, r1, grant], [role, r1, empower], [role, r1, admin], [role, r2, grant], [role,

r2, empower], [role, r2, admin], [role, r3, grant], [role, r3, empower], [role, r3, admin],

[role, r4, grant], [role, r4, empower], [role, r4, admin], [file, o1, read], [file, o1, write],

[file, o1, append], [file, o1, execute], [file, o1, admin]

[file, o2, read], [file, o2, write], [file, o2, append], [file, o2, execute], [file, o2, admin]

[file, o3, read], [file, o3, write], [file, o3, append], [file, o3, execute], [file, o3, admin]

[file, read], [file, write], [file, append], [file, execute], [file, admin]}

Define attributes and values:

• AATT = {object_am, role_am, classp}

• Scope(object_am) = {(o1, read), (o1, write), (o1, execute), (o1, append), (o1, admin), (o2,

read), (o2, write), (o2, append), (o2, execute), (o2, admin), (o3, read), (o3, write), (o3,

append), (o3, execute), (o3, admin)},

attType(object_am) = set, is_ordered(object_am) = False, Hobject_am = φ

• Scope(role_am) = {(r1, grant), (r1,empower), (r1, admin), (r2, grant), (r2, empower),

(r2, admin), (r3, grant), (r3, empower), (r3, admin), (r4, grant), (r4, empower), (r4,

admin)},

attType(role_am) = set, is_ordered(role_am) = False, Hrole_am = φ

• Scope(classp) = {(file, read), (file, write), (file, append), (file, execute), (file, admin),

(role, grant), (role, empower), (role, admin)},

attType(classp) = set, is_ordered(classp) = False, Hclassp = φ

• object_am(u1) = {(o1, read), (o1, write), (o2, admin), (o3, append), (o3, admin)}

• object_am(u2) = {(o1, append), (o2, admin)}, object_am(u3) = {}, object_am(u4) = {}

• role_am(u1) = {(r1, grant), (r2, grant), (r3, grant), (r1, admin), (r4, admin)}

108

role_am(u2) = {(r1, grant), (r2, grant)}, role_am(u3) = {}, role_am(u4) = {}

• classp(u1) = {}, classp(u2) = {}, classp(u3) = {(file, admin)}, classp(u4) = {}

• PATT = {object_id}

• Scope(object_id) = {r1, r2, r3, r4, o1, o2, o3}, attType(object_id) = atomic,

is_ordered(object_id) = False, Hobject_am = φ

Let object permissions in PERMS be represented by p1, p2, p3 ... pn. Therefore object_id for each

permission p is:

• object_id(p) = o.

• object_id(p1) = r1, object_id(p2) = r2 and so on, and object_id(p1) = φ, if p is a class level

permission.

Construct authorization functions for assigning permission tp role:

For each op in AOP, authorization function for assignment and revocation of permission of the

form p = [file, o, a] to role r can be expressed as follows:

For any permission p ∈ PERMS undertaken for assignment,

– is_authorizedPassign(u : AU, p : PERMS, r : ROLES) ≡

((object_id(p), admin) ∈ object_am(u) ∧ (r, empower) ∈ role_am(u)) ∨ ((file, admin) ∈

classp(u) ∧ (r, empower) ∈ role_am(u)) ∨ ((object_id(p), admin) ∈ object_am(u) ∧

(role, empower) ∈ classp(u)) ∨ (file, admin) ∈ classp(u) ∧ (role, empower) ∈ classp(u))

Construct authorization functions for revoking permission from role:

For any permission p ∈ PERMS undertaken for revocation,

– is_authorizedPrevoke(u : AU, p : PERMS, r : ROLES) ≡

(object_id(p), admin)∈ object_am(u)∨ (r, admin)∈ role_am(u)∨ (file, admin)∈ classp(u)

∨ (role, admin) ∈ classp(u)

109

First step in the manual translation process above involves mapping the sets and functions

from UARBAC’s PRA to sets and functions from ARPA instance. In particular, sets of admin

users (AU), roles (ROLES) and their hierarchy (RH) and, permissions (PERMS) are mapped into

ARPA model. There are two administrative operations assign and revoke that map with the idea of

grant and revoke operations in grantObjPermToRole() and revokeObjPermFromRole() functions,

respectively. Secondly, the attributes that intuitively define the relations and functions described

in UARBAC’s PRA are defined in ARPA. Since a permission in UARBAC’s PRA are tracked

using the object id involved in each permission, object ids are mapped with respect to admin user

attributes. There are three admin user attributes, namely, object_am, role_am, and classp. Admin

user attribute object_am(au) yields object id/name and an access mode pair, which indicates the

type of access mode that an admin user has over that particular object. For example, object_am(u1)

= {(o1, read)} means admin user u1 has a read access mode towards object with id o1. role_am(au)

gives a tuple of role id and an access mode for a given admin user. It indicates the type of access

mode that admin user (au) has over that particular role. For instance, role_am(u1) = {(r1, grant)}

indicates that admin user u1 has grant access mode towards role r1. classp(au) yields a tuple with

object class name and an access mode indicating the type of access mode an admin user has over

that class object. For example, classp(u3) = {(file, admin)} means admin user, u3 has admin

access mode towards file class object. This allows admin user to have admin access mode towards

each object of class type file.

There is only one permission attribute called object_id. object_id(p) yields the object id to-

wards which that particular permission is dedicated. Note that permission can be dedicated towards

any class of object. For example, permissions p15 = [role, r4, admin] and p12 = [file, o1, read] are

dedicated for role class type and file class type, respectively. object_id(p12) yields object id o1 and,

object_id(p15) yields object id r4. If the permission is of class type, then object_id(p) is equal to

null because it covers all the objects of particular class type. For instance, [file, admin] is a class

level permission and doesn’t bear an object id.

Thirdly, authorization function for permission-role assignment is constructed using related en-

110

tities and their attributes. Finally in step four, authorization functions for revoking permission from

role is established using attributes.

4.7.4 MapPRA-UARBAC

MapPRA-UARBAC is an algorithm for mapping any instance of UARBAC’s PRA [37] to its equiv-

alent ARPA instance. For clarity, sets and function from UARBAC model are labeled with U, and

that of ARPA with A.

MapPRA-UARBAC algorithm takes following sets and functions as input from UARBAC’s PRA

model. CU, USERSU, ROLESU, PERMSU, PAU, RHU, AMU(role), AMU(file), For each u ∈ USERSU,

authorized_perms[u], For each [file, o1, a] ∈ PERMSU and for each r1 ∈ ROLESU, grantOb-

jPermToRole([file, o1, a], r1) is true if the granter has one of the following combination of per-

missions:

• [file, o1, admin] and [role, r1, empower], or

• [file, o1, admin] and [role, empower], or

• [file, admin] and [role, r1, empower], or

• [file, admin] and [role, empower]

For each [file, o1, a] ∈ PERMSU and for each r1 ∈ ROLESU, revokeObjPermFromRole([file, o1, a],

r1) is true if the granter has either of the following permissions:

• [file, o1, admin] or,

• [role, r1, admin] or,

• [file, admin] or,

• [role, admin]

Output from MapPRA-UARBAC algorithm is an equivalent ARPA instance, with primarily consisting

of AUA, AOPA, ROLESA, RHA, PERMSA, AATTA, PATTA, For each attribute att ∈ AATTA ∪

111

Algorithm 4.10 MapPRA-UARBAC

Input: Instance of PRA in UARBAC

Output: ARPA instance

Step 1: /* Map basic sets and functions in ARPA */

a. AUA← USERSU ; AOPA← {assign, revoke} ; ROLESA← ROLESU

b. RHA← RHU ; PERMSA← PERMSU

Step 2: /* Map attribute functions in ARPA */

a. AATTA← {object_am, role_am, classp}

b. Scope(object_am) = OU × AMU(file) ; attType(object_am) = set

c. is_ordered(object_am) = False, Hobject_am = φ

d. For each u in AUU, object_am(u) = φ

e. For each u in UU and for each [c, o1, a] ∈ authorized_perms[u],

object_am(u)' = object_am(u) ∪ (o, a)

f. Scope(role_am) = ROLESU × AMU(role) ; attType(role_am) = set

g. is_ordered(role_am) = False, Hrole_am = φ

h. For each u in AUA, role_am(u) = φ

i. For each u in UU for each [c, r1, a] ∈ authorized_perms[u],

role_am(u)' = role_am(u) ∪ (r, a)

j. Scope(classp) = CU × {AMU(file) ∪ AMU(role)}

k. attType(classp) = set ; is_ordered(classp) = False, Hclassp = φ

l. For each u in AUA, object_am(u) = φ

m. For each u in UU for each [c, a] ∈ authorized_perms[u],

classp(u)' = object_am(u) ∪ (c, a)

n. PATTA = {object_id}

o. Scope(object_id) = ROLESU ∪ PERMSU ; attType(object_id) = atomic

p. is_ordered(object_id) = False, Hobject_id = φ

q. For each u in UU and for each p ∈ authorized_perms[u],

where p is of the form [c, oi, a] or [c, a], object_id(p) = oi or φ

112

Continuation of Algorithm 4.10 MapPRA-UARBAC

Step 3: /* Construct assign rule in ARPA */

a. assign_formula =

((object_id(p), admin) ∈ object_am(au) ∧ (r, empower) ∈ role_am(au)) ∨ ((file, admin)

∈ classp(au) ∧ (r, empower) ∈ role_am(au)) ∨ ((object_id(p), admin) ∈ object_am(au) ∧

(role, empower)∈ classp(au))∨ (file, admin)∈ classp(au)∧ (role, empower)∈ classp(au))

b. auth_assign = is_authorizedPassign(au : AU, p : PERMS, r : ROLES) ≡ assign_formula

Step 4: /* Construct revoke rule for ARPA */

a. revoke_formula =

(object_id(p), admin) ∈ object_am(au) ∨ (r, admin) ∈ role_am(au)) ∨ (file, admin) ∈

classp(au) ∨ (role, admin) ∈ classp(au))

b. auth_revoke = is_authorizedPrevoke(au : AU, p : PERMS, r : ROLES) ≡ revoke_formula

PATTA, Scope(att), attType(att), is_ordered(att) and Hatt, For each user u ∈ AUA, and for each

att ∈ AATTA ∪ PATTA, att(u), Authorization rule for assign (auth_assign), Authorization rule for

revoke (auth_revoke)

Step 1 in MapPRA-UARBAC involves translating sets and functions from UARBAC’s PRA to

ARPA equivalent sets and functions. In Step 2, permission attributes and admin user attributes

functions are defined. There exists one permission attributes object_id, which captures id of an

object for given permission. Note that a permission defines class type, object id and access mode.

ARPA defines three admin user attributes: object_am, role_am and classp. object_am attribute

captures an admin user’s access mode towards an object. Similarly, role_am captures an admin

user’s access mode towards a role. An admin user can also have a class level access mode captured

by attribute classp. With class level access mode, an admin user gains authority over an entire

class of objects. For example [grant, role] admin permission provides an admin user with power

to grant any role to a given permission (or a user).

In Step 3, assign_formula for ARPA that is equivalent to grantObjPermToRole([file, o1, a], r1)

in UARBAC’s PRA is established. Equivalent assign_formula is expressed as is_authorizedPassign(au1

: AUA, p1 : PERMSA, r1 : ROLESA) using attributes of permissions and admin user. Note that [file,

113

o1, a] is equal to p1. Step 4 establishes revoke_formula equivalent to revokeRoleFromUser(u1, r1).

It is expressed as is_authorizedPrevoke(au1 : AUA, p1 : PERMSA, r1 : ROLESA) using attributes of

permissions and admin user.

An article that included both attribute-based user-role assignment (AURA) model and, attribute-

based permission-role assignment (ARPA) model, collectively known as ‘AARBAC: Attribute-

Based Administration of Role-Based Access Control’ was published in IEEE 3nd International

Conference on Collaboration and Internet Computing (CIC), 2017 (CIC2017) [39]. Another ver-

sion that includes detailed description of these two models is also available [41].

114

Chapter 5: ARRA: ATTRIBUTE-BASED ROLE-ROLE ASSIGNMENT

MODEL

Portion of materials in this chapter are published in the following venue [40]:

• Jiwan Ninglekhu and Ram Krishnan. ARRA: Attribute-Based Role-Role Assignment. In-

ternational Workshop on Secure Knowledge Management 2017 (SKM2017), 2017.

This chapter introduces an approach for attribute-based role-role assignment (ARRA). Like the

previous two models, ARRA’s objective is to unify prior RRA approaches such that those models

can be expressed using ARRA. In addition, new features essential for making access control de-

cisions can be introduced for role-role assignment. Inspired by prior RRA models, attributes for

admin users, admin roles and regular roles are introduced. Based on these attributes role assign-

ment and revocation decisions are made.

5.1 ARRA Model

Table 5.1 presents formal ARRA model. The entities involved in ARRA comprise of admin users

(AU), regular roles (ROLES) and their hierarchy (RH), admin roles (AR) and their hierarchy

(ARH), admin user to admin role relation (AUA) and admin operations (AOP).

