The research goal of our lab is to understand the role of mechanical stress in the development and remodeling of the cardiovascular system and thus to improve the understanding, treatment, and prevention of cardiovascular diseases.

Our lab currently has several funded projects, all aim at understanding the role of mechanical stress in arterial and heart remodeling and its relationship to cardiovascular diseases. Our research topics include the mechanism of artery kinking which often develops in elderly in internal carotid arteries and iliac arteries,  the remodeling of arterial wall due to injury and pulse pressure, and the wall stress and remodeling of the left ventricle after an heart attack which will help us to understand the mechanism of heart failure after an heart attack.

Keywords: Vascular biomechanics, artery, vein, mechanical stress, residual stress, stability, artery buckling, kinking, twist artery, twisted blood vessels, tortuosity, wall remodeling, soft tissue, growth, matrix remodeling, adaptation, Matrix metalloproteinase (MMP), vein grafts, vascular grafts, tissue engineering, stents, restenosis, reendothelialization, cell proliferation, migration, intimal hyperplasia, hypertension, aneurysms, atherosclerosis,  left ventricle, left ventricular remodeling, cardiac function, ejection fraction, heart failure, modeling, finite element analysis, organ culture, ex vivo.




Biosafety cabinet and cell culture incubators. Organ culture system

CellScale Biaxial mechanical tester
Artery inflation, stretch, and torsion testing system
Dissecting stereo microscope and fluorescent microscope


Opening: NIH T32 funded Postdoctoral position in Cardiovascular Mechanics and remodeling.

Research Interests

Atherosclerosis, plaque rupture, aneurysm rupture, artery buckling and mechanical stability, artery tortuosity, collateral vessel development, growth and remodeling, intimal hyperplasia, endothelial and smooth muscle cells, vascular grafts, stent fracture and restenosis, tissue regeneration, mechanical modeling, cardiac mechanics, left ventricular remodeling, myocardial bridging, cardiac function, coronary heart disease, diastolic heart failure.

Research Projects

  1. Biomechanical mechanisms of artery buckling tortuosity.
  2. Left ventricular remodeling post-myocardial infarction.
  3. Diastolic Heart failure.
  4. Stent fracture in peripheral arteries.


Watch KENS5 NEWS features our research:

Scientist studying how twisted arteries relate to heart disease (2007)

UTSA scientists win $1.8 million to study ‘artery curling’ (2010)

Varicose veins subject of new study (mySA Express News 2010)

Read UTSA Today Story (2007)

Student News:

Justin Garcia received a Best Presentation Award at the SACNAS National Conference (10/2013)

Andrew Voorhees received a Valero Student Travel Award from COE to attend BMES 2013 in Seattle WA (9/2013)

Andrew Voorhees received a PhD Student Excellence Award from COE (12/2012)

Frank Wang received a COE Valero Foreign Visiting PhD Student Award (Fall 2012)

Justin Garcia and Justin Moreno are featured on the UTSA Graduate School webpage.(3/2012)

Rita Thornton, a RISE undergraduate scholar in our lab, received a poster award at ABRCMS at St Louis Nov. 2011.

Justin Garcia received an NIH MBRS-RISE predoctoral scholarship (Sept. 2011)

Shawn Lamm received a SACNAS Travel Scholarship Award to present a poster at the SACNAS annual meeting in Dallas, TX (Sept. 2009).

Danika Hayman featured in UTSA Today  (August 24, 2009)

Justin Garcia received a Graduate Research Supplement from the NSF to support his graduate study. (August 2009)

Danika Hayman received a Graduate Research Award from the Biomedical Engineering Society (August 2009)

Danika Hayman received an F31 predoctoral fellowship from the NIH (May 2009)

Shawn Lamm received a Poster Award at the 2008 SACNAS National Conference. (Oct. 2008)

Danika Hayman received an NIH MBRS-RISE predoctoral scholarship (Sept. 2008)

Avione Northcutt received an NIH MBRS-RISE predoctoral scholarship (Sept. 2008)

Rick Martinez received a Poster Award at the 2008 Summer Bioengineering Conference (June 2008)




Or you can add audio files, too! Like this!