In ARRA, admin user in AU wants to perform admin operation such as assign or revoke from

AOP using attributes of entities in the model. Admin users attribute functions (AATT) and admin

roles attribute functions (ARATT) are introduced. In addition, based on the need observed, regular

roles attribute function called (RATT) has also been introduced. Attributes from other RBAC

entities can also be developed if needed. It shall be later observed that there exist a need for

attributes from different entities in representing properties of RRA97 and UARBAC’s RRA in

ARRA.

The ARRA model is very similar in its core with previously described two models. The chal-

lenge is in the representation of prior RRA models, as the scenarios under which role-role as-

signments are performed may vary and, may be different from scenarios under which user-role or

115

permission-role assignments are done. Like previous two models, this version of ARRA is also

limited to assignment and revocation of roles.

In ARRA, there are two ways by which an admin user can select a set of regular roles for as-

signment to a target regular role. The first way allows an admin user to select a single role and a

target role, and perform an admin operation like assign or revoke. The second way allows an admin

user to select a set of regular roles, the target role and perform similar operation on those roles. In

the latter case, the selection criteria for the set of regular roles can be expressed using a set-builder

notation whose rule is based on the regular role attributes. For example, is_authorizedRassign(au,

{r1 | r1 ∈ ROLES ∧ Lead ∈ roleTitle(r1)}, r2) would specify a policy for an admin user au that

selects the set of all the roles with role title Lead in order to assign those roles to a role r2. Assign-

ing a role r1 to role r2 makes role r1 junior to r2. In other words, it adds an entry <r2, r1> in RH. It

is also referred to as edge insetion.

Authorization rule is specified as a logical expression on the attributes of admin users, admin

roles, and that of regular roles considered for assignment.

5.2 Mapping Prior RRA Models in ARRA

In this section, ARRA model’s ability to intuitively simulate the features of prior RRA models

is demostrated. For each of the prior models considered, an example instance is expressed. For

each example instance of RRA corresponding equivalent instance in ARRA is manually mapped .

Then eventually, concrete algorithms that can convert any instance of prior RRA models into their

equivalent ARRA instances are depicted.

5.3 RRA97 in AARA

This segment presents RRA97 example instance and its manual convertion into its equivalent

ARRA instance. It is followed by a mapping algorithm, which demonstrates a programmable

procedure for translation of any RRA97 instance to its equivalent ARRA instance.

116

Table 5.1: ARRA Model

– AU, AOP, ROLES, AR are finite sets of administrative users, administrative operations such
as assign and revoke, regular roles and administrative roles, respectively.

– AUA ⊆ AU × AR, administrative user to administrative role assignment relation.

– RH ⊆ ROLES × ROLES, a partial ordering on the set ROLES.

– ARH ⊆ AR × AR, a partial ordering on the set AR.

– AATT, ARATT, and RATT are finite sets of administrative user attribute functions,
administrative role attribute functions, and regular role attribute functions, respectively.

– For each att in AATT ∪ ARATT ∪ RATT, Scope(att) is a finite set of atomic values from
which the range of the attribute function att is derived.

– attType : AATT ∪ ARATT ∪ RATT→ {set, atomic}, which specifies whether the range of a
given attribute is atomic or set valued.

– Each attribute function maps elements in AU, AR and ROLES to atomic or set values.

∀aatt ∈ AATT. aatt : AU→

 Scope(aatt) if attType(aatt) = atomic

2Scope(aatt) if attType(aatt) = set

∀aratt ∈ ARATT. aratt : AR→

 Scope(aratt) if attType(aratt) = atomic

2Scope(aratt) if attType(aratt) = set

∀ratt ∈ RATT. ratt : ROLES→

 Scope(ratt) if attType(ratt) = atomic

2Scope(ratt) if attType(ratt) = set

– is_ordered : AATT ∪ ARATT ∪ RATT→ {True, False}, specifies if the scope is ordered for
each of the attributes.

– For each att ∈ AATT ∪ ARATT ∪ RATT,
if is_ordered(att) = True, Hatt ⊆ Scope(att) × Scope(att), a partially ordered attribute
hierarchy, and Hatt 6= φ, else, if is_ordered(att) = False, Hatt = φ
(For some att ∈ AATT ∪ ARATT ∪ RATT for which attType(att) = set and
isord(att) = True, if {a, b}, {c, d} ∈ 2Scope(att) (where a, b, c, d ∈ Scope(att)), we infer
{a, b} ≥ {c, d} if (a, c), (a, d), (b, c), (b, d) ∈ H*

att.)

ARRA model allows an administrator to perform an operation on a single role or a set of roles at a time. The
authorization rule for performing an operation on a single role is as follows:
For each op in AOP, is_authorizedRop(au: AU, r1 : ROLES, r2 : ROLES) specifies if the admin user au is
allowed to perform the operation op (e.g. assign, revoke, etc.) between the regular roles r1 and the role r2.
Assigning a role r1 to r2 makes r1 junior to r2. This rule is written as a logical expression using attributes of admin
user au, admin role, ar, and regular role, r.

The authorization rule for performing an operation on a set of users is as follows:

For each op in AOP, is_authorizedRop(au: AU, χ : 2ROLES, r : ROLES) specifies if the admin user au is allowed
to perform the operation op (e.g. assign, revoke, etc.) between the roles in the set χ and the role r.
Here χ is a set of roles that can be specified using a set-builder notation, whose rule is written using role attributes.

117

5.3.1 An RRA97 Example Instance

RRA97 [55] assumes an existing regular role hierarchy and an administrative role hierarchy as

depicted in Figure 5.1. An example instance for RRA97 model is presented as follows:

Sets and Functions:

• USERS = {u1, u2, u3, u4}

• ROLES = {ED, E1, PE1, QE1, PL1, E2, PE2, QE2, PL2, DIR}

• AR = {DSO, PSO1}

• AUA = {(u3, DSO), (u4, PSO1)}

• RH = {<ED, E1>, <E1, QE1>, <E1, PE1>, <PE1, PL1>, <QE1, PL1>, <ED, E2>,

<E2, PE2>, <E2, QE2>, <PE2, PL2>, <QE2, PL2>, <PL1, DIR>, <PL2, DIR>}

• ARH = {<SSO, DSO>, <DSO, PSO1>, <DSO, PSO2>}

• can-modify = {(DSO, (ED, DIR)), (PSO1, (E1, PL1)), (PSO1, (E2, PL2))}

Where, (ED, DIR) = {E1, E2, PE1, PE2, QE1, QE2, PL1, PL2},

(E1, PL1) = {PE1, QE1} and, (E2, PL2) = {PE2, QE2}

USERS, ROLES, and AR are sets of users, regular roles and admin roles, respectively. User

u3 is given admin role DSO and PSO1 is given to role u4. RH and ARH represent regular role

and admin role hierarchies as depicted in Figure 5.1. Note that original can-modify example from

RRA97 paper [55] is considered where each admin role is mapped with authority ranges. The can-

modify set in the example instance above depicts the same scenario with three elements: (DSO,

(ED, DIR)), (PSO1, (E1, PL1)) and (PSO1, (E2, PL2)). It shows that role DSO is given an

authority range (ED, DIR) while role PSO1 is given two authority ranges (E1, PL1) and (E2,

PL2).

118

DIR	

E

PL2	PL1	

ED	

E1	 E2	

PE1	 PE2	QE1	 QE2	 SSO	

DSO	

PSO1	 PSO2	

(a)	Roles	 (b)	Administra<ve	Roles	

Figure 5.1: Role and Administrative Role Hierarchies in RRA97 [55]

In RRA97, an authority range, (x, y) = {r : ROLES | x < r < y}, where x and y are end points

of the range.

For every (ar, (x, y)) in can-modify, the range denoted by (x, y) must be an encapsulated au-

thority range. A range (x, y) is said to be encapsulated if,

∀r1 ∈ (x, y) ∧ ∀r2 /∈ (x, y). [r2 > r1↔ r2 > y ∧ r2 < r1 ↔ r2 < x]

A new edge AB can be inserted between two incomparable roles A and B under following two

conditions:

• ARimmediate(A) = ARimmediate(B). An immediate authority range of a role r, ARimmediate(r) is the

authority range (x,y) such that r ∈ (x, y) and for all authority ranges (x', y') junior to (x, y)

we have r /∈ (x', y'). or,

• if (x, y) is an authority range such that (A = y ∧ B > x) ∨ (B = x ∧ A < y) then insertion of

AB must preserve encapsulation of (x, y).

5.3.2 ARRA Instance Equivalent to RRA97 Instance

In this section, a manual translation of RRA97 example instance presented in previous segment

into an equivalent ARRA instance is described. Equivalent ARRA instance is as follows:

119

Map sets and functions:

• AU = {u1, u2, u3, u4}

• AOP = {insertEdge, deleteEdge}

• ROLES = {ED, DIR, E1, PE1, QE1, PL1, E2, PE2, QE2, PL2, DIR}

• AUA = {(u3, DSO), (u4, PSO1)}

• RH = {<ED, E1>, <E1, QE1>, <E1, PE1>, <PE1, PL1>, <QE1, PL1>, <ED, E2>,

<E2, PE2>, <E2, QE2>, <PE2, PL2>, <QE2, PL2>, <PL1, DIR>, <PL2, DIR>}

Define attributes

• AATT = {}, RATT = {}

• ARATT= {authRange}

• Scope(authRange) = RH+, attType(authRange) = set, is_ordered(authRange) = False,

HauthRange = φ

• authRange(DSO) = {ED, DIR},

authRange(PSO1) = {(E1, PL1), (E2, PL2)}

Construct authorization rule for insertEdge

To assign role r1 to role r2 (or to insert an edge r1r2 and hence add <r2, r1> to RH),

– is_authorizedRinsertEdge(au : AU, r1 : ROLES, r2 : ROLES) ≡

(∃(au, ar1) ∈ AUA, ∃(s, t) ∈ authRange(ar1). r1, r2 ∈ ds, te) ∧ ((∃(m, n), (m', n') ∈
⋃

ar2∈ AR

authRange(ar2). r1, r2 ∈ dm, ne ∧ (dm', n'e ⊂ dm, ne → r1, r2 /∈ (m', n'))) ∨ (∃(x,y) ∈
⋃

ar3∈ AR

authRange(ar3). ((r1 = y ∧ r2 > x) ∨ (r2 = x ∧ r1 < y)) ∧ (∀p ∈ dx, ye ∧ ∀q /∈ dx, ye.

(<q, p> ∈ (RH ∪ <r2, r1>)*↔ <q, y> ∈ (RH ∪ <r2, r1>)*) ∧ (<p, q> ∈ (RH ∪ <r2, r1>)*↔

<x, q> ∈ (RH ∪ <r2, r1>)*))))

120

Construct authorization rule for deleteEdge

– is_authorizedRdeleteEdge(au : AU, r1 : ROLES, r2 : ROLES) ≡

∃(au, ar) ∈AUA, ∃(x, y) ∈ authRange(ar). r1, r2 ∈ dx, ye ∧ ∀(r1, r2) /∈
⋃

ar∈ AR
authRange(ar)

As it can be observed, the process of translation involves four main steps. First, we map given sets

from RRA97 to equivalent sets in ARRA. Second, required attribute functions are defined. Admin

role attribute authRange maps authority ranges to admin roles. Attribute authRange is set valued

and unordered. Scope of authRange is a transitive clousure of regular role hierarchy, RH+. That is,

if <a, b>, <b, c>, <c, d> ∈ RH+, then <a, d> is also true.

Note that authority range represents a set of roles over which an admin role have authority to

conduct operations such as assign and revoke. In ARRA, a symbolic representation of authority

range with end points a and b as (a, b) is used. However, whenever there is a need to work with

roles present in the set represented by authority range (a, b), the set of roles is denoted with da, be.

That is, da, be = {r | r ∈ ROLES ∧ a < r < b}.

Next, authorization rule for the admin operation insertEdge is constructed. There are funda-

mentally three requirements that an admin user must consider to assign role r1 to role r2. Firstly,

both the roles r1 and r2 must be within the authority range of an admin role assigned to a given

admin user. Secondly, both the roles taken for edge insertion must have same immediate authority

range, or (thirdly) if the edge is to be inserted between a role on the top end point of an authority

range and a role senior to the lower end point of authority range, or if the edge is to be inserted be-

tween a role on the bottom end of an authority range and a role junior to the top end of the authority

range, then that edge insertion must preserve encapsulation of an authority range with those (top

and bottom) end points. Finally, an authorization formula for operation deleteEdge is constructed.

An admin user with an admin role can delete an edge between any two roles in an authority range

except that any edge between the end points of an authority range can not be deleted.

121

Algorithm 5.1 MapRRA97

Input: RRA97 instance

Output: ARRA instance

Step 1: /* Map basic sets and functions in ARRA */

a. AU← USERS97 ; AOPA← {insertEdge, deleteEdge}

b. ROLESA← ROLES97 ; AUAA← AUAU ; RHA← RH97

Step 2: /* Map attribute functions in ARRA */

a. AATTA← {} ; RATTA← {}

b. ARATTA← {authRange}

c. ScopeA(authRange) = RH+A ; attTypeA(authRange) = set

d. is_orderedA(authRange) = False ; HA
authRange = φ

e. For each ar ∈ ARA, authRange(ar) = φ

f. For each (ar, (ri, rj)) ∈ can-modify97, authRange(ar) = authRange(ar) ∪ (ri, rj)

Step 3: /* Construct assign rule in ARRA */

a. assign_formula = φ

b. For each (ar, (ri, rj)) ∈ can-modify97,

assign_formula' = assign_formula ∨ (∃(au, ar1) ∈ AUA, ∃(s, t) ∈ authRange(ar1).

r1, r2 ∈ ds, te) ∧ ((∃(m, n), (m', n') ∈
⋃

ar2∈ AR
authRange(ar2). r1, r2 ∈ dm, ne ∧

(dm', n'e ⊂ dm, ne → r1, r2 /∈ (m', n'))) ∨ (∃(x,y) ∈
⋃

ar3∈ AR
authRange(ar3). ((r1 = y ∧

r2 > x) ∨ (r2 = x ∧ r1 < y)) ∧ (∀p ∈ dx, ye ∧ ∀q /∈ dx, ye. (<q, p> ∈ (RH ∪ <r2, r1>)*↔

<q, y> ∈ (RH ∪ <r2, r1>)*) ∧ (<p, q> ∈ (RH ∪ <r2, r1>)*↔ <x, q> ∈ (RH ∪ <r2, r1>)*))))

c. auth_assign = is_authorizedRinsertEdge(au : AUA, r1 : ROLESA, r2 : ROLESA) ≡

assign_formula'

Step 4: /* Construct revoke rule for ARRA */

a. revoke_formula = φ

b. For each (ar1, (r1, r2)) ∈ can-modify97,

revoke_formula' = revoke_formula ∨ ∃(au, ar) ∈ AUA, ∃(x, y) ∈ authRange(ar).

r1, r2 ∈ dx, ye ∧ ∀(r1, r2) /∈
⋃

ar∈ AR
authRange(ar)

c. auth_revoke = is_authorizedRdeleteEdge(au : AUA, r1 : ROLESA, r2 : ROLESA) ≡

revoke_formula'

122

5.3.3 MapRRA97

Algorithm 5.1 presents MapRRA97. It is a translation algorithm that maps any RRA97 instance

into an equivalent ARRA instance. Superscript labels 97 and A in the algorithm represent sets

and functions from RRA97 and ARRA, respectively. MapRRA97 takes an instance of RRA97 as

input. In particular, input consists of USERS97, ROLES97, AR97, AUA97, RH97, ARH97, and

can-modify97. The can-modify instruction covers operations for inserting an edge, deleting an

edge, creating a role and deleting a role. ARRA can simulate inserting edge and deleting an edge.

However, creating and deleting roles are beyond the scope of current ARRA model.

Output from MapRRA97 algorithm is an equivalent ARRA instance, with following sets and

functions. AUA, AOPA, ROLESA, AUAA, RHA, ARHA, AATTA, ARATTA, For each attribute att

∈ ARATTA, ScopeA(att), attTypeA(att), is_orderedA(att) and HA
att, For each admin role ar ∈ ARA

and for each att ∈ARATTA, att(ar), Authorization rule for assign (auth_assign), and Authorization

rule for revoke (auth_revoke).

Steps indicated in MapRRA97 correspond to the steps described in equivalent ARRA instance

for RRA97 in section 5.3.2. It here briefly explained here. Step 1 maps sets from RRA97 to

ARRA sets and functions. In Step 2, admin user attributes and admin role attributes are expressed.

AATT and RATT are left empty as there is no use case for these attributes in translating RRA97.

Admin role attribute authRange captures the mapping between an authority range as defined in

RRA97, and an admin role. For each (ar, (ri, rj)) in set can-modify97, authRange(ar) populates set

of authority ranges for ar.

In Step 3, assign_formula rule for ARRA that is equivalent to inserting an edge in can_modify97

is constructed. For each (ar, (ri, rj)) in set can-modify97, logical expression that checks the assign-

ment conditions is constructed. Equivalent translation in ARRA is given by is_authorizedRinsertEdge(au

: AUA, r1 : ROLESA, r2 : ROLESA). This formula must checks if roles r1 and r2 belong in an au-

thority range of an admin role, which is mapped to admin user au. It further checks if r1 and r2

have same immediate authority range, or checks if any other assignment action doesn’t violate

encapsulation of admin role’s authority range. Similarly, In Step 4, revoke_formula equivalent to

123

deleting an edge from can_modify97 is expressed. It checks if admin role mapped to admin role au

has authority range where r1 and r2 belong and, restricts from deleting an edge between end points

of any authority range.

5.3.4 UARBAC’s RRA in ARRA

In this section, an example instance for UARBAC’s RRA and its equivalent ARRA instance are

presented. Followed by the manual translation process, a formal algorithm that outlines the trans-

lation procedure is presented.

5.3.5 An Example Instance of UARBAC’s RRA

RBAC schema

• C = {role}

• OBJS(user) = USERS, OBJS(role) = ROLES

• AM(role) = {grant, empower, admin}

RBAC state

• USERS = OBJ(user) = {u1, u2, u3, u4}

• ROLES = OBJ(role)= {r1, r2, r3}

• P = [role, r1, grant], [role, r1, empower], [role, r1, admin], [role, r2, grant],

[role, r2, empower], [role, r2, admin], [role, r3, grant], [role, r3, empower],

[role, r3, admin], [role, grant], [role, empower], [role, admin]}

• RH = {<r2, r3>}

Administrative permissions of UARBAC’s RRA

Following is the list of administrative permissions each user has for role-role assignment:

124

• authorized_perms[u1] = {[role, r1, grant], [role, r2, admin], [role, r2, empower],

[role, r3, admin]}

• authorized_perms[u2] = {[role, r1, admin], [role, r1, empower], [role, r2, empower],

[role, r3, grant]}

• authorized_perms[u3] = {[role, admin]}

• authorized_perms[u4] = {[role, grant], [role, empower], [role, admin]}

Role-role assignment condition

One can perform following operation to assign a role r1 to another role r2.

• grantRoleToRole(r1, r2)

To perform this operation one needs one of the following two permissions:

• [role, r1, grant] and [role, r2, empower] or,

• [role, grant] and [role, r2, empower] or,

• [role, r1, grant] and [role, empower] or,

• [role, grant] and [role, empower]

Condition for revoking a role from another role

To revoke a role r2 from a role r3, admin user performs following operation.

• revokeRoleFromUser(r2, r3)

To conduct this operation one needs one of the following options:

• [role, r2, grant] and [role, r3, empower]

• [role, r2, admin]

• [role, r3, admin]

• [role, admin]

125

5.3.6 ARRA Instance Equivalent to UARBAC’s RRA Instance

This segment presents equivalent instance for UARBAC’s RRA example instance presented in

previous segment.

Map UARBAC’s RRA sets to ARRA sets

• AU = {u1, u2, u3, u4}

• AOP = {assign, revoke}

• ROLES = {r1, r2, r3},

• AUA = {}

• RH = {<r2, r3>}

Define Attributes and values

• AATT = {grantAuth, empowerAuth, adminAuth, roleClassAuth},

ARATT = {}, RATT = {}

• Scope(grantAuth) = {r1, r2, r3}, attType(grantAuth) = set,

is_ordered(grantAuth) = ROLES, HgrantAuth = RH

• grantAuth(u1) = {r1}, grantAuth(u2) = {r3},

grantAuth(u3) = {}, grantAuth(u4) = {}

• Scope(empowerAuth) = {r1, r2, r3}, attType(empowerAuth) = set,

is_ordered(empowerAuth) = ROLES, HempowerAuth = RH

• empowerAuth(u1) = {r2}, empowerAuth(u2) = {r1, r2},

empowerAuth(u3) = {}, empowerAuth(u4) = {}

126

• Scope(adminAuth) = {r1, r2, r3}, attType(adminAuth) = set,

is_ordered(adminAuth) = ROLES, HadminAuth = RH

• adminAuth(u1) = {r2, r3}, adminAuth(u2) = {r1},

adminAuth(u3) = {}, adminAuth(u4) = {}

• Scope(roleClassAuth) = AM(role), attType(roleClassAuth) = set,

is_ordered(roleClassAuth) = False, HroleClassAuth = φ

• roleClassAuth(u1) = {}, roleClassAuth(u2) = {},

roleClassAuth(u3) = {admin},roleClassAuth(u4) = {grant, empower, admin}

For each op in AOP, authorization rule to assign/revoke role-role can be expressed as follows:

Construct authorization rule for role-role assignment

To assign any regular role r1 ∈ ROLES to regular role r2 ∈ ROLES,

– is_authorizedUassign(au : AU, r1 : ROLES, r2 : ROLES) ≡

(r1 ∈ grantAuth(au) ∧ r2 ∈ empowerAuth(au)) ∨ (r1 ∈ grantAuth(au) ∧

empower ∈ roleClassAuth(au)) ∨ (grant ∈ roleClassAuth(au) ∧ r2 ∈ empowerAuth(au)) ∨

(grant ∈ roleClassAuth(au) ∧ empower ∈ roleClassAuth(au))

Construct authorization rule for revoking role-role

To revoke any regular role r1 ∈ ROLES from another regular role r2 ∈ ROLES,

– is_authorizedUrevoke(au1 : AU, r1 : ROLES, r2 : ROLES) ≡

(r1 ∈ grantAuth(au) ∧ r2 ∈ empowerAuth(au)) ∨ r1 ∈ adminAuth(au) ∨ r2 ∈ adminAuth(au) ∨

admin ∈ roleClassAuth(au)

There are four main stages in this translation process. First, main sets from UARBAC’s RRA

to ARRA model are mapped. Set of admin users consists of set of users from UARBAC’s RRA,

namely u1, u2, u3, and u4. There are two admin operations, assign and revoke. Sets ROLES and

RH map to set of roles and role hierarchy from UARBAC’s RRA, respectively. AUA is left empty

as there is no notion of admin roles in UARBAC.

127

Next, required attribute functions that capture the properties introduced in UARBAC’s RRA are

defined. Admin user attributes are used to express functions and relations in ARRA for UARBAC’s

RRA. Among four admin user attributes, grantAuth, empowerAuth and adminAuth are object level

attributes. Each of these attributes express the nature of authority an admin user has over different

roles. For example, empowerAuth over a role rx, allows admin user to assign any object such as a

user and/or another role to role rx. Class level attribtue roleClassAuth captures the nature of access

mode an admin user has towards role class. The scope of this attribute is AM(role), which has three

different types of access modes, namely grant, empower and admin. For example, an admin user

with roleClassAuth of grant allows that admin user to grant (assign) any role to other object such

as a user and/or role. Translation of UARBAC’s RRA doesn’t require admin role and regular role

attributes. Hence, they are left empty.

After attributes have been defined, the assignment formula (assign_formula) is constructed

using usual logical expression. As mentioned in the UARBAC’s RRA instance, there are four dif-

ferent combination of permissions an admin user can use to make role-role assignment. An equiv-

alent logical expression is captured as is_authorizedUassign(au : AU, r1 : ROLES, r2 : ROLES).

Finally, a logical expression, which captures four different permission options that an admin user

can use for revoking a role from another role are constructed. The logical expression is equivalent

to is_authorizedUrevoke(au1 : AU, r1 : ROLES, r2 : ROLES).

5.3.7 MapRRA-UARBAC

Algorithm 5.2 presents MapRRA-UARBAC. It is a procedure to map any instance of UARBAC’s

RRA [37] to its equivalent ARRA instance. It take instance of UARBAC’s RRA as its input and

yields an equivalent AARA instance as its output. Sets and functions from UARBAC and ARRA

are labeled with superscripts U and A, respectively. Input consists of CU, USERSU, ROLESU, PU,

RHU, AMU(role), For each u ∈ USERSU, authorized_permsU[u], and For every r1, r2 ∈ ROLESU.