Peer-Reviewed Journal Papers and Book Chapters

1. Chen ST, Han HC (1987). The Fourier eign transform. Chinese J Appl. Mech.  4(1):33-37.[Abstract]
2. Han HC (1989). The linear increase law of optimum age of scientific creativity. Scientometrics. 15(3-4):309-312. [Abstract]
3. Han HC, Fung YC(1991). Residual strain in porcine and canine trachea. J Biomech. 24(5): 307-315.[Abstract]
4. Han HC, Fung YC(1991). Species dependence of the zero-stress state of aorta: pig versus rat. ASME Trans. J Biomech Eng. 113:446-451.[Abstract]
5. Zhao L, Huang YT, Han HC, Huang M, Han LP, Zhang LF, Zhang R, Li J  (1993) Mechanical and hemodynamical changes of autogenous vein grafts. Chinese J Reparative Reconstr. Surg. 7(2):12-15.
6. Han HC (1994). A review of the residual strain in living organs. Advances in Mechanics[Chinese]. 24(1):124-131.
7. Han HC (1994). Analysis of stress and strain representations. J Xi’an Jiaotong Univ.[Chinese]. 28(1):45-50. Abstract [PDF]
8. Huang M, Han HC, Zhao L (1994). The zero-stress state of canine aorta. J Appl. Biomech.[Chinese]. 9(1): 52-55.
9. Han HC, Huang M, and Yang Z (1994). The zero-stress state of major arteries and veins of human extremity. Chinese J Biomed. Eng. 13(3): 244-250.
10. Han HC, Li G, Kuang ZB, Zhao L, Huang YT (1994). Tensile test of autogenous vein graft. Chinese J Appl. Mech. 11(3): 122-123.
11. Shen Q, Zong W, Jiang D, Han HC (1994). A capacitive isometric tensile test device for soft tissue. Chinese J Biomed Instrument. 18(6):329-332.
12. Han HC, Fung YC (1995). Longitudinal strain in canine and porcine aortas. J Biomech. 28:637-642.[Abstract]
13. Liao DH, Han HC, Li LS (1995). An in vitro fatigue test of human tibia. J Appl Biomech.  [Chinese]. 10(4): 238-244.
14. Huang M, Han HC, Zhao L (1996). The residual strain in canine arteries. Chinese J Biomed. Eng. (English). 5(1):1-10.
15. Han HC, Fung YC (1996). Direct measurement of transverse residual strains in aorta. Am J Physiol. 270 (Heart and Circ Physiol. 39): H750-H759.[Abstract]
16. Xu H, Zhu M, Pei J, Zang Y, Han HC (1997). The establishment and evaluation of abdominal aorta thrombosis model in rat. Chin J Appl Physiol.[Chin], 13(1):89-90. [Abstract]
17. Xu H, Zhu M, Pei J, Zang Y, Han HC (1997). Changes in the contraction and relaxation of abdominal aorta after thrombosis in rats. Chin J Appl Physiol.[Chinese], 13(3):260,267. [Abstract]
18. Xu H, Zhu M, Han H, Pei J, Wang Y, Zang Y, Hu S, (1997). Effect of thrombosis on the relaxation responses to calcitonin gene-related peptide in rat abdominal aorta. J FMMU [Chinese], 18(6): 532-535.
19. Liao DH, Han HC, Huang M, Kuang Z, Zhao L (1997) “A study of stress-strain relation of autogenous vein grafts: circumferential versus longitudinal. J Med Biomech, 12(3):134-137.
20. Liao DH, Han HC, Kuang ZB (1998). Finite element analysis of human tibia. J Biomed Eng. [Chinese] 15(1): 53-57.
21. Han HC, Zhao L, Huang M, Hou LS, Huang YT, Kuang ZB(1998). Postsurgical change of the opening angle of canine autogenous vein graft. Trans ASME J Biomech Engng. 120(2):211-216.[Abstract]
22. Chesler NC, Conklin BS, Han HC, Ku DN (1998). Simplified ex vivo artery culture techniques for porcine arteries. J Vasc Invest. 4: 213-217.[Abstract]
23. Liao D, Kuang Z, Han H (1999). Simulation of endothelial cell behavior under 2-D steady flow on a wavy surface. J Xi’an Jiaotong Univ. [Chinese]. 33(2): 59-63.
24. Han HC, Xu H, Zhu M, Zang YM (1999). The zero-stress state of rat abdominal aorta following hrombosis. Chin J Biomed Eng. 18(2): 184-186.[Abstract][Full Text PDF]
25. Liao DH, Han HC, Zhao L, Huang M, Huang YT, Kuang ZB (2000). The stress-strain relations of autogenous vein graft and its histologic correlation. Chin J Biomed Eng. 19(3): 261-266.[Abstract]