Grant operation grantRoleToRole(r1, r2) will be true if the granter has either [role, r2, empower]

and [role, r1, grant] or, [role, r2, empower] and [role, grant] or, [role, empower] and [role, r1,

128

Algorithm 5.2 MapRRA-UARBAC

Input: Instance of RRA in UARBAC
Output: ARRA instance

Step 1: /* Map basic sets and functions in ARRA */
a. AUA← USERSU ; AOPA← {assign, revoke} ; ROLESA← ROLESU ; AUAA = φ
b. RHA← RHU

Step 2: /* Map attribute functions in ARRA */
a. AATTA← {grantAuth, empowerAuth, adminAuth, roleClassAuth}
b. ARATTA= {}, RATTA = {}
c. ScopeA(grantAuth) = ROLESA ; attTypeA(grantAuth) = set
d. is_orderedA(grantAuth) = True, HA

grantAuth = RHA

e. For each u in AUU, grantAuth(u) = φ
f. For each u in USERSU and for each [role, r, grant] ∈ authorized_permsU[u],

grantAuth(u)' = grantAuth(u) ∪ (r)
g. ScopeA(empowerAuth) = ROLESA ; attTypeA(empowerAuth) = set
h. is_orderedA(empowerAuth) = True ; HA

empowerAuth = RHA

i. For each u in AUU, empowerAuth(u) = φ
j. For each u in USERSU and for each [role, r, empower] ∈ authorized_permsU[u],

empowerAuth(u)' = empowerAuth(u) ∪ r
k. ScopeA(adminAuth) = ROLESA ; attTypeA(adminAuth) = set
l. is_orderedA(adminAuth) = True ; HA

adminAuth = RHA

m. For each u in USERSA, adminAuth(u) = φ
n. For each u in USERSU and for each [role, r, admin] ∈ authorized_permsU[u],

adminAuth(u)' = adminAuth(u) ∪ r
o. ScopeA(roleClassAuth) = AMU(role) ; attTypeA(roleClassAuth) = set
p. is_orderedA(roleClassAuth) = False ; HA

roleClassAuth = φ
q. For each u in USERSA, roleClassAuth(u) = φ
r. For each u in USERSU and for each [c, am] ∈ authorized_permsU[u],

roleClassAuth(u)'= roleClassAuth(u) ∪ am
Step 3: /* Construct assign rule in ARRA */

a. assign_formula = (r1 ∈ grantAuth(au) ∧ r2 ∈ empowerAuth(au)) ∨ (r1 ∈ grantAuth(au) ∧
empower ∈ roleClassAuth(au)) ∨ (grant ∈ roleClassAuth(au) ∧ r2 ∈ empowerAuth(au)) ∨
(grant ∈ roleClassAuth(au) ∧ empower ∈ roleClassAuth(au))

b. auth_assign = is_authorizedUassign(au : AU, r1 : ROLES, r2 : ROLES) ≡ assign_formula
Step 4: /* Construct revoke rule for ARRA */

a. revoke_formula = r1 ∈ grantAuth(au) ∧
r2 ∈ empowerAuth(au)) ∨ r1 ∈ adminAuth(au) ∨ r2 ∈ adminAuth(au) ∨
admin ∈ roleClassAuth(au)

b. auth_revoke = is_authorizedUrevoke(au1 : AU, r1 : ROLES, r2 : ROLES) ≡ revoke_formula

129

grant] or, [user, empower] and [role, grant] permissions towards roles.

For each r1, r2 ∈ ROLESU, revokeRoleFromUser(r1, r2) is true if the granter has either [role,

r2, empower] and [role, r1, grant] or, [role, r1, admin] or, [role, r2, admin] or, [role, admin]

permission on roles.

MapRRA-UARBAC yields an ARRA instance consisting of AUA, AOPA, ROLESA, ARA, AUAA,

RHA, ARHA, AATTA, For each attribute att ∈AATTA, ScopeA(att), attTypeA(att), is_orderedA(att)

and HA
att, For each user au ∈ AUA, and for each att ∈ AATTA, att(au), Authorization rule for

assign (auth_assign), and Authorization rule for revoke (auth_revoke).

In Step 1, primary sets from UARBAC’s RRA are mapped to AURA equivalent sets. In Step

2, admin user attributes are defined. In UARBAC model, role-role assignment decisions are based

on the admin user’s access modes such as grant, empower and admin towards regular roles. For

example, for each permission [role, r, grant] in authorized_permsU[u], grantAuth(au) attribute

extracts set of roles towards which an admin user au has grant authority. In other words, admin

user can grant those roles to any other object such as user and role. Similarly, empowerAuth yields

set of roles to which an admin user has empower access mode and adminAuth yields sets of roles

about which admin user has admin access mode. The meaning of each access mode is preserved

by UARBAC model. For each class level attribute [c, am] in authorized_permsU[u], where c is a

type of class and am is type of access mode, roleClassAuth(au) specifies the nature of class level

access mode such as grant or admin admin user au has on role class.

In Step 3, an authorization formula equivalent to grantRoleToRole(r1, r2) in UARBAC is ex-

pressed. Equivalent expression is_authorizedRassign(au : AUA, r1 : ROLESA, r2 : ROLESA) checks

if an admin user au has grant authority over role r1 and empower authority over role r2. Similarly,

in Step 4 revoke_formula equivalent to revokeRoleFromRole(r1, r2) is constructed using revoke

permissions given to admin user. It checks whether an admin user au has an authority to revoke

roles r1 and r2.

130

5.3.8 An Example Instance For ARRA With Role Attributes

Previous ARRA model simulation examples did not include regular role attribute. In this section,

a simple yet plausible example that demonstrates a use case for role attributes in assigning role to

role is presented.

There are two admin users, Sam and Tom, and regular roles IT Director, Development Man-

ager, Quality Manager, Marketing Mganager, Finance Manager, Support Engineer and Sys-

tem Analyst. There can be many other roles in an organization. Only few roles enough to illustrate

a case have been considered. Admin user attribute dept maps each admin user to set of departments

they have admin authority over. Although, it is likely that departments have hierarchy in practice,

we have not included hierarchy for departments for simplicity. There are three departments in the

organization, namely Operations, Account and IT departments. Sam has admin authority over all

the departments while Tom has authority over IT department only. There is a regular role attribute

dept for mapping regular roles to their departments.

Authorization condition is that if an admin user au with admin role ar was given authority over

a department d and if roles r1 and r2 belonged to the same department d then r1 can be assigned to

r2.

Basic Sets

• AU = {Sam, Tom}

• AOP = {assign, revoke}

• ROLES = {IT Director, Devlopment Manager, Quality Manager, Marketing Manager,

Finance Manager, Support Engineer, System Analyst}

• AR = {}

• AUA = {}

• RH = {},

131

• ARH = {}

Attributes definition

• AATT = {dept},

• Scope(dept) = {Operations, Account, IT}, attType(dept) = set,

is_ordered(dept) = False, Hdept = φ

• dept(Sam) = {Operations, Account, IT}, dept(Tom) = {IT}

• ARATT = {}, RATT = {dept, level}

• Scope(dept) = {Operations, Account, IT}, attType(dept) = atomic,

is_ordered(dept) = False, Hdept = φ

• dept(IT Director) = IT, dept(Dev. Manager) = IT,

dept(Marketing Manager.) = Operations, dept(QA Manager) = IT

Authorization function for role-role assignment

– is_authorizedRassign(au : AU, r1 : ROLES, r2 : ROLES) ≡

∃d ∈ Scope(dept). dept(au) = dept(r1) = dept(r2)

Authorization function for role-role assignment

– is_authorizedRrevoke(au : AU, r1 : ROLES, r2 : ROLES) ≡

is_authorizedRassign(au : AU, r1 : ROLES, r2 : ROLES)

An article on attribute-based role-role assignment was published in International Conference on

Secure Knowledge Management 2017 (SKM2017) with following title, ARRA: Attribute-Based

Role-Role Assignment [40]. A separate full description paper is also available in [42].

132

Chapter 6: IMPLEMENTATION OF AURA MODEL IN OPENSTACK

CLOUD IAAS

Indentity service in OpenStack Cloud IaaS (or simply OpenStack) is known as Keystone [46]. In

this chapter, the details involved in the implementation process of the attribute-based user-role

assignment (AURA) model in Keystone is described. It includes the motivation behind the imple-

mentation, AURA design description as compared to OpenStack’s original administrative RBAC

design for user-role assignment, the outcome of implementation as an improved administrative ac-

cess control architecture, the evaluation of any overhead introduced by the newly introduced code,

and the actual step-by-step process used in modifying Keystone’s code. AURA is introduced in

implementation layer of OpenStack’s stable version of Ocata release [50] [21].

6.1 Background

Cloud computing has been a game-changing technology from individual to business needs. In-

frastructure as a Service (IaaS) technology has let the cloud service providers (CSPs) to supply

with a package of computing resources with storage and software networking capabilities. Cloud

computing as a service has become a new normal for doing business in recent years. Cloud service

providers like Google (Alphabet), Microsoft and Amazon are current leaders to name a few. It is

relatively hard to find any innovative company that do not use cloud platform to meet their needs.

It is driven by economy, flexibility and scalability.

Since, AURA implementation is solely in the OpenStack cloud, there are few important termi-

nologies specific to OpenStack cloud that will be used in rest of this article. A domain in OpenStack

can be considered as an area of authority, which reflects an organization in a real world scenario.

A project represents a unit of ownership [46] which means that all the resources are owned by

a project. A project is contained in a domain. Technically, a domain is a higher-level container

that contains projects, users and groups. All projects are unique to their domain. By default all

the projects are added to a default domain known as ‘Default’. A domain name must be globally

133

unique, while role names, user names, group names and project names must be unique within its

owning domain.

Keystone is responsible for user authentication and high-level authorization. It involves token

based authentication and user-service (services for user) authorization.

This chapter presents a proof-of-concept implementation of the theoretical AURA model that

was presented in Chapter 3. As it is the implementation regarding administrative operations,

namely, user-role assignment and user-role revocation, the authorization policies and operations

is scoped within Keystone.

The prime objectives of using access control features in administrative RBAC has been dis-

cussed in previous chapters. Chapter 3 depicted an attribute based approach and its capability of

expressing combination of features in controlling access in assigning and revoking users to/from

roles. This chapter takes into consideration the approach, and emulates the attribute-based policies

discussed, as close as possible to the proposed theory in the context of OpenStack identity service.

6.2 Need for Attribute-Based Administrative Approach in IaaS Cloud

This section summarizes importance of having access control in administrative RBAC, its cor-

responding implications presented by the attribute-based approach and its implementation in the

OpenStack’s identity service for fine-grained access control so as to motivate its usage. The ap-

proach taken in the design of the AURA model virtually aligns with every design principle fol-

lowed in developing UARBAC [37]. In addition, as shown in Chapter 3, AURA is capable of

representing many other prior URA models. Here, a summary of the requirement of access control

in administrative access control in IaaS cloud is presented.

6.2.1 Flexibility and Scalability

As motivated in Chapter 1, one of the key limiting factors of previous models in representing

various features for access control were their limited flexibility, and hence the scalability. However,

two core features offered by cloud computing are flexibility and scalability. Therefore, the access

134

control engine in the cloud should be able to provide a wide variety of access control features for

users [27]. The limitations of flexibility regarding access control posed by prior administrative

models have already been observed. As access control needs may vary according to organization’s

(project) needs, the cloud administrative architecture must facilitate a framework that is flexible

and scalable. For example, with large number of users, roles and permissions, the administrative

models for RBAC must be flexible enough to scale with increasing size. Many times this requires

decentralization of administrative domains and administrative-operational duties. Many different

projects in the cloud may implement different approaches for user-role assignment. For example,

in one project an admin may assign a user to a role based on the organization unit the user belongs

to. In another project, a user may only be assigned to a role if the user has certain security clearance

level and if the assignment is done within a certain time frame. These varying approaches demand

a flexible architecture for user-role assignment. With AURA’s approach, in one hand it is possible

to define features for decentralization. On the other hand, it is also possible to customize the user-

role assignment approach in different projects in the same domain or different projects in different

domains running the same user-role administration architecture. In the following sections, it shall

be observed how attributes are able to enforce decentralization based on administrative duties.

Hence, it is fair to state at this end that attribute-based administrative approach can bring much

more flexibility and scalability in RBAC administration.

6.2.2 Least Privilege

Principle of least privilege is one of the defining factors for access control system. It is a practice

of limiting access to the minimum level so that it will allow only required action. For instance,

an employee can have the lowest level of user rights and still can do their job. Administrative

rights are relatively more critical to the system as administrative users bear more power than the

regular users. Usually, a dedicated administrative user with an administrative role has an authority

to assign a regular user to a regular role with an assumption that regular users and regular roles

are within administrative user’s access authority. In many cases, the cases may not be as simple.

135

There is a need for accurate user-role assignment, that is, assigning users to roles that allows only

the intended roles (or collection of permissions) to intended users, need for avoiding mistakes from

unknown side-effects during/by assignment and, only authorized users and given roles are allowed

to conduct such assignments. For instance, if a user and roles are in the same domain but if a

role can be granted only if the user must have certain level of clearance, the principle of least

privilege can control critical permissions to be assigned to accurate users. This way, even if the

user and roles are in same organization an additional requirement can control for accurate user-

role assignment. OpenStack has adopted RBAC in its system. With AURA, it is possible to further

control least privilege and elevate the level of assurance in providing accurate access.

6.2.3 Fine Grained Access Control

OpenStack offers coarse grained access control in operation and administrative levels. As the orga-

nization scales or even when an organization needs micro-level security needs, the number of ad-

ministrators can increase, and hence their duties can vary. Flexibility, scalability as well as having

confined and accurate least privileges demands fine-grained access control. AWS [3] has adopted

limited fine-grained access control by considering time, location, address etc. Attribute-based ap-

proach can capture all that AWS can offer as well as many other features that were discussed in

the previous chapters. Although this chapter discusses attribute-based approach in which only at-

tributes of users and administrative users are taken into account, it is possible to combine attribute

of other entities such as roles and environmental conditions to grant roles to users. Properties such

as context-driven requirements, conflict of interest, separation of duties are some other powerful

aspects important in access control design in the cloud environment. Attribute-based approach for

RBAC has made these objectives viable to achieve.

6.2.4 Principle of Minimalism

Economy of mechanism is building a block for simplicity. Li et. al [37] assert that the idea of

economy of mechanism is to keep the design as simple and small as possible. However, simplic-

136

Figure 6.1: OSAC Model [61]

ity is again a relative term. With the emergence of the internet, and rapid growth of computing

power the world has witnessed unprecedented ways of computing. Cloud is just one of them. This

emerging architectures demand simple yet robust, minimal yet flexible and, scalable software ar-

chitecture. Attribute-based RBAC approach presented in this dissertation has met that philosophy.

Each model that have been presented in previous chapters are able to represent all the properties

from corresponding prior models and have laid a framework where new features can be introduced.

For instance, in AURA model attributes from only two entities, namely, users and admin users are

taken into account and yet, it is able to specify all the properties used in user-role assignment

decisions in past five models. Therefore, AARBAC approach brings in novel models that have

minimum specification criteria and have an ability to address the scalability and flexibility needed

in administration of IaaS cloud. OpenStack uses its unique version of RBAC as its basis for oper-

ation as well as administration. Attribute-based approach introduced by AURA model facilitates

extended level of access control of URA for OpenStack with minimum extension.

137

6.3 OpenStack Access Control Overview

This section provides an overview of access control model in OpenStack cloud. A formal Open-

Stack access control (OSAC) model was introduced based on OpenStack Identity API v3 [47] as

shown in Figure 6.1 by Tang et. al [61]. The components introduced in OSAC are core compo-

nents. They include Users(U), Roles(R), Groups(G), Projects(P), Domains(D), Services(S), Oper-

ations(O), and Tokens(T). Each of these components are described briefly.

Users and Groups

User represents individual or user’s name and its corresponding unique identifier. Each user can

access cloud resources once authenticated and authorized. A group simply represents a collection

of users. Users and Groups are unique to a domain.

Roles

Roles are global names within a domain used to associate users with projects. Unlike user-role

assignment in general RBAC model, users are assigned to role and project at a time. In other

words, a role-project pair is granted to a user. This means that a user must belong to a role in a

project. For an administrative usage, a user can be assigned to role-domain pair as well. Roles are

means by which users are given permissions. This is the only way in OpenStack cloud that users

are given access authority.

Domains and Projects

A project represents a repository of resources in the cloud. A domain is a container of a project and

other resources. In OpenStack, a project is unique to a domain. In other words, a project cannot

belong to more than one domain. A user can belong to one domain but can be associated with

multiple project-role pairs. To have access to the resources in a domain, a user must be granted

with role-project pair. By default, a domain admin is an admin of projects in that domain.

138

Table 6.1: OSAC Model [61]

– U, G, P, D, R, S, OT, OP and T are finite sets of users, groups, projects, domains, roles, services, object types,
operations and tokens respectively.
– user_owner : U→ D, a function mapping a user to its owning domain. Equivalently viewed as a many-to-one
relation UO ⊆ U × D.
– group_owner : G→ D, a function mapping a group to its owning domain. Equivalently viewed as a
many-to-one relation GO ⊆ G × D.
– project_owner : P→ D, a function mapping a project to its owning domain. Equivalently viewed as a
many-to-one relation P O ⊆ P × D.
UG ⊆ U × G, a many-to-many relation assigning users to groups where the user and group must be owned by the
same domain.
– PRP = P × R, the set of project-role pairs.

– PERMS = OT × OP, the set of permissions.

– ot_service : OT→ S, a function mapping an object type to its associated service.

– PA ⊆ PERMS × R, a many-to-many permission to role assignment relation.

– UA ⊆ U × PRP, a many-to-many user to project-role assignment relation.

– GA ⊆ G × PRP, a many-to-many group to project-role assignment relation.

– user_tokens : U→ 2T, a function mapping a user to a set of tokens; correspondingly, token_user : T→ U,
mapping of a token to its owning user.
– token_project : T→ P, a function mapping a token to its target project.

– token_roles : T→ 2R, a function mapping token to its set of roles.

Formally, token_roles(t) = {r ∈ R | (token_user(t),(token_project(t), r)) ∈ UA} ∪ (
⋃

g ∈ user_groups(token_user(t)) {r ∈ R
| (g, (token_project(t), r)) ∈ GA}).

– avail_token_perms : T→ 2PERMS, the permissions available to a user through a token,

Formally, avail_token_perms(t) =
⋃

r ∈ token_roles(t) {perm ∈ PERMS | (perms, r) ∈ PA}.

Tokens

After a user is authenticated, the identity service generates a token. A token is a representation of

an authenticated identity of a user, which helps to grant authorization to user in specific domain

and project. There are two types of tokens: scoped and unscoped tokens. Unscoped tokens are

used for initial authentication to a particular domain. A scoped token that is specific to a project

is obtained using the unscoped token from Keystone. The content of the token is encrypted using

public key infrastructure (PKI) so that it remains intact during token transport process.

139

Services, Object Types and Operations

OpenStack and other cloud architecture is based on the service-oriented architecture. Therefore,

any resource such as virtual machine or an application is delivered to the consumer as a service.

The main service types in OpenStack include compute, identity, network, volume and image. In

OpenStack cloud, compute service is known as Nova, identity service is known as Keystone, net-

work service is called Neutron, block storage service is known as Cinder, and image service is

known as Glance.

Objects are cloud resources. Object types can be different cloud resources such as virtual

machines and storage volumes. An operation is an access technique for objects. Create, read,

update and delete (CRUD) are most general operation in OpenStack as well. As shown in the

diagram above, a permission is a combination of an operation and object. For example, “Create

role” has a combination of an operation and object type.

Figure 6.1 depicts structure of OSAC and Table 6.1 presents corresponding formal OSAC

model. OSAC model shows that OpenStack follows RBAC model in which there are specific

role assignments: user assignment (UA), permission assignment (PA) and group assignment (GA).

Assignment processes for user and group are identical. In both the cases role-project pair is granted

to users. This way permission granted to a user is valid within the project. For instance, Tim can

be assigned to a role Engineer in a project Engineering Division. In this case Tim acts as an

Engineer only in Engineering Division.

6.3.1 Administrative OSAC model

As discussed, assignment information of user, roles, groups and projects are maintained by identity

service in OpenStack called Keystone.

This dissertation deals with administration of RBAC. Therefore, administrative operations such

as assign and revoke will be taken into account. Users, roles and projects will be target objects

among which assignment or revocation operation is performed. Permission-role assignment poli-

cies in OpenStack are maintained separately in a policy file. This policy file for identity service

140

Table 6.2: UA Relation in OSAC

– PRP = P × R, the set of project-role pairs.

– UA ⊆ U × PRP, a many-to-many user to project-role assignment relation.

specifies the permission to manage identities as well as assignments for any admin or regular roles.

Permission-role assignment (PA) process in OpenStack is still a manual process which is done by

editing the policy file in Keystone.

Administrative OSAC provides an abstract way to introduce administrative roles as desired. By

default, there is one domain administrator for every domain in OpenStack, who is also a project

administrator. By deafult, the admin role name is set to admin. This administrator can be regarded

as a super-administrator. She can create a role, assign it with desired administrative permissions,

and grant that role to a user, making that user an administrative user.

Table 6.1 presents formal model for OSAC. It also includes administrative relation for the

user to project-role assignment given by set UA, which is a many-to-many user to project-role

assignment relation. That means, a user can be associated with multiple role-project pair and vice-

versa. Project-role pair is a cross product of project and role sets given by PRP. The two relations

are separately re-expressed in Table 6.2. The OSAC model also presents administrative relation for

permission to role assignment as PA. It is a many-to-many permission to role assignment relation.

That is, a permission can be assigned to many roles and that a role can have many permissions.

Group to role-project assignment relation is similar to UA, in that group behaves just like a user

in assignment process. Group is nothing but a collection of users with a name (group name).

Administrative relations present the outcome for administrative operations. Administrative models,

however present procedures and control needed to be taken into consideration as presented in

previous chapters.

6.4 Proof of Concept AURA Implementation in OpenStack

The objective of this chapter is to implement pre-presented AURA model from Chapter 3 as close

as possible in the OpenStack’s identity service. OSAC model presented an overview of Open-

141

USERS	
	(U)	

UATT	

AURA:	is_authorizedUop:OP(au:AU,	u:U,	r:R,	p:P)?		

Many-to-many	relaAon	

AssociaAon	

Input	

Control	

ADMIN	
USERS	
(AU)	

AATT	

ROLES	
(R)	

PROJECTS	
(P)	

Figure 6.2: Attribute-Based User-Project-Role Assignment in OpenStack

Stack’s access control model which included operational as well as administrative access control.

However, administrative aspect of AURA model is scoped to granting user to role and, revoking

user from a role. Therefore, this section scopes description and implementation towards the same.

Figure 6.2 shows a conceptual model for attribute-based user-role-project assignment in Open-

Stack. It shows a set of users (U) with user attributes (UATT), a set of admin users (AU) and its

attributes (AATT), and a set of roles (R) linked with set of projects (P). The UA assignment deci-

sion is based on access control policy made up of attributes of user and admin user. The user to

role-project assignment function takes admin user, target user, target role and target project as its

input.

6.4.1 The Notion of Administrative Users in OpenStack

In AURA model administrative authority is given to administrative user unlike some prior models

such as URA97 and URA02 where admin authority is given to admin roles. However, the notion

of administrative user (admin user) doesn’t exist in OpenStack. In other words, a user becomes an

142

administrative user only by acquiring administrative permissions via some role (preferably admin

role).

Therefore, to pivot AURA model according to the demand of implementing AURA in Open-

Stack, administrative users are differentiated from the regular users from same set of users by

assigning users to an administrative role called aura_admin. aura_admin bears two key permis-

sions: a permission to grant a user to role-project pair and, a permission to remove role-project pair

from a user. It also bears other permissions that are necessary as a prerequisite for these two per-

missions such as as permission to list users, a permission to list roles, a permission to list projects

and permissions to view their corresponding associations, if any. Table 6.5 shows permission as-

signed to aura_admin. For instance, during implementation, users Sam and Ken were assigned

to aura_admin role that officially made them admin users.

6.4.2 Access Control Policy Management in OpenStack

For each service in OpenStack, authorization is enforced by Policy Enforcement Point (PEP). For

instance, Nova, Neutron and Keystone have their own policy enforcement points. Because AURA

Implementation is limited to administrative operations, the service is scoped to Keystone. Keystone

stores identity information for all the entities including users, roles, projects and user assignments.

Keystone provides user information in the form of a token. A token is a signed by Keystone us-

ing private key. In addition, public key information is shared among trusted components only.

Trusted components authorize user once the user information is verified by decoding the token.

Each component has its own policy enforcement point (PEP), policy information point (PIP), pol-

icy administration point (PAP) and, policy decision point (PDP) [27]. The PEP is responsible

for receiving access requests and enforcing access control decisions; policy decision point (PDP)

accepts requests from PEP, and evaluates the request based on proper access control policy that

it gets from the PAP and; policy information point (PIP) is responsible for looking up additional

information involving the subjects, objects and the system environment [38]. In many cases, some

of these policy points are cached together, or even all PEP, PDP and PIP can be cached in a single

143

User	

Keystone	
PDP/PAP	

Keystone	PEP	 Keystone	Backend	Keystone	API	

1.	(Username,	password)	
2.	Verify	(username,	
	password)	

3.	(Token,	Endpoint)	

4.	Command	to	assign	target	
user	to	role-project	pair,		
Token	

5.	Fetch	source	user,	
target	user,	target	
project	info	

6.	Return	source	user,		
Target	user,	target	
project	info	

7.		Verify	assignment	policy	

10.	Success/Failure	of	
	user	to	role-project	pair	
assignment	

8.	Evaluate		
assignment	policy	

9.	Allow/Deny	request	

Figure 6.3: Keystone Authorization

point, to provide with faster service.

Figure 6.3 shows keystone authorization process with a user to role-project pair assignment

(UA) use case. A user is authenticated with the Keystone via by sending request to Keystone

API. After verifying requesting user with her Username and Password, user is granted a token to

communicate with specific endpoint (Keystone for this example). Using token, the source user

sends a command to assign a target role and target project pair to a target user to PEP. Upon

receiving the request, PEP gathers the requested information from Keystone backend and returns

them back to PEP. Based on the information PEP gets, it requests PDP/PAP to verify the assignment

policy in place. PDP/PAP evaluates the assignment policy against the source user, target user and

target project. It then sends back decision about authorization to PEP. Based on the success or

failure of the command, the PEP enforces the policy in place and send back the message about the

same to the source user.