26. Hou L, Huang Y, Han H (2000), Bridging artery defect with autogenous vein under required anastomosing tension – a theoretical analysis based on related biomechanical evidence. Shengwu Yixue Gongchengxue Zazhi/J Biomed Eng. 17 (3): 277-280.[Abstract]
27. Han HC, Ku DN (2001). Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann Biomed Eng. 29(6):467-475.[Abstract]
28. Oshinski JN, Han HC, Ku DN, Pettigrew RI (2001). Quantitative prediction of improvement in cardiac function after revascularization with MR imaging and modeling-initial results. Radiology. 221(2):515-522. [Abstract]
29. Liao DH, Kuang ZB, Li J, Han HC (2001). [Simulation of endothelial cell behavior under 2-D pulsatile flow on a wavy surface]. Chinese J Biomed Eng. 20(6): 545-551. [Abstract]
30. Han HC, Oshinski JN, Ku DN, Pettigrew RI (2002). A left ventricle model to predict post-revascularization ejection fraction based on cine magnetic resonance images. J Biomech Eng.124(1):52-55. [Abstract]
31. Liao DH, Li J, Kuang ZB, Han HC (2002). [Numerical simulation of the shear stress on the surfaces of endothelial cells under static and 24h flow conditions]. Chinese J Biomed Eng. 21(1): 21-27. [Abstract]
32. Hou L, Huang Y, Han H (2002). [Compliance variation following the change of longitudinal stretch ratio. A study on femoral artery and vein in a rabbit model]. J Biomed Eng.[Chinese] 19(2): 207-211.  [Abstract]
33. Han HC, Ku DN, Vito RP (2003). Arterial wall adaptation under elevated axial stretch in organ culture. Ann Biomed Eng 31(4): 403-411. [Abstract]
34. Ku DN, Han HC (2003), Assessment of function in tissue engineered vascular grafts. In Functional Tissue Engineering, Springer-Verlag. New York, NY, Chapter 19, 258-267. (Book Chapter) [Abstract]
35. Han HC (2004). An echocardiogram-based 16-segment model for predicting left ventricular ejection fraction improvement. J Theor Biol 228(1): 7-15.[Abstract].
36. Han HC, Lerakis S (2004). The relation between viable segments and the left ventricular ejection fraction improvement: a theoretical analysis. J Med Eng Technol 28(6):242-253. [Abstract]
37. Han HC, Martin RP, Lerakis G, Lerakis S, (2005). Prediction of the left ventricular ejection fraction improvement using echocardiography and mechanical modeling. J Am Society of Echocardiography 18(7): 718-721. [Abstract]
38. Davis NP, Han HC, Wayman B, Vito RP (2005). Sustained axial loading lengthens arteries in organ culture. Ann Biomed Eng. 33(7): 869-879. [Abstract]
39. Han HC, Marita S, Ku DN (2006). Changes in opening angles of hypertensive and hypotensive arteries in three-day organ culture.  J Biomech 39:2410-2418. [Abstract]
40. Challa V, Han HC (2007), Spatial variations in wall thickness, material stiffness, and initial shape affect wall stress and shape of intracranial aneurysms. Neurol Res. 29(6): 569-577. [Abstract]
41. Han HC (2007). A biomechanical model of artery buckling. J Biomech. 40(16): 3672-3678. [Abstract]
42. Jin Y, Han HC, and Lindsey ML (2007).  Editorial: ACE Inhibitors to Block MMP-9 Activity:  New Functions for Old Inhibitors.  J Molecular and Cellular Cardiology (JMCC). 40 (6): 664-666. [Abstract]
43. Lin J, Lopez E, Jin Y, Van Remmen H, Bauch T, Han HC, Lindsey ML  (2008). Age-related cardiac muscle sarcopenia: combining experimental and mathematical modeling to identify mechanisms. Experimental Gerontology.  43(4): 296-306. [Abstract]
44. Han HC (2008). Nonlinear Buckling of blood vessels: A theoretical study. J Biomech. 41(12): 2708-2713. [Abstract]
45. Lee Y, Drury-Stewart D, Vito RP, Han HC (2008). Morphologic adaptation of arterial endothelial cells under axial stretch in organ culture. J Biomech. 41:3274-3277.[Abstract]