144

PEP	 PDP/PAP	PIP	

	
Domain	admin	user	

request	
	

admin	user	request	 admin	user	and		
a4ribute	assignment	

Administra7ve	request	

Target	user	and		
a4ribute	assignment	

A4ribute-based	
assignment	policy			

admin	user	 Domain	admin	user	

Figure 6.4: AURA Authorization Enforcement

6.4.3 AURA Enforcement Model

The organization of AURA authorization enforcement in Keystone is depicted in Figure 6.4. It

shows that domain admin user and admin user with user-role assignment authority can conduct

UA. Keystone stores regular user and administrative user identities, user and admin user attribute

definitions, user and admin user attribute assignments. An admin user is authenticated though

Keystone who initiates a request to grant role-project pair to a regular user. Based on the user

and admin user ids received in the policy enforcement point (PEP), Keystone fetches target user

and admin user information from the database in the Keystone backend. Additional information

regarding defined attributes and assigned values for target user and admin user is fetched from

attribute assignment file/database. This location is referred to as policy information point (PIP).

Keystone then references the administrative user to user-role-project assignment policy and checks

against the information gathered from the database at the policy decision point (PDP). As per the

policy decision, the result is sent back to PEP where it is enforced.

145

6.5 A Practical Scenario

Consider a commercial technology oraganization called DigiEvo. DigiEvo has four main depart-

ments, namely Innovation, Legal, Accounts, Human Resources. Each department has their own

sub-divisions and teams within them. For simplicity, lets call each department, a project in Open-

Stack. DigiEvo is a domain. There is one super administrator (super admin) role called admin,

and an admin user called admin by defalut in OpenStack. This administrator (admin) role can be

called as Domain admin.

A user with Domain admin role is responsible for adding new users in the domain, unless that

task is dedicated to some other administrator role. Any user assigned to the Domain admin role

gets the super administrator privilege. In one hand, all other administrative roles can be created by

the Domain admin, and administrative permissions assigned to administrator roles, accordingly.

On the other hand, Domain admin can also create regular roles with operational permissions. In a

company simple as this, there may exist hundreds of thousands of users. There could exist hundreds

of roles and permissions. Administrative operations such as user-role-project assignment can be

non-trivial. Therefore, there is a need for administrative tasks delegation. Hence the need to create

administrators junior to Domain admin with distributed privileges. In other words, decentralization

of administration. For instance, one way of decentralization can be based on the department. A

department itself is defined based on the tasks it involves with. A user in Legal department in most

cases has different permissions (hence, different roles) than a user in the Innovation department.

Therefore, the access control design should be able to address at least the following objectives:

1) Make sure that user-role-project assignment is accurate. 2) Admin users junior to Domain admin

have necessary permissions only 3) An admin user can perform administrative operations towards

proper project, role and users.

DigiEvo, has a Domain admin named, Ken. Ken is the super admin of the organization. Since,

it is a huge task to handle administrative duties for different types of departments, for four different

projects, he creates an administrative role for user-role-project assignment only. He calls this admin

role as aura_admin. There exists another admin for permission-role assignment. aura_admin

146

role is given or assumed to have a permission to grant user to role-project pair; a permission to

remove user from existing user-role-project relation; and other related permissions such as listing

users and projects.

Any user assigned to aura_admin role becomes an admin user for UA. However, OpenStack

consists of a single pool of users. As mentioned in section 6.4.1, the way by which admin users

are virtually decoupled from user pool is by assigning these users to aura_admin role. Lets

assume there are four different admin users, Sam, Gina, Will and Kat. Each of these admins are

responsible administering users-role assignment in each of the projects. The fact that admin users

are associated with particular project(s) is defined using attributes. This is done using the process

of attribute assignment.

According to AURA model, there are only two entities that may have attributes. They are

regular users (or simply users) and admin users. Therefore, attributes must be defined around

these two entities. Lets assume there are three different attributes for each entities, which need to

satisfy according to assignment policy defined. Assignment policies will be explained shortly. Let

attributes of users be : admin_unit, clearance, location and attributes of admin users be admin_unit,

location, admin_roles.

Domain admin user defines the values for admin users and users. Let the values for attributes

be defined as follows for admin users,

admin_unit(admin_user) ={innov, legal, hr, accounts}

location(admin_ user) = {austin, san_antonio, dallas}

admin_roles(admin_ user) = {sr_admin, sec_admin}

Similarly, for regular users,

admin_unit(user) ={innov, legal, hr, accounts}

location(user) = {austin, san_antonio, dallas}

clearance(user) = {confidential, unclassified, classified}

Domain admin also makes attribute assignment for admin users and users. An example for attribute

assignment based on json format is presented in Table 6.3: This example simply means admin user

147

Table 6.3: An example for JSON format attribute assignment

[

{

"entity": "admin",

"id": "sam",

"admin_unit": ["accounting"],

"location": ["san_antonio"],

"admin_roles": ["sec_officer"]

}, { "entity": "user",

"id": "john",

"admin_unit": ["accounting"],

"location": ["dallas"],

"clearance": ["classified"]

}

...

]

Sam has the following admin user attributes and corresponding attribute (range of) values: ad-

min_unit is accounting, location is san_antonio, and admin_roles is sec_officer. Similarly, regular

user John has admin_unit equal to accounting, location is dallas, and clearance is classified.

For instance, if Sam requests to assign target role chief accountant to regular user john in

admin_unit accounting, the assignment process has to check for assigned attributes and its val-

ues, fetch the attributes and its values, and check against the attribute-based assignment policies.

An example of attribute-based assignment policy is given in Table 6.4. The aforementioned ac-

cess control policy is placed as a json. It is a json array of json objects. Each json object in

json array is one policy for UA. For intance, first json object indicates a policy which means: if

any admin user who has admin_unit of accounting, location is san_antonio and has admin roles

sr_sec_officer and/or security_officer; and if the target user has same admin unit, accounting, same

location san_antonio and has a user clearance top_secret, then that user can be assigned to roles

sr_accountant or auditor or both in an existing project in a domain.

148

Table 6.4: An example of attribute-based assignment policy

[

{

"admin": {

"admin_unit": ["accounting"],

"location": ["san_antonio"],

"admin_roles": ["sr_sec_officer"]

},

"user": {

"admin_unit": ["accounting"],

"location": ["san_antonio"],

"clearance": ["confidential"]

},

"role": ["chief_accountant",

"sr_accountant",

"auditor"]

},

{

"admin": {

"admin_unit": ["accounting"],

"location": ["san_antonio"],

"admin_roles": ["sr_sec_officer",

"security_officer"]

},

"user": {

"admin_unit": ["accounting"],

"location": ["san_antonio"],

"clearance": ["top_secret"]

},

"role": ["sr_accountant",

"auditor"]

},

...

...

]

149

User-role-project assignment command in OpenStack must provide the target user, target role

and target project. The user-role-project assignment command is sent to the keystone. Assigned

attributes for admin user and target user is extracted and sent for evaluation. The values for corre-

sponding attributes for admin user and target regular user along with the target project and target

role information is checked against the attribute-based assignment policy and then authorization

decision is made to true or false.

6.6 Experimental Setup and Application

This section presents a closer look on how the actual experiment was set up for proof of concept

implementation. A developer environment DevStack was installed that emulated OpenStack cloud

software. In particular, an all-in-one DevStack running OpenStack Ocata with 8 GB of RAM and

4 vCPU’s with the basic services was installed. The AURA model involves entities like users and

roles, and doesn’t involve any resources (objects) like files. It can be observed from OpenStack’s

latest architechture [50] that there is an independent block for authorization called Keystone. These

blocks are also referred to as nodes. Other nodes serve their respective objectives. For example

Nova block serves in starting or ending virtual machines, Neutron provides networking services,

Cinder serves to provide with virtual storage volumes and so on. Other services except for Key-

stone can be treated as objects or resources. Keystone keeps track of actors involved in accessing

resources in OpenStack. User-role-project assignment in OpenStack, hence involves only Key-

stone service block.

OpenStack’s recent stable version called Ocata was selected to carryout experiment. Complete

code for OpenStack’s Ocata release is available in GitHub [50] and Keystone code is available

at [21]. After an admin user authenticates with keystone, she gets a token (a token granting token)

to conduct operation. This token is sent with a request to Keystone. Based on the token and the

kind of request, keystone grants another token with respect to the service node. In the case of

URA, the only node involved is Keystone. Therefore, the token to passed back and forth between

keystone and keystone.

150

The general methodology by which any user-role-project assignment or revocation happens in

Keystone (OpenStack) follows a process. In this process, once requesting entities are authenti-

cated, the administrative operation such as grant for UA is sent to keystone. A user-role-project

assignment command is as follows:

$openstack role add –user <USER_NAME> –project <TENANT_ID> <ROLE_NAME>

This command issuing entity is some admin user. In a most early phase, it is the Domain admin

user. The identity information of admin user is separate from the target user, role and project. The

information on admin user ID, domain it belongs to, the project ID for admin user, admin role the

admin user has, etc., are packaged together as a python dictionary block, sometimes very casually

referred to as token. The request command is received at Policy Enforcement Point (PEP). Ev-

idently, these information on admin user and user are extracted from back-end database system.

In the case of admin user, her information can be traced as admin user information token at the

following file in Keystone (Ocata Release):

</opt/stack/keystone/keystone/common/authorization.py>

The token with admin user information is referred to as credentials. On the other hand, the target

user and target role are received following file of the PEP:

</opt/stack/keystone/keystone/assignment/controllers.py>

Similar to credentials token, this controllers.py file contains a block called target. This token con-

tains information on target user (regular user), such as user id, domain that user belongs to, any role

that user has, etc. In addition, it also contains the target role name to which this user is supposed

to be assigned to.

The information on admin user and, target user and role from aforementioned two files in PEP

is sent to Policy Decision Point (PDP) where the user, admin user and role credentials are received

and checked against the existing OpenStack’s user-role-project assignment policy. The PDP file in

the case of Ocata release is as follows:

</opt/stack/keystone/keystone/policy/backends/rules.py>

After identifying the necessary file in PEP, attributes and their values defined for admin user

151

and regular user were put into place by Domain admin user. Attributes assigned for both admin

user and user were placed in a JSON file called:

</opt/stack/keystone/keystone/common/assigned_attributes.json>

An example for attribute assignment in JSON format was presented in previous section. This file

emulates a database which contains a relation among entities, attributes and their assigned values.

As mentioned previously, in authorization.py file, admin user information is populated in a

token container called credentials. Some lines in this authorization.py file were modified so that

it is able to extract the attribute values for admin user from assigned_attributes.json file. A short

program which extracted proper assigned attributes and attribute values were saved as :

<opt/stack/keystone/keystone/common/aura_attributes.py>

This program extracts attribute names and their corresponding values from assigned_attributes.json

file. These attributes and their values are then appended into the credentials and sent towards PDP.

The PDP involves the evaluation of the access control policies that are in place. In addition to

existing access control policies for granting or revoking user-role-project, codes that check the

attribute-based policies for granting or revoking user-role-project are introduced in the file below:

</opt/stack/keystone/keystone/policy/backends/rules.py>

As the interpreter goes through the code that verifies the policies, the attribute-based policies

are read from the policy file below:

</opt/stack/keystone/keystone/policy/backends/attribute_policy.json>

An example for attribute-based policy for granting or revoking user-role-project was presented

above. It should be noted that same policies exist for both granting and revoking user to role-

project pair. The request is either granted or rejected based on the attributes and their assigned

values as well as previously defined policies. Depending upon the decision made at rules.py, the

PEP enforces the decision made at the PDP.

Codes after the implementation of AURA in OpenStack is available publicly at GitHub [12].

152

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	 1	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Number	of	a4ributes	(scope	=	1)	

Figure 6.5: Avg. URA Time Comparison

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	 1	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Number	of	a4ributes	(scope	=	1)	

Figure 6.6: Avg. URR Time Comparison

6.7 Performance Analysis

This subsection discusses time performance evaluation after attributes and attribute-based policy

were enforced. This implementation and experiments were carried out in OpenStack development

environment called DevStack [16]. All the core OpenStack services along with Keystone were

running in the same virtual machine. All the administrative operations involved in the experi-

ment as presented by AURA model that were implemented in OpenStack involved modification of

Keystone codes only.

Admin user makes request towards Keystone to grant target role and target project pair to

the target regular user. As mentioned earlier, OpenStack doesn’t have a notion of admin users.

However, it is possible to create an admin user based on the model requirement. One way by which

admin user could be created was to assign regular users with the project name to an administrative

role (aura_admin).

Desired attributes were engineered and attribute assignments were done. The code in Keystone

was modified in such a manner that any request for granting user to role-project pair or a request for

removing user from role-project pair would consult Keystone backend. The request then received

admin user’s and target regular user’s assigned attributes and their values, populated as a token and

sent towards policy decision code along with the target role and project names. At the receiving

end, the attributes and attribute values for admin user and target regular user, and role name along

153

with project information were checked against the Keystone’s existing policy. It also checked for

attribute-based policies introduced and, either authorized or denied authorization for user-role-

project assignment and user-role-project revocation.