46. Han HC (2009). The mechanical buckling of curved arteries. Molecular & Cell Biomech. 6(2): 93-100.[Abstract]
47. Kim YS, Galis ZS, Rachev A, Han HC, Vito RP (2009). Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries. ASME J Biomech Eng 131(1):011009. [Abstract]
48. Yao Q, Hayman DM, Dai Q, Lindsey ML, Han HC (2009). Alterations in pulse pressure stimulate arterial wall matrix remodeling. J Biomech Eng. 131(10) 101011, Oct. 2009. [Abstract]
49. Han HC (2009). Blood vessel buckling within surrounding tissue generates tortuosity. J Biomech. 42(16): 2797-2801. [Abstract]
50. Han HC (2009). The theoretical foundation for artery buckling under internal pressure. J Biomech Eng. 131(12): 124501. [Abstract]
51. Northcutt A. Datir P, Han HC (2009). Computational simulations of buckling of oval and tapered arteries. In Tributes to Yuan-Cheng Fung on His 90th Birthday. Biomechanics: From Molecules to Man. Ed: Shu Chien, Peter C Y. Chen, Geert W. Schmid-Schönbein, Pin Tong, and Savio L-Y Woo, World Scientific Publishing Co. ISBN 978-9814289870. Chapter 6, 53-64.
52. Han HC (2010) “Letter to the Editor: Response to comment on “A biomechanical model of artery buckling.” J Biomech 43(4):802-803.
53. Lee YU, Luo J, Sprague EA, Han HC (2010). Comparison of artery organ culture and co-culture models for studying endothelial cell migration and its effect on smooth muscle cell proliferation and migration. Ann Biomed Eng. 38(3):801-12. [Abstract]
54. Martinez R, Fierro CA. Shireman PK, Han HC (2010). Mechanical buckling of veins under internal pressure. Ann Biomed Eng. 38(4):1345-53.  [Abstract]
55. Wang Y, Yang  J, Han HC, Lindsey ML, Jin Y (2010) “A conceptual cellular interaction model of left ventricular remodeling post-MI: dynamic network with exit-entry competition strategy” BMC System Biology  4(suppl 1):S5 (1-10). [Abstract]
56. Lee YU, Hayman D, Sprague EA, Han HC (2010). Effects of axial stretch on intimal thickness and cell proliferation in arteries in organ culture. Cell & Mol Bioeng. 3(3): 286-295.[abstract]
57. Han HC, Liu Q, Cui F (2010). Response to Comment on “A biomechanical model of artery buckling” and subsequent comments. J Biomech. 43(14): 2864.
58. Lee AY, Han HC (2010). A thin-walled nonlinear model for vein buckling. Cardiovasc Eng & Tech. 1(4): 282-289.[Abstract]
59. Han HC (2011). Determination of the critical pressure of artery buckling using the potential energy approach. Ann Biomed Eng 39(3):1032-40.[abstract]
60. Jin Y, Han HC, Berger J, Dai Q, Lindsey ML (2011). Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling.. BMC System Biol. 5:60.[abstract]
61. Datir P, Lee AY. Lamm SD, Han HC (2011). Effect of geometric variations on the buckling of arteries. Int J Appl Mech  3(2): 385-406.[abstract]
62. Chesnutt JKW, Han HC (2011). Tortuosity triggers platelet activation and thrombus formation in microvessels. ASME J Biomech Eng. 133(12):121004.[abstract]
63. Lee AY, Han B, Lamm SD, Fierro CA, Han HC (2012). Effects of elastin degradation and surrounding matrix support on artery stability. Am J PhysiolHeart Circ Physiol 302(4): H873–H884.[abstract]
64. Gao F, Cheng JH, Xue JH, Bai YG, Chen MS, Huang WQ, Huang J, Wu SX, Han HC, Zhang LF(2012). In-vivo and ex-vivo studies on region-specific remodeling of large elastic arteries due to simulated weightlessness and its prevention by gravity-based countermeasure. Acta Physiologica Sinica, 64(1): 14–26.).[abstract]
65. Martinez R, Han HC (2012). Effect of collagenase on the critical buckling pressure of arteries. Mol Cell Biomech 9 (1):55-76.(Invited).[abstract]
66. Han HC, Jiang ZL (2012). Vascular remodeling under axial tension. J Med Biomech [Chinese] (invited review) 27(1):7-12.[abstract]