6.7.1 Evaluation

Evaluation for time performance was carried out for policy decision and enforcement segment for

three different cases. For simplicity, user to role-project assignment is called user-role assign-

ment (URA) and revoking user from role-project pair is called user-role revocation (URR). First

off, original OpenStack command was run for the process of granting role-project pair to user,

i.e., without introducing any new code, and average time with at least 10 runs, each for granting

and revoking role, along with standard deviation were recorded. Secondly, code that would en-

force the policy for one attribute with one value (scope = 1) was introduced and time periods were

recorded. These steps were repeated for URR. Average decision-making time taken and corre-

sponding standard deviation values were recorded for this step as well. Figure 6.2 shows the graph

for attribute-based user-role assignment in OpenStack with and without a single attribute with sin-

gle value in its scope. Similarly, Figure 6.5 and 6.6 show a corresponding graphs for comparing

time taken in OpenStack with and without a single attribute with single value in its scope for URA

and URR, respectively. In both the cases, It shows that negligible time (about 1 milliseconds) was

added in policy decision-making.

In the second part of experiment, average time was measured by increasing the number of

attributes from 3 attributes to 30 attributes. Figures 6.7 and 6.8 show such times for attribute-based

URA and attribute-based URR. It can be observed from these figures that even with increasing

attributes the attribute-based policy decision and enforcement time stayed almost the same. At

most, it increased with upto 2 milliseconds with minimum error. In addition, the error appeared to

be less on the higher end of the average time, and time in most of the runs fell below the average

value of time in both URA and URR.

Finally, in the third part of the experiment, both the dimensions of attributes were varied.

154

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

3	 5	 7	 10	 13	 15	 17	 20	 23	 25	 27	 30	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Number	of	A4ributes	(Scope	=	1)	

Figure 6.7: Avg. URA Time with Varying
No. of Attributes

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

3	 5	 7	 10	 13	 15	 17	 20	 23	 25	 27	 30	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Number	of	A4ributes	(Scope	=	1)	

Figure 6.8: Avg. URR Time with Varying
No. of Attributes

That is, the number of attributes and range of scope for each attribute was varied and times were

recorded. Figures 6.9 and 6.10 depicts graphs for attribute-based URA and attribute-based URR.

The number of attributes was varied from 1 through 30 with some interval. At the same time,

range of scope was varied from 1 to 20 with an interval. A slow increase in policy decision and

enforcement times can be observed in both the graphs. Even in an extreme case with 30 attributes

and each attribute with a scope of 20 shows only a slight increase in time. For attribute-based user

to role-project assignment, the highest average time for extreme case was 5.501461029 ms. For

attribute-based user to role-project revocation, it came to 5.742168427 ms. The lowest times being

3.733801842 ms and 3.787136078 ms for URA and URR respectively, with an increase of up to

1.955 ms.

There existed some outliers in each of the previous experiments. They are ignored with an as-

sumption that those high numbers were impacted by cold start or overall organization of computer.

It should be noted that all the experiments were conducted for positive policies only. For exam-

ple, one of the qualifying policies for attribute-based URA was if the admin user had administrative

unit and location given by attributes admin_unit and location respectively, same as regular user

(admin_unit = finance and location = austin) and, admin user also had certain administrative role

represented by attribute admin_role (for example, admin_role = sr_security_officer) and that

regular user had met certain clearance represented by attribute clearance (e.g. clearance = clas-

155

0	

1	

2	

3	

4	

5	

6	

1	 3	 5	 10	 15	 20	 25	 30	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Number	of	a4ributes	

scope	=	1	 scope	=	5	 scope	=	10	 scope	=	15	 scope	=	20	

Figure 6.9: URA Time with Varying At-
tributes and Scope

0	

1	

2	

3	

4	

5	

6	

7	

1	 3	 5	 10	 15	 20	 25	 30	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Number	of	a4ribtues	

scope	=	1	 scope	=	5	 scope	=	10	 scope	=	15	 scope	=	20	

Figure 6.10: URR Time with Varying At-
tributes and Scope

sified), then the policy returned true and authority was granted. Experiments were not conducted

for negative policies. It would be interesting to explore combination of positive and negative rules.

6.7.2 PRA and RRA in OpenStack

This dissertation explores three different attribute-based administrative models: AURA, ARPA

and ARRA. Previous sections in this chapter presented a successful implementation of AURA

model in OpenStack. OpenStack also involves permission-role assignment (PRA). PRA process in

OpenStack is slightly different than URA process. Permission to role assignment is done manually

by a Domain admin user. Permissions are predefined in Keystone and the relation among roles

and permissions are manually linked in a proper format in a policy file known as policy.json. In

OpenStack Ocata, it is positioned as:

</etc/keystone/policy.json>

Like URA assignment process, one can expect an automatic process of permission role as-

signment which OpenStack currently doesn’t support. A new method of attribute-based approach

in manual permission-role assignment process could also be incorporated. However, Keystone

(OpenStack) may need to be redesigned in many aspects. For example, the way attributes and its

values could be introduced or designing optimal set of commands. These needs appear far from

scope and objectives. Therefore, its implementation is scoped out. However, a scenario where

156

Table 6.5: Permissions assigned to aura_admin role

"identity:list_domains": "rule:admin_required or role:aura_admin",

"identity:get_project": "rule:admin_required or project_id:%(target.project.id)s or role:aura_admin",

"identity:list_projects": "rule:admin_required or role:aura_admin",

"identity:get_user": "rule:admin_or_owner or role:aura_admin",

"identity:list_users": "rule:admin_required or role:aura_admin",

"identity:get_credential": "rule:admin_required or role:aura_admin",

"identity:list_credentials": "rule:admin_required or role:aura_admin",

"identity:get_role": "rule:admin_required or role:aura_admin",

"identity:list_roles": "rule:admin_required or role:aura_admin",

"identity:create_grant": "rule:admin_required or role:aura_admin",

"identity:revoke_grant": "rule:admin_required or role:aura_admin",

"identity:list_role_assignments": "rule:admin_required or role:aura_admin"

permission-role assignment was appropriate and, did appear as a part of AURA implementation.

As explained in 6.4.1, there was a need to separate admin users from regular users in user pool. For

that matter, users were assigned to an admin role called aura_admin. All the required permissions

for user-role-project assignment were manually assigned to this aura_admin role. This illustrates

that users with admin authority could be separated from regular users based on the administrative

permissions. Actual permissions that were assigned to aura_admin role that made all the users

assigned to it as admin users (with admin authority only for URA) is presented in Table 6.5. The

list of permissions show that there are many permissions apart from these two:

"identity:create_grant": "rule:admin_required or role:aura_admin" and

"identity:revoke_grant":"rule:admin_required or role:aura_admin",

which are primarily for granting and revoking UA. However, other permissions such as "iden-

tity:get_user": "rule:admin_or_owner or role:aura_admin" are required for automatic query for

Keystone when for instance, role name to role id translation is required. Some of them are for

convenience purposes.

Role-role assignment (RRA) is an essential feature offered by RBAC model. Assigning a role

to another role creates a hierarchy. Essentially, when a role is assigned to another role, the general

157

assumption is that the role that was assigned becomes a junior role and the role to which another

role is assigned become senior to the role assigned. Figure 5.1 shows an example of role hierarchy

in RRA97 model. But, eventually the permissions from junior role is inherited by the senior role.

That is, any user assigned to senior role becomes an implicit member of junior roles. In other

words, the user indirectly owns junior roles. Therefore, creating a hierarchy greatly reduces the

time and effort for URA and/or PRA processes.

Although, OpenStack’s identity management system is based on RBAC model, it has not de-

fined a framework for role-role assignment. One of the objectives of this dissertation was to admin-

ister existing RBAC model in more flexible, scalable and secure manner by leveraging the power of

attributes. Hence, RRA in OpenStack remains out of scope for implementation of ARRA model.

158

Chapter 7: CONCLUSION

Attribute-based access control policies has been studied quite thoroughly in operational aspect of

access control. However, investigation of attributes in the administrative access control domain has

been subtle. This research work was focused on exploring, and leveraging the power of attributes

to bring in flexibility and scalability in the administrative role-based access control.

In this dissertation, novel family of models for attribute-based administration of role-based

access control (AARBAC) was presented. In particular, it consisted of a model for Attribute-

Based User-Role Assignment (AURA), a model for Attribute-Based Permission-Role Assignment

(ARPA) and, a model for Attribute-Bases Role-Role Assignment (ARRA).

One of the motivations behind approach utilized for AURA, ARPA and ARRA model de-

signs was to make each of these models sufficient enough to represent their respective prior AR-

BAC models. For instance, AURA can represent any instance of URA97, URA02, URA99, Uni-

ARBAC’s URA and UARBAC’s URA models, or virtually any combination of these five models.

In the process, a relevant example instance from each prior model was taken, and correspond-

ing equivalent instance in attribute-based approach for respective model was demonstrated. To

further underscore the idea, translation algorithms that would take any instance from respective

prior model and translate into their corresponding attribute-based assignment model were exhib-

ited. These models are not only capable of expressing prior ARBAC models but carry potential to

express new features.

Finally, the AURA model was implemented as a proof of concept in a development environ-

ment (DevStack) for OpenStack IaaS Cloud’s identity service called Keystone. The procedure

consisted of implementing policy based on user and administrative user attributes and making as-

signment decisions. On top of an existing policy enforcement point, new policies that are based

on attributes were integrated; related codes for populating relevant attribute information into dedi-

cated tokens were introduced and; time performances for varying number of attributes and, number

of attribute values were examined. With an intention to stretch the limits due to addition attributes,

159

up to 30 attributes with up to 20 values for each attribute were placed and measured for time anal-

ysis. The results were satisfactory in that even with considerably large number of attributes with

large number of attribute values, very negligible time overhead of up to (about) 2 milliseconds

was added. This signifies that even with introduction of attributes and additional complexity in the

code, the overall performance is almost intact.

7.1 Future Work

This dissertation addresses a powerful approach on how to do user-role assignment, how to do

permission-role assignment and, how to do role-role assignment in a highly flexible manner. In

addition, addresses and subsumes plausible prior ARBAC models with concise yet extensible

attribute-based approach. However, it does not cover many credible ARBAC approaches like

SARBAC [13]. Some of the models are cited in Chapter 2. It would be interesting to explore

attribute-based approach to cover these models.

OpenStack software explored in this research does not have an automatic approach for permission-

role assignment. Designing an attribute-based automatic approach for permission-role assignment

can an interesting implementation task.

Many entities were engineered as attributes of other entities. There may be a potential in

exploring attributes of attributes in developing models and designing access control policies.

160

BIBLIOGRAPHY

[1] Mohammad A Al-Kahtani and Ravi Sandhu. A model for attribute-based user-role assign-

ment. In Proc. of the 18th Annual Computer Security Applications Conference, pages 353–

362. IEEE, 2002.

[2] Asma Alshehri and Ravi Sandhu. Access control models for cloud-enabled internet of things:

A proposed architecture and research agenda. In The 2nd IEEE International Conference on

Collaboration and Internet Computing, pages 530–538. IEEE, 2016.

[3] Amazon AWS. https://aws.amazon.com/. Accessed: 2017-11-23.

[4] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An access control framework for cloud-

enabled wearable internet of things. 2016.

[5] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An attribute-based access control extension for

openstack and its enforcement utilizing the policy machine. In 2016 IEEE 2nd International

Conference on Collaboration and Internet Computing (CIC), pages 37–45, San Jose, USA,

2016. IEEE.

[6] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. ABAC with group attributes and attribute

hierarchies utilizing the policy machine. In Proc. of the 2nd ACM Workshop on Attribute-

Based Access Control, pages 17–28. ACM, 2017.

[7] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An access control framework for cloud-

enabled wearable internet of things. In Collaboration and Internet Computing (CIC), 2017

3rd International Conference on. IEEE, 2017.

[8] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. Access control model for AWS internet

of things. In International Conference on Network and System Security, pages 721–736.

Springer, 2017.

161

https://aws.amazon.com/

[9] Prosunjit Biswas, Farhan Patwa, and Ravi Sandhu. Content level access control for openstack

swift storage. In Proceedings of the 5th ACM Conference on Data and Application Security

and Privacy, pages 123–126. ACM, 2015.

[10] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Uni-ARBAC: A unified administrative

model for role-based access control. In International Conference on Information Security,

pages 218–230. Springer, 2016.

[11] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Attribute transformation for attribute-

based access control. In Proc. of the 2nd ACM Workshop on Attribute-Based Access Control,

pages 1–8. ACM, 2017.

[12] Modified Keystone code. https://github.com/jiwanlimbu/aura. Accessed: 2017-11-12.

[13] Jason Crampton. Administrative scope and role hierarchy operations. In Proceedings of the

seventh ACM symposium on Access control models and technologies, pages 145–154. ACM,

2002.

[14] Jason Crampton and George Loizou. Administrative scope: A foundation for role-based

administrative models. ACM Transactions on Information and System Security (TISSEC),

6(2):201–231, 2003.

[15] Frédéric Cuppens and Alexandre Miège. Administration model for Or-BAC. In OTM Work-

shops, pages 754–768. Springer, 2003.

[16] DevStack. http://www.devstack.org/. Accessed: 2017-10-30.

[17] David Ferraiolo, Janet Cugini, and D Richard Kuhn. Role-based access control (rbac): Fea-

tures and motivations. In Proceedings of 11th annual computer security application confer-

ence, pages 241–48, 1995.

162

https://github.com/jiwanlimbu/aura
http://www.devstack.org/

[18] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed NIST standard for role-based access control. ACM Transactions Infor-

mation System Security, 4:224–274, August 2001.

[19] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed nist standard for role-based access control. ACM Transactions on Infor-

mation and System Security (TISSEC), 4(3):224–274, 2001.

[20] L. Fuchs, G. Pernul, and R. Sandhu. Roles in information security - A survey and classifica-

tion of the research area. Computers & Security, 30:748 – 769, 2011.

[21] Keystone Code (GitHub). https://github.com/openstack/keystone. Accessed: 2017-11-1.

[22] G Scott Graham and Peter J Denning. Protection: principles and practice. In Proceedings of

the May 16-18, 1972, spring joint computer conference, pages 417–429. ACM, 1972.

[23] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M

Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone, et al. Guide to

attribute based access control (ABAC) definition and considerations (draft). NIST special

publication, 800(162), 2013.

[24] Vincent C Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert Miller,

Karen Scarfone, et al. Guide to attribute based access control (ABAC) definition and consid-

erations. NIST special publication, 800(162), 2014.

[25] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-based access control.

Computer, 48(2):85–88, 2015.

[26] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-based access control.

Computer, 48:85–88, 2015.

[27] Xin Jin. Attribute-based access control models and implementation in cloud infrastructure

as a service. PhD thesis, The University of Texas at San Antonio, 2014.

163

https://github.com/openstack/keystone

[28] Xin Jin, Ram Krishnan, and Ravi Sandhu. A role-based administration model for attributes.

In Proceedings of the First International Workshop on Secure and Resilient Architectures and

Systems, pages 7–12. ACM, 2012.

[29] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model

covering DAC, MAC and RBAC. In IFIP Annual Conference on Data and Applications

Security and Privacy, pages 41–55. Springer, 2012.

[30] Xin Jin, Ram Krishnan, and Ravi Sandhu. Role and attribute based collaborative adminis-

tration of intra-tenant cloud IaaS. In 10th IEEE International Conference on Collaborative

Computing: Networking, Applications and Worksharing (CollaborateCom), pages 261–274.

IEEE, 2014.

[31] Xin Jin, Ram Krishnan, and Ravi Sandhu. Role and attribute based collaborative administra-

tion of intra-tenant cloud iaas. In Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2014 International Conference on, pages 261–274. IEEE,

2014.

[32] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: role-centric attribute-based access con-

trol. In International Conference on Mathematical Methods, Models, and Architectures for

Computer Network Security, pages 84–96. Springer, 2012.

[33] James BD Joshi, Elisa Bertino, and Arif Ghafoor. Hybrid role hierarchy for generalized

temporal role based access control model. In Computer Software and Applications Confer-

ence, 2002. COMPSAC 2002. Proceedings. 26th Annual International, pages 951–956. IEEE,

2002.

[34] Axel Kern, Andreas Schaad, and Jonathan Moffett. An administration concept for the en-

terprise role-based access control model. In Proceedings of the eighth ACM symposium on

Access control models and technologies, pages 3–11. ACM, 2003.

164

[35] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-based

access control. Computer, 43:79–81, 2010.

[36] Butler W Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18–24, 1974.

[37] Ninghui Li and Ziqing Mao. Administration in role-based access control. In Proc. of the 2nd

ACM symposium on Information, computer and communications security, pages 127–138,

2007.

[38] Dang Nguyen. PROVENANCE-BASED ACCESS CONTROL MODELS. PhD thesis, The

University of Texas at San Antonio, 2014.

[39] Jiwan Ninglekhu and Ram Krishnan. AARBAC: Attribute-based administration of role-based

access control. In 2017 IEEE 3nd International Conference on Collaboration and Internet

Computing (CIC). IEEE, 2017.

[40] Jiwan Ninglekhu and Ram Krishnan. ARRA: Attribute-based role-role assignment. Interna-

tional Workshop on Secure Knowledge Management 2017 (SKM 2017), 2017.

[41] Jiwan Ninglekhu and Ram Krishnan. Attribute based administration of role based access

control: A detailed description. arXiv preprint arXiv:1706.03171, 2017.

[42] Jiwan Ninglekhu and Ram Krishnan. A model for attribute based role-role assignment

(ARRA). arXiv preprint arXiv:1706.10274, 2017.

[43] Alan C OConnor and Ross J Loomis. 2010 economic analysis of role-based access control.

NIST, Gaithersburg, MD, 2010.

[44] Sejong Oh and Ravi Sandhu. A model for role administration using organization structure.

In Proc. of the seventh ACM symposium on Access control models and technologies, pages

155–162. ACM, 2002.

165

[45] Sejong Oh, Ravi Sandhu, and Xinwen Zhang. An effective role administration model using

organization structure. ACM Transactions on Information and System Security (TISSEC),

9(2):113–137, 2006.

[46] OpenStack. https://www.openstack.org/. Accessed: 2017-10-29.

[47] OpenStack. Identity api v3 (CURRENT). https://developer.openstack.org/api-ref/identity/

v3/index.html#what-s-new-in-version-3-9. Accessed: 2017-10-29.

[48] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. Attributes en-

hanced role-based access control model. In International Conference on Trust and Privacy

in Digital Business, pages 3–17. Springer, 2015.

[49] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. Integrating at-

tributes into role-based access control. In IFIP Annual Conference on Data and Applications

Security and Privacy, pages 242–249. Springer, 2015.

[50] Ocata Release. https://releases.openstack.org/ocata/. Accessed: 2017-11-1.

[51] OpenStack Conceptual Architecture (Ocata Release). https://docs.openstack.org/ocata/

install-guide-rdo/common/get-started-conceptual-architecture.html. Accessed: 2017-11-12.

[52] Sushmita Ruj. Attribute based access control in clouds: A survey. In Signal Processing and

Communications (SPCOM), 2014 International Conference on, pages 1–6. IEEE, 2014.

[53] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. Computer, 29:38–47, Feb 1996.

[54] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and Charles Youman.

The ARBAC97 model for role-based administration of roles: preliminary description and

outline. In Proceedings of the second ACM workshop on Role-based access control, pages

41–50. ACM, 1997.

166

https://www.openstack.org/
https://developer.openstack.org/api-ref/identity/v3/index.html#what-s-new-in-version-3-9
https://developer.openstack.org/api-ref/identity/v3/index.html#what-s-new-in-version-3-9
https://releases.openstack.org/ocata/
https://docs.openstack.org/ocata/install-guide-rdo/common/get-started-conceptual-architecture.html
https://docs.openstack.org/ocata/install-guide-rdo/common/get-started-conceptual-architecture.html

[55] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for role-

based administration of roles. ACM Transactions on Information and System Security (TIS-

SEC), 2:105–135, 1999.

[56] Ravi Sandhu and Qamar Munawer. The ARBAC99 model for administration of roles. In

Proc. of the 15th Annual Computer Security Applications Conference (ACSAC’99), pages

229–238. IEEE, 1999.

[57] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.

[58] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. IEEE com-

munications magazine, 32(9):40–48, 1994.

[59] Daniel Servos and Sylvia L Osborn. HGABAC: Towards a formal model of hierarchical

attribute-based access control. In International Symposium on Foundations and Practice of

Security (FPS 2014), pages 187–204. Springer, 2014.

[60] Bo Tang, Qi Li, and Ravi Sandhu. A multi-tenant rbac model for collaborative cloud services.

In Privacy, Security and Trust (PST), 2013 Eleventh Annual International Conference on,

pages 229–238. IEEE, 2013.

[61] Bo Tang and Ravi Sandhu. Extending openstack access control with domain trust. In Inter-

national Conference on Network and System Security, pages 54–69. Springer, 2014.

[62] Kan Yang and Xiaohua Jia. ABAC: Attribute-based access control. In Security for cloud

storage systems, pages 39–58. Springer, 2014.

[63] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for web services. In Proc.

of the IEEE International Conference on Web Services (ICWS’05). IEEE, 2005.

167

[64] Yue Zhang and James BD Joshi. ARBAC07: a role-based administration model for RBAC

with hybrid hierarchy. In 2007 IEEE International Conference on Information Reuse & Inte-

gration (2007 IRI), pages 196–202. IEEE, 2007.

168

VITA

Jiwan Ninglekhu was born in Gairi Gaun, Tehrathum, Nepal. He went to St. Joseph’s School

in Biratnagar, Nepal. He received his Bachelor of Engineering degree in Electronics and Com-

munication from Kathmandu Engineering College (KEC), Tribhuvan University (TU) in Nepal.

He received his Master of Science in Electrical Engineering with Computer Networking concen-

tration from Wichita State University (WSU), Wichita, KS, USA in 2009, and Master of Science

in Computer Engineering with Cyber Security concentration from The University of Texas at San

Antonio (UTSA), San Antonio, TX, USA in 2013. He subsequently entered the doctoral program

in Electrical Engineering with Cyber Security concentration at the department of Electrical and

Computer Engineering in Fall 2013. He research is affiliated with the Institute for Cyber Security

(I.C.S) at UTSA.

His research interests include but not limited to authorization and authentication, privacy and

human behavior in cyber security. He is also fascinated by other creative works in the Internet

space.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Problem Statement
	Scope and Assumption
	Thesis Statement
	Summary of Contribution
	Organization of Dissertation

	Chapter 2: Background and Literature Review
	Related Work
	Role-Based Access Control Model
	Administrative RBAC Models
	ARBAC97
	SARBAC
	ARBAC99
	ARBAC02
	Uni-ARBAC
	UARBAC
	A Model for Attribute-Based User-Role Assignment
	Other Administrative Models

	ABAC Models and Benefits of Using Attributes

	Chapter 3: AURA: Attribute-Based User-Role Assignment
	AURA Model
	Mapping Prior URA Models in AURA
	URA97 in AURA
	Summary of URA97 Model
	URA97 Instance
	Equivalent URA97 Instance in AURA
	MAPURA97 Algorithm

	URA99 in AURA
	Summary of URA99 Model
	URA99 Instance
	Equivalent URA99 Instance in AURA
	MAPURA99

	URA02 in AURA
	Summary of URA02 Model
	URA02 Instance
	Equivalent URA02 Instance in AURA
	MapURA02

	Uni-ARBAC's URA in AURA
	Summary of Uni-ARBAC's URA Model
	Uni-ARBAC's URA Instance
	Equivalent AURA instance of Uni-ARBAC's URA
	MapURA-Uni-ARBAC

	UARBAC's URA in AURA
	Summary of UARBAC's URA Model
	An Instance of UARBAC's URA
	Equivalent AURA instance for UARBAC's URA
	MapURA-UARBAC

	Chapter 4: ARPA: Attribute-Based Permission-Role Assignment Model
	ARPA Model
	Mapping Prior PRA Models in ARPA
	PRA97 in ARPA
	Summary of PRA97 Model
	PRA97 Instance
	Equivalent Example Instance of ARPA for PRA97
	MapPRA97

	PRA99 in ARPA
	Summary of PRA99 Model
	Equivalent PRA99 Instance in ARPA
	MapPRA99

	PRA02 in ARPA
	Summary of PRA02 Model
	PRA02 Instance
	Equivalent PRA02 Instance in ARPA
	MapPRA02

	Uni-ARBAC's PRA in ARPA
	Summary of Uni-ARBAC's PRA Model
	Instance of PRA in Uni-ARBAC
	Equivalent ARPA instance of PRA in Uni-ARBAC
	MapPRA-Uni-ARBAC

	UARBAC's PRA in ARPA
	Summary of UARBAC's PRA Model
	Instance of UARBAC's PRA
	Equivalent ARPA instance of UARBAC's PRA
	MapPRA-UARBAC

	Chapter 5: ARRA: Attribute-Based Role-Role Assignment Model
	ARRA Model
	Mapping Prior RRA Models in ARRA
	RRA97 in AARA
	An RRA97 Example Instance
	ARRA Instance Equivalent to RRA97 Instance
	MapRRA97
	UARBAC's RRA in ARRA
	An Example Instance of UARBAC's RRA
	ARRA Instance Equivalent to UARBAC's RRA Instance
	MapRRA-UARBAC
	An Example Instance For ARRA With Role Attributes

	Chapter 6: Implementation of AURA Model in OpenStack Cloud IaaS
	Background
	Need for Attribute-Based Administrative Approach in IaaS Cloud
	Flexibility and Scalability
	Least Privilege
	Fine Grained Access Control
	Principle of Minimalism

	OpenStack Access Control Overview
	Administrative OSAC model

	Proof of Concept AURA Implementation in OpenStack
	The Notion of Administrative Users in OpenStack
	Access Control Policy Management in OpenStack
	AURA Enforcement Model

	A Practical Scenario
	Experimental Setup and Application
	Performance Analysis
	Evaluation
	PRA and RRA in OpenStack

	Chapter 7: Conclusion
	Future Work

	Bibliography
	Vita