67. Han HC (2012). Twisted blood vessels: symptoms, etiology, and biomechanical mechanisms. J Vasc Res. 49(3):185-197.[abstract]
68. Liu Q, Han HC (2012). Mechanical buckling of arteries under pulsatile pressure. J Biomech. 45(7):1192-1198.[abstract]
69.  Hayman DM, Xiao Y, Yao Q, Jiang ZL, Lindsey ML, Han HC (2012). Alterations in pulse pressure affect artery function. Cell & Mol Bioeng 5(4):474-487.[abstract]
70. Yang T, Chiao YA, Wang Y, Voorhees A, Han HC, Lindsey ML, Jin YF (2012). Mathematical modeling of left ventricular geometry changes in aging mice, BMC Systems Biology, 6(Suppl 3): S10.
71. Liu Q, Han HC (2013). Mechanical buckling of arterioles in collateral development. J Theor Biol, 316: 42-48. [abstract]
72. Hayman DM, Zhang J, Liu Q, Xiao Y. Han HC (2013). Smooth muscle contraction increases the critical buckling pressure of arteries. J Biomech 46(4):841-4.[abstract]
73. Ma Y, Halade GV, Zhang J, Ramirez TA, Levin D, Voorhees A, Jin YF, Han HC, Manicone AM, and Lindsey ML (2013). Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture following myocardial infarction in mice by inhibiting M2 macrophage activation. Circ Res 112(4):675-688.[abstract]
74. Han HC, Chesnutt JKW, Garcia JR, Liu Q, Wen Q (2013). Artery buckling: new phenotypes, models and applications. (Invited review) Ann Biomed Eng 41(7):1399-1410.[abstract].
75. Garcia JR, Lamm SD, Han HC (2013). Twist buckling behavior of arteries. Biomech Model Mechanobiol 12(5): 915-927.[abstract]
76. Chesnutt JKW, Han HC (2013). Platelet size and density affect shear-induced thrombosis formation in tortuous arterioles. Physical Biology 10(5):056003.[abstract]
77. Chesnutt JKW, Han HC (2013). Effect of red blood cells on platelet activation and thrombus formation in tortuous arterioles. Frontiers Bioeng Biotech. 1:18 (1-12), Dec 3, 2013. [abstract]
78 Grimes KM, Voorhees A, Chiao YA, Han HC, Lindsey ML, Buffenstein R (2014). Cardiac function of the naked mole-rat: ecophysiological responses to working underground. Am J Physiol.- Heart Circ Physiol. 306(5):H730-7. [abstract]
79 Voorhees A. Han HC (2014). A model to determine the effect of collagen fiber alignment on heart function post myocardial infarction. J Theoretical Biol Model 11:6 (1-19). [abstract]
80. Yabluchanskiy A, Ma Y, Chiao YA, Lopez EF, Voorhees AP, Toba H, Hall ME, Han HC, Lindsey ML, Jin YF (2014). Cardiac aging is initiated by matrix metalloproteinase-9 mediated endothelial dysfunction. Am J Physiol. 306(10):H1398-407[abstract]
81. Zhang J, Liu Q, Han HC (2014). An in vivo animal model of artery buckling for studying wall remodeling. Ann Biomed Eng 42(8): 1658-1667.[abstract]
82. Liu Q, Wen Q, Mottahedi M, Han HC (2014). Artery buckling analysis using four-fiber wall model. J Biomech 47(11): 2790-2796. [abstract]
83. Xiao Y, Hayman D, Khalafvand SS, Lindsey ML, Han HC (2014). Artery buckling stimulated cell proliferation in associated with NF-κB activation. Am J Physiol –Heart Circ Physiol. 307(4): H542-H551. [abstract]
84. Gu X, Jiang J, Wu L, Yang Y, Zhang P, Han HC, Jiang Z, Qi Y (2014). The role of FOXO1 on cyclic stretch induced proliferation of vascular smooth muscle cells during hypertension. J Med Biomech [Chinese] 29(5): 440-446.
85. Lee AY, Sanyal A. Shadfan R, Xiao Y, Han HC (2014). Mechanical instability of normal and aneurismal arteries. J Biomech 47: 3868-3875. [abstract]
86. Chesnutt JKW, Han HC (2015). Simulation of the microscopic process during initiation of stent thrombosis. Comput Biol Med 56:182-191. [abstract] (open access)
87. Sanyal A, Han HC (2015). Artery buckling affects the mechanical stress in atherosclerotic plaques. Biomed Eng Online 14(Suppl 1): S4:1-10. [abstract] (open access)
88. Khalafvand SS, Han HC (2015), Stability of carotid artery under steady state and pulsatile blood flow: A fluid-structure interaction study. ASME J Biomech Eng. 137(6): 061007. [abstract]
89. Luetkemeyer CM, James RH, Devarakonda ST, Le VP, Liu Q, Han HC, Wagenseil J (2015). Critical buckling pressures in mouse arteries with altered elastic fibers. J Mech Behav Biomed Mater 46: 69-82. [abstract]
90. Voorhees AP, DeLeon-Pennell KY, Ma Y, Halade GV, Yabluchanskiy A, Iyer RP, Flynn E, Cates CA, Lindsey ML, Han HC (2015). Building a better infarct: Modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J Mol Cell Cardiol 85:229-239. [abstract]
91. Wang G, Xiao Y, Voorhees AP, Qin YX, Jiang Z, Han HC (2015). Vascular responses of arteries under twisting load. Ann Biomed Eng 43(8):1738-47. [abstract]
92. Voorhees AP. Han HC (2015). Biomechanics of Cardiac Function. (Invited review). Comprehensive Physiol. 5:1623–1644. [abstract]
93. Huang K, Yan ZQ, Zhao D, Chen SG, Gao LZ, Zhang P, Shen BR, Han HC, Qi YX, Jiang ZL (2015). SIRT1 and FOXO mediate contractile differentiation of vascular smooth muscle cells under cyclic stretch. Cell Physiol Biochem. 37(5): 1817-1829. [abstract]
94. Qi N, Gao H, Ogden RW, Holzapfel GA, Han HC, Luo XY (2015). Investigation of the optimal collagen fibre orientation in human iliac arteries. J Mech Behavior Biomed Mat 52: 108-119. [abstract]
95. Chesnutt JKW, Han HC (2016). Computational simulation of platelet interactions in the initiation of stent thrombosis due to stent malapposition. Phys Biol 13(1):016001. [abstract]
96. Yabluchanskiy A, Ma Y, DeLeon-Pennell KY, Altara R, Halade GV, Voorhees AP, Nguyen NT, Jin YF, Winniford MD, Hall ME, Han HC, Lindsey ML (2016). Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. J Gerontol A Biol Sci Med Sci. 71(4):475-83. Apr 2016. [abstract]
97. Mottahedi M, Han HC (2016). Artery buckling analysis using two layered model with collagen dispersion. J Mech Behavior Biomed Mat 60: 515–524. [abstract]
98. Xiao Y, Liu Q, Han HC (2016). Buckling reduces eNOS production and stimulates extracellular matrix remodeling in arteries in ex vivo organ culture. Ann Biomed Eng. 44(9):2840-50. [abstract]
99. Han HC, Liu Q, Jiang ZL (2016). Mechanical Behavior and Wall Remodeling of Blood Vessels under Axial Twist (Invited review). J Med Biomech, 31(4):319-326. [abstract]
100. Alagarsamy K, Fortier A, Kumar N, Mohammad A, Banerjee S, Han HC, Mishra RS (2016). Computational modeling of stent implant procedure and comparison of different stent materials. J Biomed Eng Res. 1: 101.
101. FatemiFar F, Han HC (2016). Effect of axial stretch on lumen collapse of arteries. J Biomech Eng. 138(12), 124503. [abstract].
102. Alagarsamy K, Fortier A, Komarasamy M, Mishra R, Mohammad A, Banerjee S, Han HC (2016). Mechanical properties of High Entropy Alloy Al0.1CoCrFeNi for Peripheral Vascular Stent Application. Cardiovasc Eng & Tech. 7(4): 448-454. [abstract]
103. Halaney DL, Sanyal A, Nafissi NA, Escobedo D, Goros M, Michalek J, Acevedo PJ, Pérez W, Escobar GP, Feldman MD, Han HC (2017). The importance of trabeculae carneae for left ventricular diastolic compliance: improvement in compliance with trabecular cutting. J Biomech Eng. 139 (3):031012 (p 1-8)
104. Yang H, Fortier A, Horne K, Mohammad A, Banerjee S, Han HC (2017), Investigation of Stent Implant Mechanics Using Linear Analytical and Computational Approach. Cardiovascular Eng Tech. 8(1):81-90.
105. Garcia JR, Sanyal A, FatemiFar F, Mottahedi M, Han HC (2017). Twist mechanical properties and twist buckling of veins. J Biomech 58: 123-130.
106. Wang GL, Wang LY, Yang SX, Chen XH, Yao QP, Gong XB, Qi YX, Jiang ZL, Han HC (2017). Rat arterial wall remodeling under sustained twist. J Biomech: 60:124-133.